Abstract

Stimulated emission can be controlled by a material molecular energy band and the intensity of a pump laser, which can provide some population inversion and promote ground electron transition, respectively. We use a metallic optofluidic resonator to enhance stimulated emission intensity. The quality factor Q and the spontaneous emission coupling factor β of the metallic optofluidic resonator are discussed in detail to explain the enhancement mechanism. Experimental data demonstrate that the operated emission from rhodamin 6G solution can be observed due to the enhancement of stimulated emission from the optofluidic resonator.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Ultralow-threshold continuous-wave lasing assisted by a metallic optofluidic cavity exploiting continuous pump

Hailang Dai, Bei Jiang, Cheng Yin, Zhuangqi Cao, and Xianfeng Chen
Opt. Lett. 43(4) 847-850 (2018)

Optical coupling and emission of metal-insulator confined circular resonators

Kai-Jun Che, Mei-Xin Lei, and Zhi-Ping Cai
Opt. Express 21(4) 4979-4985 (2013)

Low threshold Fabry-Perot optofluidic resonator fabricated by femtosecond laser micromachining

F. Simoni, S. Bonfadini, P. Spegni, S. Lo Turco, D.E. Lucchetta, and L. Criante
Opt. Express 24(15) 17416-17423 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref]
  2. C. Walther and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
    [Crossref]
  3. S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
    [Crossref]
  4. Y. Gao, R. J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, and D. Englund, “High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity,” Nano Lett. 15, 2011–2018 (2015).
    [Crossref]
  5. D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant,” Opt. Express 21, 15765–15776 (2013).
    [Crossref]
  6. S. Wu, S. Buckley, J. R. Schaibely, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
    [Crossref]
  7. Q. Gu, B. Slutsky, F. Vallini, J. S. Smalley, M. P. Nezhad, N. C. Frateshi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21, 15603–15617 (2013).
    [Crossref]
  8. H. Yokoyama and S. D. Broson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801–4805 (1989).
    [Crossref]
  9. Y. Wang, Z. Cao, T. Yu, H. Li, and Q. Shen, “Enhancement of superprism effect based on the strong dispersion effect of ultrahigh-order modes,” Opt. Lett. 33, 1276–1278 (2008).
    [Crossref]
  10. H. Dai, Z. Cao, Y. Wang, M. Sang, W. Yuan, F. Chen, and X. Chen, “Concentric circular grating b generated by the patterning trapping of nanoparticles in an optofluidic chip,” Sci. Rep. 6, 32018 (2016).
    [Crossref]
  11. Y. Zheng, Z. Cao, and X. Chen, “Conical reflection of light during free-space coupling into a symmetrical metal-cladding waveguide,” J. Opt. Soc. Am. A 30, 1901–1904 (2013).
    [Crossref]
  12. P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306, 1002–1005 (2004).
    [Crossref]
  13. J. R. Lakowitz, “Principle of fluorescence spectroscopy,” J. Biomed. Opt. 13, 029901 (2008).
    [Crossref]
  14. W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
    [Crossref]

2016 (1)

H. Dai, Z. Cao, Y. Wang, M. Sang, W. Yuan, F. Chen, and X. Chen, “Concentric circular grating b generated by the patterning trapping of nanoparticles in an optofluidic chip,” Sci. Rep. 6, 32018 (2016).
[Crossref]

2015 (3)

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

Y. Gao, R. J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, and D. Englund, “High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity,” Nano Lett. 15, 2011–2018 (2015).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibely, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

2013 (3)

2011 (1)

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[Crossref]

2010 (1)

C. Walther and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[Crossref]

2008 (2)

2004 (1)

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306, 1002–1005 (2004).
[Crossref]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

1989 (1)

H. Yokoyama and S. D. Broson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801–4805 (1989).
[Crossref]

Andrew, P.

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306, 1002–1005 (2004).
[Crossref]

Bajoni, D.

Barnes, W. L.

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306, 1002–1005 (2004).
[Crossref]

Bloch, J.

Broson, S. D.

H. Yokoyama and S. D. Broson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801–4805 (1989).
[Crossref]

Buckley, S.

S. Wu, S. Buckley, J. R. Schaibely, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Cao, Z.

H. Dai, Z. Cao, Y. Wang, M. Sang, W. Yuan, F. Chen, and X. Chen, “Concentric circular grating b generated by the patterning trapping of nanoparticles in an optofluidic chip,” Sci. Rep. 6, 32018 (2016).
[Crossref]

Y. Zheng, Z. Cao, and X. Chen, “Conical reflection of light during free-space coupling into a symmetrical metal-cladding waveguide,” J. Opt. Soc. Am. A 30, 1901–1904 (2013).
[Crossref]

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[Crossref]

Y. Wang, Z. Cao, T. Yu, H. Li, and Q. Shen, “Enhancement of superprism effect based on the strong dispersion effect of ultrahigh-order modes,” Opt. Lett. 33, 1276–1278 (2008).
[Crossref]

Chen, F.

H. Dai, Z. Cao, Y. Wang, M. Sang, W. Yuan, F. Chen, and X. Chen, “Concentric circular grating b generated by the patterning trapping of nanoparticles in an optofluidic chip,” Sci. Rep. 6, 32018 (2016).
[Crossref]

Chen, X.

H. Dai, Z. Cao, Y. Wang, M. Sang, W. Yuan, F. Chen, and X. Chen, “Concentric circular grating b generated by the patterning trapping of nanoparticles in an optofluidic chip,” Sci. Rep. 6, 32018 (2016).
[Crossref]

Y. Zheng, Z. Cao, and X. Chen, “Conical reflection of light during free-space coupling into a symmetrical metal-cladding waveguide,” J. Opt. Soc. Am. A 30, 1901–1904 (2013).
[Crossref]

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[Crossref]

Dai, H.

H. Dai, Z. Cao, Y. Wang, M. Sang, W. Yuan, F. Chen, and X. Chen, “Concentric circular grating b generated by the patterning trapping of nanoparticles in an optofluidic chip,” Sci. Rep. 6, 32018 (2016).
[Crossref]

Englund, D.

Y. Gao, R. J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, and D. Englund, “High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity,” Nano Lett. 15, 2011–2018 (2015).
[Crossref]

Fainman, Y.

Faist, J.

C. Walther and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[Crossref]

Feng, L.

S. Wu, S. Buckley, J. R. Schaibely, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Frateshi, N. C.

Gan, X.

Y. Gao, R. J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, and D. Englund, “High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity,” Nano Lett. 15, 2011–2018 (2015).
[Crossref]

Gao, Y.

Y. Gao, R. J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, and D. Englund, “High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity,” Nano Lett. 15, 2011–2018 (2015).
[Crossref]

Gu, Q.

Hatami, F.

S. Wu, S. Buckley, J. R. Schaibely, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Hone, J.

Y. Gao, R. J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, and D. Englund, “High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity,” Nano Lett. 15, 2011–2018 (2015).
[Crossref]

Huang, S.

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[Crossref]

Lakowitz, J. R.

J. R. Lakowitz, “Principle of fluorescence spectroscopy,” J. Biomed. Opt. 13, 029901 (2008).
[Crossref]

Lemaître, A.

Li, H.

Li, L.

Y. Gao, R. J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, and D. Englund, “High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity,” Nano Lett. 15, 2011–2018 (2015).
[Crossref]

Majumdar, A.

S. Wu, S. Buckley, J. R. Schaibely, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Mandrus, D. G.

S. Wu, S. Buckley, J. R. Schaibely, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Meric, I.

Y. Gao, R. J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, and D. Englund, “High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity,” Nano Lett. 15, 2011–2018 (2015).
[Crossref]

Miard, A.

Nezhad, M. P.

Peng, C.

Y. Gao, R. J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, and D. Englund, “High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity,” Nano Lett. 15, 2011–2018 (2015).
[Crossref]

Sagnes, I.

Sang, M.

H. Dai, Z. Cao, Y. Wang, M. Sang, W. Yuan, F. Chen, and X. Chen, “Concentric circular grating b generated by the patterning trapping of nanoparticles in an optofluidic chip,” Sci. Rep. 6, 32018 (2016).
[Crossref]

Schaibely, J. R.

S. Wu, S. Buckley, J. R. Schaibely, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Senellart, P.

Shen, Q.

Shiue, R. J.

Y. Gao, R. J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, and D. Englund, “High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity,” Nano Lett. 15, 2011–2018 (2015).
[Crossref]

Slutsky, B.

Smalley, J. S.

Sun, H.

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

Sun, J.

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[Crossref]

Szep, A.

Y. Gao, R. J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, and D. Englund, “High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity,” Nano Lett. 15, 2011–2018 (2015).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Vallini, F.

Vuckovic, J.

S. Wu, S. Buckley, J. R. Schaibely, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Walker, D.

Y. Gao, R. J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, and D. Englund, “High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity,” Nano Lett. 15, 2011–2018 (2015).
[Crossref]

Walther, C.

C. Walther and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[Crossref]

Wang, L.

Y. Gao, R. J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, and D. Englund, “High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity,” Nano Lett. 15, 2011–2018 (2015).
[Crossref]

Wang, X.

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[Crossref]

Wang, Y.

H. Dai, Z. Cao, Y. Wang, M. Sang, W. Yuan, F. Chen, and X. Chen, “Concentric circular grating b generated by the patterning trapping of nanoparticles in an optofluidic chip,” Sci. Rep. 6, 32018 (2016).
[Crossref]

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

Y. Wang, Z. Cao, T. Yu, H. Li, and Q. Shen, “Enhancement of superprism effect based on the strong dispersion effect of ultrahigh-order modes,” Opt. Lett. 33, 1276–1278 (2008).
[Crossref]

Wertz, E.

Wu, S.

S. Wu, S. Buckley, J. R. Schaibely, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Xiao, P.

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[Crossref]

Xu, X.

S. Wu, S. Buckley, J. R. Schaibely, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Yan, J.

S. Wu, S. Buckley, J. R. Schaibely, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Yang, S.

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

Yao, W.

S. Wu, S. Buckley, J. R. Schaibely, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Yin, C.

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[Crossref]

Yokoyama, H.

H. Yokoyama and S. D. Broson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801–4805 (1989).
[Crossref]

Yu, T.

Yuan, W.

H. Dai, Z. Cao, Y. Wang, M. Sang, W. Yuan, F. Chen, and X. Chen, “Concentric circular grating b generated by the patterning trapping of nanoparticles in an optofluidic chip,” Sci. Rep. 6, 32018 (2016).
[Crossref]

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[Crossref]

Zheng, Y.

Adv. Opt. Mater. (1)

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

J. Appl. Phys. (1)

H. Yokoyama and S. D. Broson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801–4805 (1989).
[Crossref]

J. Biomed. Opt. (1)

J. R. Lakowitz, “Principle of fluorescence spectroscopy,” J. Biomed. Opt. 13, 029901 (2008).
[Crossref]

J. Opt. Soc. Am. A (1)

Microfluid. Nanofluid. (1)

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[Crossref]

Nano Lett. (1)

Y. Gao, R. J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, and D. Englund, “High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity,” Nano Lett. 15, 2011–2018 (2015).
[Crossref]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibely, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Sci. Rep. (1)

H. Dai, Z. Cao, Y. Wang, M. Sang, W. Yuan, F. Chen, and X. Chen, “Concentric circular grating b generated by the patterning trapping of nanoparticles in an optofluidic chip,” Sci. Rep. 6, 32018 (2016).
[Crossref]

Science (2)

C. Walther and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[Crossref]

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306, 1002–1005 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the HCMW chip. The thickness of the coupling layer is about 30–50 nm, and the metal substrate is about 300 nm thick. The guiding layer that contains a channel for dye solution is 1.1 mm thick. (b) Excitation of UOMs via free-space coupling technique. The right inset shows the image of the HCMW chip before vacuum evaporation.
Fig. 2.
Fig. 2. Numerically calculated reflectivity spectrum of the simplified HCMW structure, whose parameters are presented above. Inset: Reflectivity spectrum in the range of 540–610 nm, which corresponds to the fluorescence spectrum of the R6G.
Fig. 3.
Fig. 3. (a) Experimental measurement of the wavelength-dependent resonance dip of the waveguide chip. (b) Numerical simulation by transfer matrix method.
Fig. 4.
Fig. 4. (a) Schematic of the reflected light cones formed by leakage radiation of the UOMs, while the reflection law generates the spectra reflected beam. (b) Image of the light cones on a screen, where a bright spot corresponding to the reflected beam can be found.
Fig. 5.
Fig. 5. (a) Energy level diagram of R6G. (b) Schematic of the experimental setup of the optofluidic dye laser.
Fig. 6.
Fig. 6. (a) Image of the concentric laser cones (red) and the leakage cones of the UOMs (blue) on the screen. (b) Schematic of a specific laser cone and a specific leakage cone of a UOM, where a transverse shift between the two cones’ axes occurs in the incident plane. (c) Emission spectrum of the R6G sample, where the lasing wavelength is 568 nm. The inset figure shows that the lasing threshold of R6G dye is about 2.0  μW/cm2. (d) Fluorescence spectra of R6G solution with concentration of 2.579×1011  mol/mL emitted from HCMW (black line) and cuvette (red line), respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

κ1d=mπ+2arctanN2ϵ2rϵ1N2,
N=Nr+iNi,
Ni=ϵ2i2Nrϵ1Nr2ϵ1ϵ2r1πdλNr2ϵ2r+1.
Λ=2πλNi,
D=1Λ=λ2πNi.
β=12[1cos(θ/2)],
tanθm=2Dd=(Nr2ϵ2r+1)/(ϵ2i2Nrϵ1Nr2ϵ1ϵ2r).