Abstract

Conventionally, metallic nanostructures are used for surface-enhanced Raman spectroscopy (SERS), but recently there has been increasing interest in the enhancement of Raman scattering from dielectric substrates due to their improved stability and biocompatibility compared with metallic substrates. Here, we report the observation of enhanced Raman scattering from rhodamine 6G molecules coated on silica microspheres. We excite the whispering gallery modes (WGMs) supported in the microspheres with a tapered fiber coupler for efficient WGM excitation, and the Raman enhancement can be attributed to the WGM mechanism. Strong resonance enhancement in pump laser intensity and modified Raman emission from the Purcell effect in the microsphere resonator are observed from the experiment and compared with theoretical results. A total Raman enhancement factor of 1.4×104 is observed, with contribution mostly from the enhancement in pump laser intensity. Our results show that, with an efficient pumping scheme, dielectric microspheres are a viable alternative to metallic SERS substrates.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection

Yinzhou Yan, Cheng Xing, Yanhua Jia, Yong Zeng, Yan Zhao, and Yijian Jiang
Opt. Express 23(20) 25854-25865 (2015)

Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer

Iwao Teraoka and Stephen Arnold
J. Opt. Soc. Am. B 23(7) 1434-1441 (2006)

Whispering gallery mode structure in polymer-coated lasing microspheres

K. Gardner, Y. Zhi, L. Tan, S. Lane, Y.-F. Xiao, and A. Meldrum
J. Opt. Soc. Am. B 34(10) 2140-2146 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref]
  2. F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
    [Crossref]
  3. L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
    [Crossref]
  4. V. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
    [Crossref]
  5. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
    [Crossref]
  6. M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
    [Crossref]
  7. L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
    [Crossref]
  8. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
    [Crossref]
  9. K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
    [Crossref]
  10. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
    [Crossref]
  11. S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 016021 (2016).
    [Crossref]
  12. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
    [Crossref]
  13. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
  14. I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116, 14921–14981 (2016).
    [Crossref]
  15. M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
    [Crossref]
  16. V. R. Dantham, P. B. Bisht, and C. K. R. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109, 103103 (2011).
    [Crossref]
  17. I. Alessandri, “Enhancing Raman scattering without plasmons: unprecedented sensitivity achieved by TiO2 shell-based resonators,” J. Am. Chem. Soc. 135, 5541–5544 (2013).
    [Crossref]
  18. I. Alessandri, N. Bontempi, and L. E. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Adv. 4, 38152–38158 (2014).
    [Crossref]
  19. K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
    [Crossref]
  20. C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman Spectrosc. 42, 145–148 (2011).
    [Crossref]
  21. M. S. Anderson, “Nonplasmonic surface enhanced Raman spectroscopy using silica microspheres,” Appl. Phys. Lett. 97, 131116 (2010).
    [Crossref]
  22. N. Bontempi, L. Carletti, C. De Angelis, and I. Alessandri, “Plasmon-free SERS detection of environmental CO2 on TiO2 surfaces,” Nanoscale 8, 3226–3231 (2016).
    [Crossref]
  23. D. Qi, L. Lu, L. Wang, and J. Zhang, “Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling,” J. Am. Chem. Soc. 136, 9886–9889 (2014).
    [Crossref]
  24. Y. Yan, C. Xing, Y. Jia, Y. Zeng, Y. Zhao, and Y. Jiang, “Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection,” Opt. Express 23, 25854–25865 (2015).
    [Crossref]
  25. L. Yang, X. Jiang, W. Ruan, B. Zhao, W. Xu, and J. R. Lombardi, “Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution,” J. Phys. Chem. C 112, 20095–20098 (2008).
    [Crossref]
  26. Y. Wang, W. Ruan, J. Zhang, B. Yang, W. Xu, B. Zhao, and J. R. Lombardi, “Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals,” J. Raman Spectrosc. 40, 1072–1077 (2009).
    [Crossref]
  27. C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photon. 3, 1662–1669 (2016).
    [Crossref]
  28. D. H. Murgida and P. Hildebrandt, “Disentangling interfacial redox processes of proteins by SERR spectroscopy,” Chem. Soc. Rev. 37, 937–945 (2008).
    [Crossref]
  29. M. Mahmoudi, S. E. Lohse, C. J. Murphy, A. Fathizadeh, A. Montazeri, and K. S. Suslick, “Variation of protein corona composition of gold nanoparticles following plasmonic heating,” Nano Lett. 14, 6–12 (2014).
    [Crossref]
  30. D. R. Ward, D. A. Corley, J. M. Tour, and D. Natelson, “Vibrational and electronic heating in nanoscale junctions,” Nat. Nanotechnol. 6, 33–38 (2010).
    [Crossref]
  31. A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, and O. Benson, “In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting,” Nano Lett. 13, 2041–2046 (2013).
    [Crossref]
  32. L. K. Ausman and G. C. Schatz, “Whispering-gallery mode resonators: surface enhanced Raman scattering without plasmons,” J. Chem. Phys. 129, 054704 (2008).
    [Crossref]
  33. R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, and Y.-F. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator,” Phys. Rev. A 91, 043836 (2015).
    [Crossref]
  34. M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration,” Opt. Lett. 25, 260–262 (2000).
    [Crossref]
  35. Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
    [Crossref]
  36. J.-B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noé, T. Ricart, D. Bucci, and A. Morand, “High-Q silica microcavities on a chip: from microtoroid to microsphere,” Appl. Phys. Lett. 99, 181123 (2011).
    [Crossref]
  37. X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G.-L. Long, and H. Wang, “Chip-based silica microspheres for cavity optomechanics,” Opt. Express 23, 27260–27265 (2015).
    [Crossref]
  38. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
    [Crossref]
  39. T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
    [Crossref]
  40. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [Crossref]
  41. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
    [Crossref]
  42. R. Symes, R. M. Sayera, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
    [Crossref]
  43. X. Checoury, Z. Han, M. El Kurdi, and P. Boucaud, “Deterministic measurement of the Purcell factor in microcavities through Raman emission,” Phys. Rev. A 81, 033832 (2010).
    [Crossref]
  44. B. Petrak, N. Djeu, and A. Muller, “Purcell-enhanced Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89, 023811 (2014).
    [Crossref]
  45. H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
    [Crossref]
  46. T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
    [Crossref]
  47. S. Balac and P. Féron, “Whispering gallery modes volume computation in optical micro-spheres,” Research Report <hal-01279396>, FOTON, 2014, https://hal.inria.fr/FOTON_SYSPHOT/hal-01279396v1 .
  48. Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
    [Crossref]
  49. M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9, 427–435 (2015).
    [Crossref]
  50. B. L. Darby, P. G. Etchegoin, and E. C. Le Ru, “Single-molecule surface-enhanced Raman spectroscopy with nanowatt excitation,” Phys. Chem. Chem. Phys. 16, 23895–23899 (2014).
    [Crossref]
  51. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Evidence of natural isotopic distribution from single-molecule SERS,” J. Am. Chem. Soc. 131, 2713–2716 (2009).
    [Crossref]
  52. E. L. Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier, 2008).
  53. M. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

2016 (7)

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
[Crossref]

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 016021 (2016).
[Crossref]

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116, 14921–14981 (2016).
[Crossref]

N. Bontempi, L. Carletti, C. De Angelis, and I. Alessandri, “Plasmon-free SERS detection of environmental CO2 on TiO2 surfaces,” Nanoscale 8, 3226–3231 (2016).
[Crossref]

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photon. 3, 1662–1669 (2016).
[Crossref]

T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
[Crossref]

2015 (5)

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9, 427–435 (2015).
[Crossref]

X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G.-L. Long, and H. Wang, “Chip-based silica microspheres for cavity optomechanics,” Opt. Express 23, 27260–27265 (2015).
[Crossref]

R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, and Y.-F. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator,” Phys. Rev. A 91, 043836 (2015).
[Crossref]

Y. Yan, C. Xing, Y. Jia, Y. Zeng, Y. Zhao, and Y. Jiang, “Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection,” Opt. Express 23, 25854–25865 (2015).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

2014 (7)

I. Alessandri, N. Bontempi, and L. E. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Adv. 4, 38152–38158 (2014).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

D. Qi, L. Lu, L. Wang, and J. Zhang, “Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling,” J. Am. Chem. Soc. 136, 9886–9889 (2014).
[Crossref]

M. Mahmoudi, S. E. Lohse, C. J. Murphy, A. Fathizadeh, A. Montazeri, and K. S. Suslick, “Variation of protein corona composition of gold nanoparticles following plasmonic heating,” Nano Lett. 14, 6–12 (2014).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

B. L. Darby, P. G. Etchegoin, and E. C. Le Ru, “Single-molecule surface-enhanced Raman spectroscopy with nanowatt excitation,” Phys. Chem. Chem. Phys. 16, 23895–23899 (2014).
[Crossref]

B. Petrak, N. Djeu, and A. Muller, “Purcell-enhanced Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89, 023811 (2014).
[Crossref]

2013 (5)

H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, and O. Benson, “In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting,” Nano Lett. 13, 2041–2046 (2013).
[Crossref]

I. Alessandri, “Enhancing Raman scattering without plasmons: unprecedented sensitivity achieved by TiO2 shell-based resonators,” J. Am. Chem. Soc. 135, 5541–5544 (2013).
[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

V. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

2012 (1)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

2011 (5)

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

V. R. Dantham, P. B. Bisht, and C. K. R. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109, 103103 (2011).
[Crossref]

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman Spectrosc. 42, 145–148 (2011).
[Crossref]

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

J.-B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noé, T. Ricart, D. Bucci, and A. Morand, “High-Q silica microcavities on a chip: from microtoroid to microsphere,” Appl. Phys. Lett. 99, 181123 (2011).
[Crossref]

2010 (3)

X. Checoury, Z. Han, M. El Kurdi, and P. Boucaud, “Deterministic measurement of the Purcell factor in microcavities through Raman emission,” Phys. Rev. A 81, 033832 (2010).
[Crossref]

M. S. Anderson, “Nonplasmonic surface enhanced Raman spectroscopy using silica microspheres,” Appl. Phys. Lett. 97, 131116 (2010).
[Crossref]

D. R. Ward, D. A. Corley, J. M. Tour, and D. Natelson, “Vibrational and electronic heating in nanoscale junctions,” Nat. Nanotechnol. 6, 33–38 (2010).
[Crossref]

2009 (4)

Y. Wang, W. Ruan, J. Zhang, B. Yang, W. Xu, B. Zhao, and J. R. Lombardi, “Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals,” J. Raman Spectrosc. 40, 1072–1077 (2009).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Evidence of natural isotopic distribution from single-molecule SERS,” J. Am. Chem. Soc. 131, 2713–2716 (2009).
[Crossref]

2008 (6)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).

L. Yang, X. Jiang, W. Ruan, B. Zhao, W. Xu, and J. R. Lombardi, “Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution,” J. Phys. Chem. C 112, 20095–20098 (2008).
[Crossref]

D. H. Murgida and P. Hildebrandt, “Disentangling interfacial redox processes of proteins by SERR spectroscopy,” Chem. Soc. Rev. 37, 937–945 (2008).
[Crossref]

L. K. Ausman and G. C. Schatz, “Whispering-gallery mode resonators: surface enhanced Raman scattering without plasmons,” J. Chem. Phys. 129, 054704 (2008).
[Crossref]

2007 (2)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[Crossref]

2004 (3)

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref]

R. Symes, R. M. Sayera, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
[Crossref]

2000 (1)

1999 (1)

Albella, P.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Alessandri, I.

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116, 14921–14981 (2016).
[Crossref]

N. Bontempi, L. Carletti, C. De Angelis, and I. Alessandri, “Plasmon-free SERS detection of environmental CO2 on TiO2 surfaces,” Nanoscale 8, 3226–3231 (2016).
[Crossref]

I. Alessandri, N. Bontempi, and L. E. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Adv. 4, 38152–38158 (2014).
[Crossref]

I. Alessandri, “Enhancing Raman scattering without plasmons: unprecedented sensitivity achieved by TiO2 shell-based resonators,” J. Am. Chem. Soc. 135, 5541–5544 (2013).
[Crossref]

Anderson, M. S.

M. S. Anderson, “Nonplasmonic surface enhanced Raman spectroscopy using silica microspheres,” Appl. Phys. Lett. 97, 131116 (2010).
[Crossref]

Arnold, S.

V. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Ausman, L. K.

L. K. Ausman and G. C. Schatz, “Whispering-gallery mode resonators: surface enhanced Raman scattering without plasmons,” J. Chem. Phys. 129, 054704 (2008).
[Crossref]

Baaske, M. D.

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Barbre, C.

V. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

Benson, O.

A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, and O. Benson, “In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting,” Nano Lett. 13, 2041–2046 (2013).
[Crossref]

Bisht, P. B.

V. R. Dantham, P. B. Bisht, and C. K. R. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109, 103103 (2011).
[Crossref]

Blackie, E.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Bontempi, N.

N. Bontempi, L. Carletti, C. De Angelis, and I. Alessandri, “Plasmon-free SERS detection of environmental CO2 on TiO2 surfaces,” Nanoscale 8, 3226–3231 (2016).
[Crossref]

I. Alessandri, N. Bontempi, and L. E. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Adv. 4, 38152–38158 (2014).
[Crossref]

Boucaud, P.

X. Checoury, Z. Han, M. El Kurdi, and P. Boucaud, “Deterministic measurement of the Purcell factor in microcavities through Raman emission,” Phys. Rev. A 81, 033832 (2010).
[Crossref]

Bragas, A. V.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Bucci, D.

J.-B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noé, T. Ricart, D. Bucci, and A. Morand, “High-Q silica microcavities on a chip: from microtoroid to microsphere,” Appl. Phys. Lett. 99, 181123 (2011).
[Crossref]

Busch, K.

A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, and O. Benson, “In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting,” Nano Lett. 13, 2041–2046 (2013).
[Crossref]

Cai, M.

Caldarola, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Calvo, V.

J.-B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noé, T. Ricart, D. Bucci, and A. Morand, “High-Q silica microcavities on a chip: from microtoroid to microsphere,” Appl. Phys. Lett. 99, 181123 (2011).
[Crossref]

Carletti, L.

N. Bontempi, L. Carletti, C. De Angelis, and I. Alessandri, “Plasmon-free SERS detection of environmental CO2 on TiO2 surfaces,” Nanoscale 8, 3226–3231 (2016).
[Crossref]

Carmon, T.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref]

Chang, H. C.

H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

Checoury, X.

X. Checoury, Z. Han, M. El Kurdi, and P. Boucaud, “Deterministic measurement of the Purcell factor in microcavities through Raman emission,” Phys. Rev. A 81, 033832 (2010).
[Crossref]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Cherqui, C.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Clements, W. R.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Corley, D. A.

D. R. Ward, D. A. Corley, J. M. Tour, and D. Natelson, “Vibrational and electronic heating in nanoscale junctions,” Nat. Nanotechnol. 6, 33–38 (2010).
[Crossref]

Cortés, E.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Dantham, V.

V. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

Dantham, V. R.

V. R. Dantham, P. B. Bisht, and C. K. R. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109, 103103 (2011).
[Crossref]

Darby, B. L.

B. L. Darby, P. G. Etchegoin, and E. C. Le Ru, “Single-molecule surface-enhanced Raman spectroscopy with nanowatt excitation,” Phys. Chem. Chem. Phys. 16, 23895–23899 (2014).
[Crossref]

De Angelis, C.

N. Bontempi, L. Carletti, C. De Angelis, and I. Alessandri, “Plasmon-free SERS detection of environmental CO2 on TiO2 surfaces,” Nanoscale 8, 3226–3231 (2016).
[Crossref]

Delamadeleine, E.

J.-B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noé, T. Ricart, D. Bucci, and A. Morand, “High-Q silica microcavities on a chip: from microtoroid to microsphere,” Appl. Phys. Lett. 99, 181123 (2011).
[Crossref]

Depero, L. E.

I. Alessandri, N. Bontempi, and L. E. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Adv. 4, 38152–38158 (2014).
[Crossref]

Deutsch, C.

H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).

Ding, S.-Y.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 016021 (2016).
[Crossref]

Djeu, N.

B. Petrak, N. Djeu, and A. Muller, “Purcell-enhanced Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89, 023811 (2014).
[Crossref]

Du, C. L.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman Spectrosc. 42, 145–148 (2011).
[Crossref]

El Kurdi, M.

X. Checoury, Z. Han, M. El Kurdi, and P. Boucaud, “Deterministic measurement of the Purcell factor in microcavities through Raman emission,” Phys. Rev. A 81, 033832 (2010).
[Crossref]

Etchegoin, P.

E. L. Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier, 2008).

Etchegoin, P. G.

B. L. Darby, P. G. Etchegoin, and E. C. Le Ru, “Single-molecule surface-enhanced Raman spectroscopy with nanowatt excitation,” Phys. Chem. Chem. Phys. 16, 23895–23899 (2014).
[Crossref]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Evidence of natural isotopic distribution from single-molecule SERS,” J. Am. Chem. Soc. 131, 2713–2716 (2009).
[Crossref]

Etchegoint, P. G.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Evans, C. C.

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photon. 3, 1662–1669 (2016).
[Crossref]

Fathizadeh, A.

M. Mahmoudi, S. E. Lohse, C. J. Murphy, A. Fathizadeh, A. Montazeri, and K. S. Suslick, “Variation of protein corona composition of gold nanoparticles following plasmonic heating,” Nano Lett. 14, 6–12 (2014).
[Crossref]

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Goldsmith, R. H.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Gong, Q.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Gorodetsky, M. L.

Grinblat, G.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Hadji, E.

J.-B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noé, T. Ricart, D. Bucci, and A. Morand, “High-Q silica microcavities on a chip: from microtoroid to microsphere,” Appl. Phys. Lett. 99, 181123 (2011).
[Crossref]

Han, Z.

X. Checoury, Z. Han, M. El Kurdi, and P. Boucaud, “Deterministic measurement of the Purcell factor in microcavities through Raman emission,” Phys. Rev. A 81, 033832 (2010).
[Crossref]

Hansch, T. W.

H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

Hänsch, T. W.

T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
[Crossref]

He, L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Heylman, K. D.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Hildebrandt, P.

D. H. Murgida and P. Hildebrandt, “Disentangling interfacial redox processes of proteins by SERR spectroscopy,” Chem. Soc. Rev. 37, 937–945 (2008).
[Crossref]

Hofmann, M. S.

T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
[Crossref]

Högele, A.

T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
[Crossref]

Holler, S.

V. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

Horak, E. H.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Huang, S. H.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Hümmer, T.

T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
[Crossref]

Hunger, D.

T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
[Crossref]

H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

Ilchenko, V. S.

Jager, J.-B.

J.-B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noé, T. Ricart, D. Bucci, and A. Morand, “High-Q silica microcavities on a chip: from microtoroid to microsphere,” Appl. Phys. Lett. 99, 181123 (2011).
[Crossref]

Jia, Y.

Jiang, X.

X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G.-L. Long, and H. Wang, “Chip-based silica microspheres for cavity optomechanics,” Opt. Express 23, 27260–27265 (2015).
[Crossref]

L. Yang, X. Jiang, W. Ruan, B. Zhao, W. Xu, and J. R. Lombardi, “Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution,” J. Phys. Chem. C 112, 20095–20098 (2008).
[Crossref]

Jiang, X.-F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Jiang, Y.

Jin, W.-L.

R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, and Y.-F. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator,” Phys. Rev. A 91, 043836 (2015).
[Crossref]

Kasim, J.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman Spectrosc. 42, 145–148 (2011).
[Crossref]

Kaupp, H.

H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

Keng, D.

V. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Kim, W.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

Knapper, K. A.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Kolchenko, V.

V. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

Kuhlicke, A.

A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, and O. Benson, “In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting,” Nano Lett. 13, 2041–2046 (2013).
[Crossref]

Kuzyk, M. C.

Le Ru, E. C.

B. L. Darby, P. G. Etchegoin, and E. C. Le Ru, “Single-molecule surface-enhanced Raman spectroscopy with nanowatt excitation,” Phys. Chem. Chem. Phys. 16, 23895–23899 (2014).
[Crossref]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Evidence of natural isotopic distribution from single-molecule SERS,” J. Am. Chem. Soc. 131, 2713–2716 (2009).
[Crossref]

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Li, B.-B.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Li, J.-F.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 016021 (2016).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Liu, C.

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photon. 3, 1662–1669 (2016).
[Crossref]

Liu, R.-S.

R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, and Y.-F. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator,” Phys. Rev. A 91, 043836 (2015).
[Crossref]

Liu, Y.-C.

R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, and Y.-F. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator,” Phys. Rev. A 91, 043836 (2015).
[Crossref]

Lohse, S. E.

M. Mahmoudi, S. E. Lohse, C. J. Murphy, A. Fathizadeh, A. Montazeri, and K. S. Suslick, “Variation of protein corona composition of gold nanoparticles following plasmonic heating,” Nano Lett. 14, 6–12 (2014).
[Crossref]

Lombardi, J. R.

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116, 14921–14981 (2016).
[Crossref]

Y. Wang, W. Ruan, J. Zhang, B. Yang, W. Xu, B. Zhao, and J. R. Lombardi, “Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals,” J. Raman Spectrosc. 40, 1072–1077 (2009).
[Crossref]

L. Yang, X. Jiang, W. Ruan, B. Zhao, W. Xu, and J. R. Lombardi, “Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution,” J. Phys. Chem. C 112, 20095–20098 (2008).
[Crossref]

Long, G. L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Long, G.-L.

Lu, L.

D. Qi, L. Lu, L. Wang, and J. Zhang, “Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling,” J. Am. Chem. Soc. 136, 9886–9889 (2014).
[Crossref]

Lu, Y. F.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[Crossref]

Mahmoudi, M.

M. Mahmoudi, S. E. Lohse, C. J. Murphy, A. Fathizadeh, A. Montazeri, and K. S. Suslick, “Variation of protein corona composition of gold nanoparticles following plasmonic heating,” Nano Lett. 14, 6–12 (2014).
[Crossref]

Maier, S. A.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Masiello, D. J.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Matyssek, C.

A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, and O. Benson, “In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting,” Nano Lett. 13, 2041–2046 (2013).
[Crossref]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Evidence of natural isotopic distribution from single-molecule SERS,” J. Am. Chem. Soc. 131, 2713–2716 (2009).
[Crossref]

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Min, B.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

Monifi, F.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Montazeri, A.

M. Mahmoudi, S. E. Lohse, C. J. Murphy, A. Fathizadeh, A. Montazeri, and K. S. Suslick, “Variation of protein corona composition of gold nanoparticles following plasmonic heating,” Nano Lett. 14, 6–12 (2014).
[Crossref]

Morand, A.

J.-B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noé, T. Ricart, D. Bucci, and A. Morand, “High-Q silica microcavities on a chip: from microtoroid to microsphere,” Appl. Phys. Lett. 99, 181123 (2011).
[Crossref]

Muller, A.

B. Petrak, N. Djeu, and A. Muller, “Purcell-enhanced Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89, 023811 (2014).
[Crossref]

Murgida, D. H.

D. H. Murgida and P. Hildebrandt, “Disentangling interfacial redox processes of proteins by SERR spectroscopy,” Chem. Soc. Rev. 37, 937–945 (2008).
[Crossref]

Murphy, C. J.

M. Mahmoudi, S. E. Lohse, C. J. Murphy, A. Fathizadeh, A. Montazeri, and K. S. Suslick, “Variation of protein corona composition of gold nanoparticles following plasmonic heating,” Nano Lett. 14, 6–12 (2014).
[Crossref]

Namboodiri, C. K. R.

V. R. Dantham, P. B. Bisht, and C. K. R. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109, 103103 (2011).
[Crossref]

Natelson, D.

D. R. Ward, D. A. Corley, J. M. Tour, and D. Natelson, “Vibrational and electronic heating in nanoscale junctions,” Nat. Nanotechnol. 6, 33–38 (2010).
[Crossref]

Noe, J.

T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
[Crossref]

Noé, P.

J.-B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noé, T. Ricart, D. Bucci, and A. Morand, “High-Q silica microcavities on a chip: from microtoroid to microsphere,” Appl. Phys. Lett. 99, 181123 (2011).
[Crossref]

Oo, T.

Oulton, R. F.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Ozdemir, S. K.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Özdemir, S. K.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

Panneerselvam, R.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 016021 (2016).
[Crossref]

Pelton, M.

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9, 427–435 (2015).
[Crossref]

Peng, B.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Petrak, B.

B. Petrak, N. Djeu, and A. Muller, “Purcell-enhanced Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89, 023811 (2014).
[Crossref]

Qi, D.

D. Qi, L. Lu, L. Wang, and J. Zhang, “Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling,” J. Am. Chem. Soc. 136, 9886–9889 (2014).
[Crossref]

Quillin, S. C.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Rahmani, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Reichel, J.

H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

Reid, J. P.

R. Symes, R. M. Sayera, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
[Crossref]

Ren, B.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 016021 (2016).
[Crossref]

Ricart, T.

J.-B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noé, T. Ricart, D. Bucci, and A. Morand, “High-Q silica microcavities on a chip: from microtoroid to microsphere,” Appl. Phys. Lett. 99, 181123 (2011).
[Crossref]

Roschuk, T.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Ru, E. L.

E. L. Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier, 2008).

Ruan, W.

Y. Wang, W. Ruan, J. Zhang, B. Yang, W. Xu, B. Zhao, and J. R. Lombardi, “Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals,” J. Raman Spectrosc. 40, 1072–1077 (2009).
[Crossref]

L. Yang, X. Jiang, W. Ruan, B. Zhao, W. Xu, and J. R. Lombardi, “Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution,” J. Phys. Chem. C 112, 20095–20098 (2008).
[Crossref]

Sayera, R. M.

R. Symes, R. M. Sayera, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
[Crossref]

Schatz, G. C.

L. K. Ausman and G. C. Schatz, “Whispering-gallery mode resonators: surface enhanced Raman scattering without plasmons,” J. Chem. Phys. 129, 054704 (2008).
[Crossref]

Schietinger, S.

A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, and O. Benson, “In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting,” Nano Lett. 13, 2041–2046 (2013).
[Crossref]

Scully, M.

M. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).

Shao, L.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Shen, Z. X.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman Spectrosc. 42, 145–148 (2011).
[Crossref]

Shi, D. N.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman Spectrosc. 42, 145–148 (2011).
[Crossref]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).

Suntivich, J.

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photon. 3, 1662–1669 (2016).
[Crossref]

Suslick, K. S.

M. Mahmoudi, S. E. Lohse, C. J. Murphy, A. Fathizadeh, A. Montazeri, and K. S. Suslick, “Variation of protein corona composition of gold nanoparticles following plasmonic heating,” Nano Lett. 14, 6–12 (2014).
[Crossref]

Symes, R.

R. Symes, R. M. Sayera, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
[Crossref]

Thakkar, N.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Tian, Z.-Q.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 016021 (2016).
[Crossref]

Tomes, M.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

Tour, J. M.

D. R. Ward, D. A. Corley, J. M. Tour, and D. Natelson, “Vibrational and electronic heating in nanoscale junctions,” Nat. Nanotechnol. 6, 33–38 (2010).
[Crossref]

Vahala, K.

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref]

Van Duyne, R. P.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).

Vollmer, F.

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Wang, H.

X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G.-L. Long, and H. Wang, “Chip-based silica microspheres for cavity optomechanics,” Opt. Express 23, 27260–27265 (2015).
[Crossref]

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[Crossref]

Wang, L.

D. Qi, L. Lu, L. Wang, and J. Zhang, “Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling,” J. Am. Chem. Soc. 136, 9886–9889 (2014).
[Crossref]

Wang, M.

Wang, W.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Wang, Y.

Y. Wang, W. Ruan, J. Zhang, B. Yang, W. Xu, B. Zhao, and J. R. Lombardi, “Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals,” J. Raman Spectrosc. 40, 1072–1077 (2009).
[Crossref]

Ward, D. R.

D. R. Ward, D. A. Corley, J. M. Tour, and D. Natelson, “Vibrational and electronic heating in nanoscale junctions,” Nat. Nanotechnol. 6, 33–38 (2010).
[Crossref]

Wu, D.-Y.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 016021 (2016).
[Crossref]

Xiao, Y.-F.

R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, and Y.-F. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator,” Phys. Rev. A 91, 043836 (2015).
[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Xing, C.

Xu, W.

Y. Wang, W. Ruan, J. Zhang, B. Yang, W. Xu, B. Zhao, and J. R. Lombardi, “Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals,” J. Raman Spectrosc. 40, 1072–1077 (2009).
[Crossref]

L. Yang, X. Jiang, W. Ruan, B. Zhao, W. Xu, and J. R. Lombardi, “Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution,” J. Phys. Chem. C 112, 20095–20098 (2008).
[Crossref]

Yan, Y.

Yang, B.

Y. Wang, W. Ruan, J. Zhang, B. Yang, W. Xu, B. Zhao, and J. R. Lombardi, “Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals,” J. Raman Spectrosc. 40, 1072–1077 (2009).
[Crossref]

Yang, L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

L. Yang, X. Jiang, W. Ruan, B. Zhao, W. Xu, and J. R. Lombardi, “Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution,” J. Phys. Chem. C 112, 20095–20098 (2008).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref]

Yang, X.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Yang, Z. Y.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[Crossref]

Yi, J.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 016021 (2016).
[Crossref]

Yi, K. J.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[Crossref]

Yilmaz, H.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

You, Y. M.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman Spectrosc. 42, 145–148 (2011).
[Crossref]

Yu, X.-C.

R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, and Y.-F. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator,” Phys. Rev. A 91, 043836 (2015).
[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Zeng, Y.

Zhang, J.

D. Qi, L. Lu, L. Wang, and J. Zhang, “Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling,” J. Am. Chem. Soc. 136, 9886–9889 (2014).
[Crossref]

Y. Wang, W. Ruan, J. Zhang, B. Yang, W. Xu, B. Zhao, and J. R. Lombardi, “Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals,” J. Raman Spectrosc. 40, 1072–1077 (2009).
[Crossref]

Zhao, B.

Y. Wang, W. Ruan, J. Zhang, B. Yang, W. Xu, B. Zhao, and J. R. Lombardi, “Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals,” J. Raman Spectrosc. 40, 1072–1077 (2009).
[Crossref]

L. Yang, X. Jiang, W. Ruan, B. Zhao, W. Xu, and J. R. Lombardi, “Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution,” J. Phys. Chem. C 112, 20095–20098 (2008).
[Crossref]

Zhao, Y.

Zhu, J.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Zubairy, M. S.

M. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

ACS Photon. (1)

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photon. 3, 1662–1669 (2016).
[Crossref]

Adv. Mater. (1)

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Annu. Rev. Anal. Chem. (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).

Appl. Phys. Lett. (2)

M. S. Anderson, “Nonplasmonic surface enhanced Raman spectroscopy using silica microspheres,” Appl. Phys. Lett. 97, 131116 (2010).
[Crossref]

J.-B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noé, T. Ricart, D. Bucci, and A. Morand, “High-Q silica microcavities on a chip: from microtoroid to microsphere,” Appl. Phys. Lett. 99, 181123 (2011).
[Crossref]

Chem. Rev. (1)

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116, 14921–14981 (2016).
[Crossref]

Chem. Soc. Rev. (1)

D. H. Murgida and P. Hildebrandt, “Disentangling interfacial redox processes of proteins by SERR spectroscopy,” Chem. Soc. Rev. 37, 937–945 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

J. Am. Chem. Soc. (3)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Evidence of natural isotopic distribution from single-molecule SERS,” J. Am. Chem. Soc. 131, 2713–2716 (2009).
[Crossref]

D. Qi, L. Lu, L. Wang, and J. Zhang, “Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling,” J. Am. Chem. Soc. 136, 9886–9889 (2014).
[Crossref]

I. Alessandri, “Enhancing Raman scattering without plasmons: unprecedented sensitivity achieved by TiO2 shell-based resonators,” J. Am. Chem. Soc. 135, 5541–5544 (2013).
[Crossref]

J. Appl. Phys. (2)

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[Crossref]

V. R. Dantham, P. B. Bisht, and C. K. R. Namboodiri, “Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere,” J. Appl. Phys. 109, 103103 (2011).
[Crossref]

J. Chem. Phys. (1)

L. K. Ausman and G. C. Schatz, “Whispering-gallery mode resonators: surface enhanced Raman scattering without plasmons,” J. Chem. Phys. 129, 054704 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (2)

L. Yang, X. Jiang, W. Ruan, B. Zhao, W. Xu, and J. R. Lombardi, “Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution,” J. Phys. Chem. C 112, 20095–20098 (2008).
[Crossref]

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

J. Raman Spectrosc. (2)

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman Spectrosc. 42, 145–148 (2011).
[Crossref]

Y. Wang, W. Ruan, J. Zhang, B. Yang, W. Xu, B. Zhao, and J. R. Lombardi, “Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals,” J. Raman Spectrosc. 40, 1072–1077 (2009).
[Crossref]

Nano Lett. (3)

A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, and O. Benson, “In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting,” Nano Lett. 13, 2041–2046 (2013).
[Crossref]

M. Mahmoudi, S. E. Lohse, C. J. Murphy, A. Fathizadeh, A. Montazeri, and K. S. Suslick, “Variation of protein corona composition of gold nanoparticles following plasmonic heating,” Nano Lett. 14, 6–12 (2014).
[Crossref]

V. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

Nanophotonics (1)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

Nanoscale (1)

N. Bontempi, L. Carletti, C. De Angelis, and I. Alessandri, “Plasmon-free SERS detection of environmental CO2 on TiO2 surfaces,” Nanoscale 8, 3226–3231 (2016).
[Crossref]

Nat. Commun. (2)

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Nat. Nanotechnol. (3)

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

D. R. Ward, D. A. Corley, J. M. Tour, and D. Natelson, “Vibrational and electronic heating in nanoscale junctions,” Nat. Nanotechnol. 6, 33–38 (2010).
[Crossref]

Nat. Photonics (4)

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
[Crossref]

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9, 427–435 (2015).
[Crossref]

Nat. Rev. Mater. (1)

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 016021 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (2)

R. Symes, R. M. Sayera, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
[Crossref]

B. L. Darby, P. G. Etchegoin, and E. C. Le Ru, “Single-molecule surface-enhanced Raman spectroscopy with nanowatt excitation,” Phys. Chem. Chem. Phys. 16, 23895–23899 (2014).
[Crossref]

Phys. Rev. A (5)

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of Purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

X. Checoury, Z. Han, M. El Kurdi, and P. Boucaud, “Deterministic measurement of the Purcell factor in microcavities through Raman emission,” Phys. Rev. A 81, 033832 (2010).
[Crossref]

B. Petrak, N. Djeu, and A. Muller, “Purcell-enhanced Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89, 023811 (2014).
[Crossref]

H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, and Y.-F. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator,” Phys. Rev. A 91, 043836 (2015).
[Crossref]

Phys. Rev. Lett. (1)

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

RSC Adv. (1)

I. Alessandri, N. Bontempi, and L. E. Depero, “Colloidal lenses as universal Raman scattering enhancers,” RSC Adv. 4, 38152–38158 (2014).
[Crossref]

Other (3)

E. L. Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier, 2008).

M. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

S. Balac and P. Féron, “Whispering gallery modes volume computation in optical micro-spheres,” Research Report <hal-01279396>, FOTON, 2014, https://hal.inria.fr/FOTON_SYSPHOT/hal-01279396v1 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the experimental setup. Inset: top view (left) and side view (right) of a typical on-chip microsphere used in the experiment.
Fig. 2.
Fig. 2. Raman lasing and thermal effects in silica microspheres. (a) Raman intensity dependence on pump power for a bare silica microsphere. Inset shows the linear dependence of Raman intensity on pump power in the spontaneous Raman emission regime. (b) Measured transmission spectrum through the fiber taper coupler around a typical WGM resonance. Inset shows the transmission spectrum (blue curve) of the same modes at a higher power typically used for Raman pumping, with significant thermal broadening. The red triangular waveform corresponds to the scanning of the pump laser wavelength; the left half corresponds to a decreasing pump wavelength, while the right half corresponds to an increasing pump wavelength. The oscillation seen in the thermally broadened WGM is due to interference effect from reflection at fiber ends, which is unrelated to the WGM resonance.
Fig. 3.
Fig. 3. Raman emission from a bare silica microsphere. (a) Integrated Raman spectrum from a 13.8 μm silica microsphere. (b) Raman spectra from different positions in the microsphere. Red dotted circles in the inset indicate the positions from which the spectra were collected. (c) Measured Raman intensity dependence on pump detuning. Red curve shows a Lorentzian fit to the experimental data.
Fig. 4.
Fig. 4. Raman enhancement of rhodamine 6G through the silica microsphere. (a) Background subtracted Raman spectra of rhodamine 6G for tapered fiber coupler excitation (blue), free-space excitation on a microsphere (red), and free-space excitation on the substrate (green). The spectra for free-space excitation on the microsphere and substrate are scaled by 100 times for visibility. (b) Raman spectrum of rhodamine 6G around the 1510  cm1 peak, obtained from subtracting the spectrum after photobleaching from the spectrum before photobleaching. The solid green curve is a fit to the data points. The spectrum is fitted as sum of a Lorentzian Raman peak (purple dotted curve) and two Gaussian WGM peaks (red dotted curve).
Fig. 5.
Fig. 5. Dependence of Raman intensity on ηpump. The wavelength scanning range of the pump laser was changed to obtain different ηpump.
Fig. 6.
Fig. 6. Change in Raman intensity as rhodamine 6G photobleaches. The pump power was 37 μW, coupled to the microsphere WGM through a tapered fiber.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

B=PcavityPincident=12πΔλFSRΔλFWHM11+(ΔλΔλFWHM)2,
Fpump=PRaman,WGMPRaman,fs=VR6G,WGMVR6G,fsAfsAWGM12πΔλFSRΔλFWHMηpump,
FPurcell=34π2λs3ns2QeffVsηληEηΩ×2×0.5.
EF=ISERS/NSERSI0/N0,
NSERSN0=VR6G,WGM×max(|Ep(r)|2)maxsurface(|Ep(r)|2)VR6G,fs=0.065.

Metrics