Abstract

Silicon has been the material of choice of the photonics industry over the last decade due to its easy integration with silicon electronics, high index contrast, small footprint, and low cost, as well as its optical transparency in the near-infrared and parts of mid-infrared (MIR) wavelengths (from 1.1 to 8 μm). While considerations of micro- and nano-fabrication-induced device parameter deviations and a higher-than-desirable propagation loss still serve as a bottleneck in many on-chip data communication applications, applications as sensors do not require similar stringent controls. Photonic devices on chips are increasingly being demonstrated for chemical and biological sensing with performance metrics rivaling benchtop instruments and thus promising the potential of portable, handheld, and wearable monitoring of various chemical and biological analytes. In this paper, we review recent advances in MIR silicon photonics research. We discuss the pros and cons of various platforms, the fabrication procedures for building such platforms, and the benchmarks demonstrated so far, together with their applications. Novel device architectures and improved fabrication techniques have paved a viable way for realizing low-cost, high-density, multi-function integrated devices in the MIR. These advances are expected to benefit several application domains in the years to come, including communication networks, sensing, and nonlinear systems.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Silicon photonic platforms for mid-infrared applications [Invited]

Ting Hu, Bowei Dong, Xianshu Luo, Tsung-Yang Liow, Junfeng Song, Chengkuo Lee, and Guo-Qiang Lo
Photon. Res. 5(5) 417-430 (2017)

Silicon photonic devices and platforms for the mid-infrared

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich
Opt. Mater. Express 3(9) 1205-1214 (2013)

Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding

J. Soler Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich
Opt. Express 24(20) 22908-22916 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]
  2. R. Maulini, I. Dunayevskiy, A. Lyakh, A. Tsekoun, C. K. N. Patel, L. Diehl, C. Pflugl, and F. Capasso, “Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature,” Electron. Lett. 45, 107–108 (2009).
    [Crossref]
  3. http://www.mksinst.com/product/ .
  4. http://www.tdlas.com/index.shtml .
  5. http://www.tigeroptics.com/technology.html#cavity-ring-down-spectroscopy .
  6. http://www.gasera.fi/technology/photoacoustics/solid-phase-pas/ .
  7. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier, “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31, 1860–1862 (2006).
    [Crossref]
  8. C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express 18, 15523–15530 (2010).
    [Crossref]
  9. P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
    [Crossref]
  10. O. Eyal, V. Scharf, S. Shalem, and A. Katzir, “Single-mode mid-infrared silver halide planar waveguides,” Opt. Lett. 21, 1147–1149 (1996).
    [Crossref]
  11. B. Dekel and A. Katzir, “Silver halide planar waveguides and grating couplers for middle infrared integrated optics,” Appl. Phys. Lett. 97, 241106 (2010).
    [Crossref]
  12. T. Lewi and A. Katzir, “Silver halide single-mode strip waveguides for the mid-infrared,” Opt. Lett. 37, 2733–2735 (2012).
    [Crossref]
  13. P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102, 251121 (2013).
    [Crossref]
  14. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
    [Crossref]
  15. T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5, 417–430 (2017).
    [Crossref]
  16. C. Charlton, M. Giovannini, J. Faist, and B. Mizaikoff, “Fabrication and characterization of molecular beam epitaxy grown thin-film GaAs waveguides for mid-infrared evanescent field chemical sensing,” Anal. Chem. 78, 4224–4227 (2006).
    [Crossref]
  17. M. Sieger, F. Balluff, X. Wang, S.-S. Kim, L. Leidner, G. Gauglitz, and B. Mizaikoff, “On-chip integrated mid-infrared GaAs/AlGaAs Mach-Zehnder interferometer,” Anal. Chem. 85, 3050–3052 (2013).
    [Crossref]
  18. X. Wang, S.-S. Kim, R. Roßbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst 137, 2322–2327 (2012).
    [Crossref]
  19. P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
    [Crossref]
  20. X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium–telluride waveguides-a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
    [Crossref]
  21. J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. Lau, A. Dutt, A. L. Gaeta, and M. Lipson, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Opt. Lett. 40, 4138–4141 (2015).
    [Crossref]
  22. Y. C. Chang, V. Paeder, L. Hvozdara, J. M. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37, 2883–2885 (2012).
    [Crossref]
  23. A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
    [Crossref]
  24. A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de) multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
    [Crossref]
  25. A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in IEEE Photonics Conference (2013).
  26. J. Kang, M. Takenaka, and S. Takagi, “Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits,” Opt. Express 24, 11855–11864 (2016).
    [Crossref]
  27. G. Mashanovich, C. Mitchell, J. Soler Penades, A. Khokhar, C. Littlejohns, W. Cao, Z. Qu, S. Stankovic, F. Gardes, and T. B. Masaud, “Germanium mid-infrared photonic devices,” J. Lightwave Technol. 35, 624–630 (2017).
    [Crossref]
  28. U. Younis, S. K. Vanga, A. E.-J. Lim, P. G.-Q. Lo, A. A. Bettiol, and K.-W. Ang, “Germanium-on-SOI waveguides for mid-infrared wavelengths,” Opt. Express 24, 11987–11993 (2016).
    [Crossref]
  29. A. Bogris, A. Kapsalis, K. Hammani, M. A. Ettabib, M. Brun, P. Labeye, S. Nicoletti, P. Petropoulos, and D. Syvridis, “Silicon germanium platform enabling mid-infrared to near-infrared conversion for telecom and sensing applications,” in European Conference on Optical Communication (ECOC) (2014).
  30. M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22, 508–518 (2014).
    [Crossref]
  31. L. Carletti, P. Ma, B. Luther-Davies, D. D. Hudson, C. Monat, S. Madden, D. J. Moss, M. Brun, S. Ortiz, and S. Nicoletti, “Nonlinear optical properties of SiGe waveguides in the mid-infrared,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper SW3M.7.
  32. L. Carletti, D. Allioux, P. Ma, Y. Yu, B. Luther-Davies, S. Madden, D. Hudson, M. Sinobad, D. Moss, and M. Brun, “Mid-infrared nonlinear optics in SiGe waveguides,” in Summer Topical Meeting Series (SUM) (IEEE, 2015), pp. 59–60.
  33. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
    [Crossref]
  34. J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
    [Crossref]
  35. J. Soler Penades, C. Alonso-Ramos, A. Khokhar, M. Nedeljkovic, L. Boodhoo, A. Ortega-Moñux, I. Molina-Fernández, P. Cheben, and G. Mashanovich, “Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared,” Opt. Lett. 39, 5661–5664 (2014).
    [Crossref]
  36. M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
    [Crossref]
  37. M. A. Van Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, and W. M. Green, “Demonstration of electrooptic modulation at 2165  nm using a silicon Mach-Zehnder interferometer,” Opt. Express 20, 28009–28016 (2012).
    [Crossref]
  38. J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
    [Crossref]
  39. M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, and J. Van Campenhout, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
    [Crossref]
  40. E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300  nm,” Opt. Express 21, 6101–6108 (2013).
    [Crossref]
  41. M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28, 528–531 (2016).
    [Crossref]
  42. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, A. Nikola, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
    [Crossref]
  43. A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
    [Crossref]
  44. X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
    [Crossref]
  45. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
    [Crossref]
  46. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
    [Crossref]
  47. J. Huang, H. Han, A. Liu, H. Wang, X. Liu, Y. Zou, M.-H. Lu, and Y.-F. Chen, “Efficient second harmonic generation by mode phase matching in a silicon waveguide,” IEEE Photon. J. 9, 6100807 (2017).
  48. E. Timurdogan, C. V. Poulton, M. Byrd, and M. Watts, “Electric field-induced second-order nonlinear optical effects in silicon waveguides,” Nat. Photonics 11, 200–206 (2017).
    [Crossref]
  49. R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
    [Crossref]
  50. A. G. Griffith, M. Yu, Y. Okawachi, J. Cardenas, A. Mohanty, A. L. Gaeta, and M. Lipson, “Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects,” Opt. Express 24, 13044–13050 (2016).
    [Crossref]
  51. M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3, 854–860 (2016).
    [Crossref]
  52. R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
    [Crossref]
  53. V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
    [Crossref]
  54. G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, and S. Stankovic, “Silicon photonic waveguides and devices for near-and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21, 407–418 (2015).
    [Crossref]
  55. M. Nedeljkovic, A. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. Chong, D. Thomson, F. Gardes, and G. Reed, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
    [Crossref]
  56. G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
    [Crossref]
  57. N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
    [Crossref]
  58. F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave-infrared,” in 16th European Conference on Integrated Optics (ECIO) (2012).
  59. M. S. Rouifed, C. G. Littlejohns, G. X. Tina, H. Qiu, J. Soler Penades, M. Nedeljkovic, Z. Zhang, C. Liu, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and H. Wang, “Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55  μm and 2  μm,” Opt. Express 25, 10893–10900 (2017).
    [Crossref]
  60. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011).
    [Crossref]
  61. M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
    [Crossref]
  62. J. Soler Penades, A. Z. Khokhar, M. Nedeljkovic, and G. Z. Mashanovich, “Low loss mid-infrared SOI slot waveguides,” IEEE Photon. Technol. Lett. 27, 1197–1199 (2015).
    [Crossref]
  63. B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).
  64. P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14, 231–238 (2013).
    [Crossref]
  65. Y. Wei, G. Li, Y. Hao, Y. Li, J. Yang, M. Wang, and X. Jiang, “Long-wave infrared 1 × 2 MMI based on air-gap beneath silicon rib waveguides,” Opt. Express 19, 15803–15809 (2011).
    [Crossref]
  66. M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15, 18176–18189 (2007).
    [Crossref]
  67. B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. Soler Penades, V. M. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22, 23990–24003 (2014).
    [Crossref]
  68. Y. Hu, T. Li, D. J. Thomson, X. Chen, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39, 1406–1409 (2014).
    [Crossref]
  69. R. Wang, S. Sprengel, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Broad wavelength coverage 2.3  μm III-V-on-silicon DFB laser array,” Optica 4, 972–975 (2017).
    [Crossref]
  70. P. Dong, T.-C. Hu, L. Zhang, M. Dinu, R. Kopf, A. Tate, L. Buhl, D. Neilson, X. Luo, and T.-Y. Liow, “1.9  μm hybrid silicon/III-V semiconductor laser,” Electron. Lett. 49, 664–666 (2013).
    [Crossref]
  71. G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
    [Crossref]
  72. A. Spott, M. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
    [Crossref]
  73. R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3  μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
    [Crossref]
  74. R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
    [Crossref]
  75. M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E. Ryckeboer, D. Sanchez, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, M. K. Smit, and G. Roelkens, “Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring,” Opt. Express 22, 27300–27308 (2014).
    [Crossref]
  76. R. Wang, S. Sprengel, M. Muneeb, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “2  μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits,” Opt. Express 23, 26834–26841 (2015).
    [Crossref]
  77. Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
    [Crossref]
  78. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
    [Crossref]
  79. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [Crossref]
  80. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref]
  81. A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. N. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
    [Crossref]
  82. X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
    [Crossref]
  83. Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, and Q. Xu, “Suspended Si ring resonator for mid-IR application,” Opt. Lett. 38, 1122–1124. (2013).
    [Crossref]
  84. S. Miller, A. Griffith, M. Yu, A. L. Gaeta, and M. Lipson, “Low-loss air-clad suspended silicon platform for mid-infrared photonics,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper STu3Q.6.
  85. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref]
  86. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref]
  87. R. Shankar, I. Bulu, R. Leijssen, and M. Lončar, “Study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities,” Opt. Express 19, 24828–24837 (2011).
    [Crossref]
  88. R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19, 5579–5586 (2011).
    [Crossref]
  89. C. Reimer, M. Nedeljkovic, D. J. Stothard, M. O. Esnault, C. Reardon, L. O’Faolain, M. Dunn, G. Z. Mashanovich, and T. F. Krauss, “Mid-infrared photonic crystal waveguides in silicon,” Opt. Express 20, 29361–29368 (2012).
    [Crossref]
  90. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
    [Crossref]
  91. J. Schmid, P. Cheben, P. Bock, R. Halir, J. Lapointe, S. Janz, A. Dela, A. Densmore, J.-M. Fedeli, and T. Hall, “Refractive index engineering with subwavelength gratings in silicon microphotonic waveguides,” IEEE Photon. J. 3, 597–607 (2011).
    [Crossref]
  92. X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
    [Crossref]
  93. X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
    [Crossref]
  94. J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
    [Crossref]
  95. R. Halir, A. Ortega-Monux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20, 279–291 (2014).
    [Crossref]
  96. J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Opt. Express 22, 15335–15345 (2014).
    [Crossref]
  97. J. Soler Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24, 22908–22916 (2016).
    [Crossref]
  98. R. A. Johnson, P. R. D. L. Houssaye, C. E. Chang, C. Pin-Fan, M. E. Wood, G. A. Garcia, I. Lagnado, and P. M. Asbeck, “Advanced thin-film silicon-on-sapphire technology: microwave circuit applications,” IEEE Trans. Electron. Devices 45, 1047–1054 (1998).
    [Crossref]
  99. G. Imthurn, “The history of silicon-on-sapphire,” White Paper (Peregrine Semiconductor Corporation, 2007), https://pdfs.semanticscholar.org/3383/eb0297213d217c88723662c10d263b186a7b.pdf .
  100. T. Baehr-Jones, A. Spott, R. Ilic, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
    [Crossref]
  101. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, and S. G. Duvall, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011).
    [Crossref]
  102. N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duvall, and S. Palomba, “Midinfrared supercontinuum generation from 2 to 6  μm in a silicon nanowire,” Optica 2, 797–802 (2015).
    [Crossref]
  103. Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39, 3070–3073 (2014).
    [Crossref]
  104. Y. Zou, S. Chakravarty, and R. T. Chen, “Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 081109 (2015).
    [Crossref]
  105. A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  mu m,” Appl. Phys. Lett. 97, 213501 (2010).
    [Crossref]
  106. R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
    [Crossref]
  107. Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
    [Crossref]
  108. http://www.thorlabs.us/newgrouppage9.cfm?objectgroup_id=7062 .
  109. Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
    [Crossref]
  110. C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
    [Crossref]
  111. W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy,” Opt. Lett. 38, 3799–3802 (2013).
    [Crossref]
  112. Y. Zou, S. Chakravarty, P. Wray, and R. T. Chen, “Experimental demonstration of propagation characteristics of mid-infrared photonic crystal waveguides in silicon-on-sapphire,” Opt. Express 23, 6965–6975 (2015).
    [Crossref]
  113. Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104, 141103 (2014).
    [Crossref]
  114. S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron. 38, 170–176 (2012).
    [Crossref]
  115. Y. Zou, S. Chakravarty, P. Wray, and R. T. Chen, “Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection,” Sens. Actuators B 221, 1094–1103 (2015).
    [Crossref]
  116. W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37, 1208–1210 (2012).
    [Crossref]
  117. Y. Zou, S. Chakravarty, W.-C. Lai, C.-Y. Lin, and R. T. Chen, “Methods to array photonic crystal microcavities for high throughput high sensitivity biosensing on a silicon-chip based platform,” Lab Chip 12, 2309–2312 (2012).
    [Crossref]
  118. C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, and M. G. Allen, “Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators,” Opt. Express 23, 5491–5499 (2015).
    [Crossref]
  119. N. Singh, A. Casas-Bedoya, D. D. Hudson, A. Read, E. Mägi, and B. J. Eggleton, “Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide,” Opt. Lett. 41, 5776–5779 (2016).
    [Crossref]
  120. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [Crossref]
  121. Y. Zou, S. Chakravarty, C.-J. Chung, and R. T. Chen, “Miniature mid-infrared thermooptic switch with photonic crystal waveguide based silicon-on-sapphire Mach-Zehnder interferometers,” Proc. SPIE 9753, 97530Q (2016).
    [Crossref]
  122. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
    [Crossref]
  123. N. Singh, D. D. Hudson, and B. J. Eggleton, “Silicon-on-sapphire pillar waveguides for mid-IR supercontinuum generation,” Opt. Express 23, 17345–17354 (2015).
    [Crossref]
  124. Y. Huang, E. Tien, S. Gao, S. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett. 99, 181122 (2011).
    [Crossref]
  125. W. Zhaolu, L. Hongjun, H. Nan, S. Qibing, and L. Xuefeng, “Mid-infrared Raman amplification and wavelength conversion in dispersion engineered silicon-on-sapphire waveguides,” J. Opt. 16, 015206 (2014).
    [Crossref]
  126. Z. Wang, H. Liu, N. Huang, Q. Sun, J. Wen, and X. Li, “Influence of three-photon absorption on mid-infrared cross-phase modulation in silicon-on-sapphire waveguides,” Opt. Express 21, 1840–1848 (2013).
    [Crossref]
  127. C.-M. Chang and O. Solgaard, “Fano resonances in integrated silicon Bragg reflectors for sensing applications,” Opt. Express 21, 27209–27218 (2013).
    [Crossref]
  128. G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” J. Opt. Pure Appl. Opt. 2, 683–700 (1993).
    [Crossref]
  129. J. Chiles and S. Fathpour, “Single-mode and single-polarization photonics with anchored-membrane waveguides,” Opt. Express 24, 19337–19343 (2016).
    [Crossref]
  130. C. M. Chang and O. Solgaard, “Monolithic silicon waveguides in standard silicon,” IEEE Micro 33, 32–40 (2013).
    [Crossref]
  131. P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett. 38, 1031–1033 (2013).
    [Crossref]
  132. P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13, 2161–2166 (2013).
    [Crossref]
  133. A. S. Richard, J. E. Stephen, and R. B. Walter, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
    [Crossref]
  134. Y. Yue, L. Zhang, H. Huang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-nitride waveguide with ultralow dispersion over an octave-spanning mid-infrared wavelength range,” IEEE Photon. J. 4, 126–132 (2012).
    [Crossref]
  135. S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
    [Crossref]
  136. G. Mashanovich, W. Headley, M. Milosevic, N. Owens, E. Teo, B. Xiong, P. Yang, M. Nedeljkovic, J. Anguita, and I. Marko, “Waveguides for mid-infrared group IV photonics,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 374–376.
  137. A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
    [Crossref]
  138. A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
    [Crossref]
  139. B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B 236, 759–764 (2016).
    [Crossref]
  140. Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
    [Crossref]
  141. J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
    [Crossref]
  142. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
    [Crossref]

2017 (7)

J. Huang, H. Han, A. Liu, H. Wang, X. Liu, Y. Zou, M.-H. Lu, and Y.-F. Chen, “Efficient second harmonic generation by mode phase matching in a silicon waveguide,” IEEE Photon. J. 9, 6100807 (2017).

E. Timurdogan, C. V. Poulton, M. Byrd, and M. Watts, “Electric field-induced second-order nonlinear optical effects in silicon waveguides,” Nat. Photonics 11, 200–206 (2017).
[Crossref]

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

G. Mashanovich, C. Mitchell, J. Soler Penades, A. Khokhar, C. Littlejohns, W. Cao, Z. Qu, S. Stankovic, F. Gardes, and T. B. Masaud, “Germanium mid-infrared photonic devices,” J. Lightwave Technol. 35, 624–630 (2017).
[Crossref]

M. S. Rouifed, C. G. Littlejohns, G. X. Tina, H. Qiu, J. Soler Penades, M. Nedeljkovic, Z. Zhang, C. Liu, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and H. Wang, “Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55  μm and 2  μm,” Opt. Express 25, 10893–10900 (2017).
[Crossref]

R. Wang, S. Sprengel, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Broad wavelength coverage 2.3  μm III-V-on-silicon DFB laser array,” Optica 4, 972–975 (2017).
[Crossref]

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5, 417–430 (2017).
[Crossref]

2016 (15)

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

J. Kang, M. Takenaka, and S. Takagi, “Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits,” Opt. Express 24, 11855–11864 (2016).
[Crossref]

U. Younis, S. K. Vanga, A. E.-J. Lim, P. G.-Q. Lo, A. A. Bettiol, and K.-W. Ang, “Germanium-on-SOI waveguides for mid-infrared wavelengths,” Opt. Express 24, 11987–11993 (2016).
[Crossref]

A. G. Griffith, M. Yu, Y. Okawachi, J. Cardenas, A. Mohanty, A. L. Gaeta, and M. Lipson, “Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects,” Opt. Express 24, 13044–13050 (2016).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3, 854–860 (2016).
[Crossref]

J. Chiles and S. Fathpour, “Single-mode and single-polarization photonics with anchored-membrane waveguides,” Opt. Express 24, 19337–19343 (2016).
[Crossref]

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3  μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
[Crossref]

J. Soler Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24, 22908–22916 (2016).
[Crossref]

N. Singh, A. Casas-Bedoya, D. D. Hudson, A. Read, E. Mägi, and B. J. Eggleton, “Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide,” Opt. Lett. 41, 5776–5779 (2016).
[Crossref]

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28, 528–531 (2016).
[Crossref]

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. N. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
[Crossref]

Y. Zou, S. Chakravarty, C.-J. Chung, and R. T. Chen, “Miniature mid-infrared thermooptic switch with photonic crystal waveguide based silicon-on-sapphire Mach-Zehnder interferometers,” Proc. SPIE 9753, 97530Q (2016).
[Crossref]

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B 236, 759–764 (2016).
[Crossref]

2015 (14)

Y. Zou, S. Chakravarty, P. Wray, and R. T. Chen, “Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection,” Sens. Actuators B 221, 1094–1103 (2015).
[Crossref]

Y. Zou, S. Chakravarty, and R. T. Chen, “Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 081109 (2015).
[Crossref]

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

J. Soler Penades, A. Z. Khokhar, M. Nedeljkovic, and G. Z. Mashanovich, “Low loss mid-infrared SOI slot waveguides,” IEEE Photon. Technol. Lett. 27, 1197–1199 (2015).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, and S. Stankovic, “Silicon photonic waveguides and devices for near-and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21, 407–418 (2015).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, and M. G. Allen, “Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators,” Opt. Express 23, 5491–5499 (2015).
[Crossref]

Y. Zou, S. Chakravarty, P. Wray, and R. T. Chen, “Experimental demonstration of propagation characteristics of mid-infrared photonic crystal waveguides in silicon-on-sapphire,” Opt. Express 23, 6965–6975 (2015).
[Crossref]

A. Spott, M. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
[Crossref]

N. Singh, D. D. Hudson, and B. J. Eggleton, “Silicon-on-sapphire pillar waveguides for mid-IR supercontinuum generation,” Opt. Express 23, 17345–17354 (2015).
[Crossref]

J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. Lau, A. Dutt, A. L. Gaeta, and M. Lipson, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Opt. Lett. 40, 4138–4141 (2015).
[Crossref]

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duvall, and S. Palomba, “Midinfrared supercontinuum generation from 2 to 6  μm in a silicon nanowire,” Optica 2, 797–802 (2015).
[Crossref]

R. Wang, S. Sprengel, M. Muneeb, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “2  μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits,” Opt. Express 23, 26834–26841 (2015).
[Crossref]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
[Crossref]

2014 (20)

M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22, 508–518 (2014).
[Crossref]

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39, 1406–1409 (2014).
[Crossref]

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39, 3070–3073 (2014).
[Crossref]

J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Opt. Express 22, 15335–15345 (2014).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
[Crossref]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. Soler Penades, V. M. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22, 23990–24003 (2014).
[Crossref]

J. Soler Penades, C. Alonso-Ramos, A. Khokhar, M. Nedeljkovic, L. Boodhoo, A. Ortega-Moñux, I. Molina-Fernández, P. Cheben, and G. Mashanovich, “Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared,” Opt. Lett. 39, 5661–5664 (2014).
[Crossref]

M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E. Ryckeboer, D. Sanchez, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, M. K. Smit, and G. Roelkens, “Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring,” Opt. Express 22, 27300–27308 (2014).
[Crossref]

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104, 141103 (2014).
[Crossref]

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

R. Halir, A. Ortega-Monux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20, 279–291 (2014).
[Crossref]

W. Zhaolu, L. Hongjun, H. Nan, S. Qibing, and L. Xuefeng, “Mid-infrared Raman amplification and wavelength conversion in dispersion engineered silicon-on-sapphire waveguides,” J. Opt. 16, 015206 (2014).
[Crossref]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

2013 (23)

C. M. Chang and O. Solgaard, “Monolithic silicon waveguides in standard silicon,” IEEE Micro 33, 32–40 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13, 2161–2166 (2013).
[Crossref]

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium–telluride waveguides-a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de) multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102, 251121 (2013).
[Crossref]

M. Sieger, F. Balluff, X. Wang, S.-S. Kim, L. Leidner, G. Gauglitz, and B. Mizaikoff, “On-chip integrated mid-infrared GaAs/AlGaAs Mach-Zehnder interferometer,” Anal. Chem. 85, 3050–3052 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14, 231–238 (2013).
[Crossref]

P. Dong, T.-C. Hu, L. Zhang, M. Dinu, R. Kopf, A. Tate, L. Buhl, D. Neilson, X. Luo, and T.-Y. Liow, “1.9  μm hybrid silicon/III-V semiconductor laser,” Electron. Lett. 49, 664–666 (2013).
[Crossref]

Z. Wang, H. Liu, N. Huang, Q. Sun, J. Wen, and X. Li, “Influence of three-photon absorption on mid-infrared cross-phase modulation in silicon-on-sapphire waveguides,” Opt. Express 21, 1840–1848 (2013).
[Crossref]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300  nm,” Opt. Express 21, 6101–6108 (2013).
[Crossref]

P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett. 38, 1031–1033 (2013).
[Crossref]

Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, and Q. Xu, “Suspended Si ring resonator for mid-IR application,” Opt. Lett. 38, 1122–1124. (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, and J. Van Campenhout, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

M. Nedeljkovic, A. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. Chong, D. Thomson, F. Gardes, and G. Reed, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy,” Opt. Lett. 38, 3799–3802 (2013).
[Crossref]

C.-M. Chang and O. Solgaard, “Fano resonances in integrated silicon Bragg reflectors for sensing applications,” Opt. Express 21, 27209–27218 (2013).
[Crossref]

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[Crossref]

2012 (19)

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37, 1208–1210 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

T. Lewi and A. Katzir, “Silver halide single-mode strip waveguides for the mid-infrared,” Opt. Lett. 37, 2733–2735 (2012).
[Crossref]

Y. C. Chang, V. Paeder, L. Hvozdara, J. M. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37, 2883–2885 (2012).
[Crossref]

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
[Crossref]

M. A. Van Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, and W. M. Green, “Demonstration of electrooptic modulation at 2165  nm using a silicon Mach-Zehnder interferometer,” Opt. Express 20, 28009–28016 (2012).
[Crossref]

C. Reimer, M. Nedeljkovic, D. J. Stothard, M. O. Esnault, C. Reardon, L. O’Faolain, M. Dunn, G. Z. Mashanovich, and T. F. Krauss, “Mid-infrared photonic crystal waveguides in silicon,” Opt. Express 20, 29361–29368 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

X. Wang, S.-S. Kim, R. Roßbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst 137, 2322–2327 (2012).
[Crossref]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron. 38, 170–176 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
[Crossref]

Y. Yue, L. Zhang, H. Huang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-nitride waveguide with ultralow dispersion over an octave-spanning mid-infrared wavelength range,” IEEE Photon. J. 4, 126–132 (2012).
[Crossref]

Y. Zou, S. Chakravarty, W.-C. Lai, C.-Y. Lin, and R. T. Chen, “Methods to array photonic crystal microcavities for high throughput high sensitivity biosensing on a silicon-chip based platform,” Lab Chip 12, 2309–2312 (2012).
[Crossref]

2011 (9)

Y. Huang, E. Tien, S. Gao, S. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett. 99, 181122 (2011).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

J. Schmid, P. Cheben, P. Bock, R. Halir, J. Lapointe, S. Janz, A. Dela, A. Densmore, J.-M. Fedeli, and T. Hall, “Refractive index engineering with subwavelength gratings in silicon microphotonic waveguides,” IEEE Photon. J. 3, 597–607 (2011).
[Crossref]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19, 5579–5586 (2011).
[Crossref]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011).
[Crossref]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, and S. G. Duvall, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011).
[Crossref]

Y. Wei, G. Li, Y. Hao, Y. Li, J. Yang, M. Wang, and X. Jiang, “Long-wave infrared 1 × 2 MMI based on air-gap beneath silicon rib waveguides,” Opt. Express 19, 15803–15809 (2011).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

R. Shankar, I. Bulu, R. Leijssen, and M. Lončar, “Study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities,” Opt. Express 19, 24828–24837 (2011).
[Crossref]

2010 (8)

T. Baehr-Jones, A. Spott, R. Ilic, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express 18, 15523–15530 (2010).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
[Crossref]

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  mu m,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, A. Nikola, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

B. Dekel and A. Katzir, “Silver halide planar waveguides and grating couplers for middle infrared integrated optics,” Appl. Phys. Lett. 97, 241106 (2010).
[Crossref]

2009 (1)

R. Maulini, I. Dunayevskiy, A. Lyakh, A. Tsekoun, C. K. N. Patel, L. Diehl, C. Pflugl, and F. Capasso, “Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature,” Electron. Lett. 45, 107–108 (2009).
[Crossref]

2007 (1)

2006 (3)

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier, “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31, 1860–1862 (2006).
[Crossref]

A. S. Richard, J. E. Stephen, and R. B. Walter, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

C. Charlton, M. Giovannini, J. Faist, and B. Mizaikoff, “Fabrication and characterization of molecular beam epitaxy grown thin-film GaAs waveguides for mid-infrared evanescent field chemical sensing,” Anal. Chem. 78, 4224–4227 (2006).
[Crossref]

2005 (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

2004 (1)

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref]

2003 (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

1998 (1)

R. A. Johnson, P. R. D. L. Houssaye, C. E. Chang, C. Pin-Fan, M. E. Wood, G. A. Garcia, I. Lagnado, and P. M. Asbeck, “Advanced thin-film silicon-on-sapphire technology: microwave circuit applications,” IEEE Trans. Electron. Devices 45, 1047–1054 (1998).
[Crossref]

1996 (1)

1993 (1)

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” J. Opt. Pure Appl. Opt. 2, 683–700 (1993).
[Crossref]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

1973 (1)

Ackert, J. J.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Adas, E.

Y. Huang, E. Tien, S. Gao, S. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett. 99, 181122 (2011).
[Crossref]

Agarwal, A.

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
[Crossref]

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14, 231–238 (2013).
[Crossref]

P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett. 38, 1031–1033 (2013).
[Crossref]

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13, 2161–2166 (2013).
[Crossref]

Agarwal, A. M.

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102, 251121 (2013).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Allen, M. G.

Allen, P. J.

Allioux, D.

L. Carletti, D. Allioux, P. Ma, Y. Yu, B. Luther-Davies, S. Madden, D. Hudson, M. Sinobad, D. Moss, and M. Brun, “Mid-infrared nonlinear optics in SiGe waveguides,” in Summer Topical Meeting Series (SUM) (IEEE, 2015), pp. 59–60.

Alonso-Ramos, C.

Amann, M.-C.

Ang, K.-W.

Anguita, J.

G. Mashanovich, W. Headley, M. Milosevic, N. Owens, E. Teo, B. Xiong, P. Yang, M. Nedeljkovic, J. Anguita, and I. Marko, “Waveguides for mid-infrared group IV photonics,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 374–376.

Anheier, N. C.

Antoszewski, J.

X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium–telluride waveguides-a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
[Crossref]

Arnold, C. B.

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Asbeck, P. M.

R. A. Johnson, P. R. D. L. Houssaye, C. E. Chang, C. Pin-Fan, M. E. Wood, G. A. Garcia, I. Lagnado, and P. M. Asbeck, “Advanced thin-film silicon-on-sapphire technology: microwave circuit applications,” IEEE Trans. Electron. Devices 45, 1047–1054 (1998).
[Crossref]

Asher, W.

Assefa, S.

Atanackovic, P.

Baehr-Jones, T.

T. Baehr-Jones, A. Spott, R. Ilic, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  mu m,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

Baets, R.

R. Wang, S. Sprengel, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Broad wavelength coverage 2.3  μm III-V-on-silicon DFB laser array,” Optica 4, 972–975 (2017).
[Crossref]

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3  μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
[Crossref]

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. N. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
[Crossref]

R. Wang, S. Sprengel, M. Muneeb, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “2  μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits,” Opt. Express 23, 26834–26841 (2015).
[Crossref]

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300  nm,” Opt. Express 21, 6101–6108 (2013).
[Crossref]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave-infrared,” in 16th European Conference on Integrated Optics (ECIO) (2012).

Balluff, F.

M. Sieger, F. Balluff, X. Wang, S.-S. Kim, L. Leidner, G. Gauglitz, and B. Mizaikoff, “On-chip integrated mid-infrared GaAs/AlGaAs Mach-Zehnder interferometer,” Anal. Chem. 85, 3050–3052 (2013).
[Crossref]

Barh, A.

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B 236, 759–764 (2016).
[Crossref]

Barwicz, T.

Beausoleil, R. G.

Y. Yue, L. Zhang, H. Huang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-nitride waveguide with ultralow dispersion over an octave-spanning mid-infrared wavelength range,” IEEE Photon. J. 4, 126–132 (2012).
[Crossref]

Bettiol, A. A.

Bewley, W.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

Bewley, W. W.

Bock, P.

J. Schmid, P. Cheben, P. Bock, R. Halir, J. Lapointe, S. Janz, A. Dela, A. Densmore, J.-M. Fedeli, and T. Hall, “Refractive index engineering with subwavelength gratings in silicon microphotonic waveguides,” IEEE Photon. J. 3, 597–607 (2011).
[Crossref]

Bock, P. J.

Boehm, G.

Bogaerts, W.

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, A. Nikola, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Bogris, A.

A. Bogris, A. Kapsalis, K. Hammani, M. A. Ettabib, M. Brun, P. Labeye, S. Nicoletti, P. Petropoulos, and D. Syvridis, “Silicon germanium platform enabling mid-infrared to near-infrared conversion for telecom and sensing applications,” in European Conference on Optical Communication (ECOC) (2014).

Boodhoo, L.

Botez, D.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

Boulila, F.

Bovington, J.

Bowers, J.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

A. Spott, M. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
[Crossref]

Bowers, J. E.

Boyraz, O.

Y. Huang, E. Tien, S. Gao, S. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett. 99, 181122 (2011).
[Crossref]

Brun, M.

M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22, 508–518 (2014).
[Crossref]

A. Bogris, A. Kapsalis, K. Hammani, M. A. Ettabib, M. Brun, P. Labeye, S. Nicoletti, P. Petropoulos, and D. Syvridis, “Silicon germanium platform enabling mid-infrared to near-infrared conversion for telecom and sensing applications,” in European Conference on Optical Communication (ECOC) (2014).

L. Carletti, D. Allioux, P. Ma, Y. Yu, B. Luther-Davies, S. Madden, D. Hudson, M. Sinobad, D. Moss, and M. Brun, “Mid-infrared nonlinear optics in SiGe waveguides,” in Summer Topical Meeting Series (SUM) (IEEE, 2015), pp. 59–60.

L. Carletti, P. Ma, B. Luther-Davies, D. D. Hudson, C. Monat, S. Madden, D. J. Moss, M. Brun, S. Ortiz, and S. Nicoletti, “Nonlinear optical properties of SiGe waveguides in the mid-infrared,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper SW3M.7.

Buhl, L.

P. Dong, T.-C. Hu, L. Zhang, M. Dinu, R. Kopf, A. Tate, L. Buhl, D. Neilson, X. Luo, and T.-Y. Liow, “1.9  μm hybrid silicon/III-V semiconductor laser,” Electron. Lett. 49, 664–666 (2013).
[Crossref]

Bulu, I.

Byrd, M.

E. Timurdogan, C. V. Poulton, M. Byrd, and M. Watts, “Electric field-induced second-order nonlinear optical effects in silicon waveguides,” Nat. Photonics 11, 200–206 (2017).
[Crossref]

Cai, Y.

Campenhout, J. V.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Cao, W.

Capasso, F.

R. Maulini, I. Dunayevskiy, A. Lyakh, A. Tsekoun, C. K. N. Patel, L. Diehl, C. Pflugl, and F. Capasso, “Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature,” Electron. Lett. 45, 107–108 (2009).
[Crossref]

Cardenas, J.

Carletti, L.

L. Carletti, D. Allioux, P. Ma, Y. Yu, B. Luther-Davies, S. Madden, D. Hudson, M. Sinobad, D. Moss, and M. Brun, “Mid-infrared nonlinear optics in SiGe waveguides,” in Summer Topical Meeting Series (SUM) (IEEE, 2015), pp. 59–60.

L. Carletti, P. Ma, B. Luther-Davies, D. D. Hudson, C. Monat, S. Madden, D. J. Moss, M. Brun, S. Ortiz, and S. Nicoletti, “Nonlinear optical properties of SiGe waveguides in the mid-infrared,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper SW3M.7.

Carras, M.

Casas-Bedoya, A.

Cerutti, L.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E. Ryckeboer, D. Sanchez, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, M. K. Smit, and G. Roelkens, “Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring,” Opt. Express 22, 27300–27308 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300  nm,” Opt. Express 21, 6101–6108 (2013).
[Crossref]

Chakravarty, S.

Y. Zou, S. Chakravarty, C.-J. Chung, and R. T. Chen, “Miniature mid-infrared thermooptic switch with photonic crystal waveguide based silicon-on-sapphire Mach-Zehnder interferometers,” Proc. SPIE 9753, 97530Q (2016).
[Crossref]

Y. Zou, S. Chakravarty, and R. T. Chen, “Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 081109 (2015).
[Crossref]

Y. Zou, S. Chakravarty, P. Wray, and R. T. Chen, “Experimental demonstration of propagation characteristics of mid-infrared photonic crystal waveguides in silicon-on-sapphire,” Opt. Express 23, 6965–6975 (2015).
[Crossref]

Y. Zou, S. Chakravarty, P. Wray, and R. T. Chen, “Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection,” Sens. Actuators B 221, 1094–1103 (2015).
[Crossref]

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39, 3070–3073 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104, 141103 (2014).
[Crossref]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy,” Opt. Lett. 38, 3799–3802 (2013).
[Crossref]

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron. 38, 170–176 (2012).
[Crossref]

Y. Zou, S. Chakravarty, W.-C. Lai, C.-Y. Lin, and R. T. Chen, “Methods to array photonic crystal microcavities for high throughput high sensitivity biosensing on a silicon-chip based platform,” Lab Chip 12, 2309–2312 (2012).
[Crossref]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37, 1208–1210 (2012).
[Crossref]

Chang, C. E.

R. A. Johnson, P. R. D. L. Houssaye, C. E. Chang, C. Pin-Fan, M. E. Wood, G. A. Garcia, I. Lagnado, and P. M. Asbeck, “Advanced thin-film silicon-on-sapphire technology: microwave circuit applications,” IEEE Trans. Electron. Devices 45, 1047–1054 (1998).
[Crossref]

Chang, C. M.

C. M. Chang and O. Solgaard, “Monolithic silicon waveguides in standard silicon,” IEEE Micro 33, 32–40 (2013).
[Crossref]

Chang, C.-M.

Chang, Y. C.

Charlton, C.

C. Charlton, M. Giovannini, J. Faist, and B. Mizaikoff, “Fabrication and characterization of molecular beam epitaxy grown thin-film GaAs waveguides for mid-infrared evanescent field chemical sensing,” Anal. Chem. 78, 4224–4227 (2006).
[Crossref]

Cheben, P.

J. Soler Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24, 22908–22916 (2016).
[Crossref]

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28, 528–531 (2016).
[Crossref]

J. Soler Penades, C. Alonso-Ramos, A. Khokhar, M. Nedeljkovic, L. Boodhoo, A. Ortega-Moñux, I. Molina-Fernández, P. Cheben, and G. Mashanovich, “Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared,” Opt. Lett. 39, 5661–5664 (2014).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
[Crossref]

J. Schmid, P. Cheben, P. Bock, R. Halir, J. Lapointe, S. Janz, A. Dela, A. Densmore, J.-M. Fedeli, and T. Hall, “Refractive index engineering with subwavelength gratings in silicon microphotonic waveguides,” IEEE Photon. J. 3, 597–607 (2011).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15, 18176–18189 (2007).
[Crossref]

Chen, L. R.

Chen, R. T.

Y. Zou, S. Chakravarty, C.-J. Chung, and R. T. Chen, “Miniature mid-infrared thermooptic switch with photonic crystal waveguide based silicon-on-sapphire Mach-Zehnder interferometers,” Proc. SPIE 9753, 97530Q (2016).
[Crossref]

Y. Zou, S. Chakravarty, P. Wray, and R. T. Chen, “Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection,” Sens. Actuators B 221, 1094–1103 (2015).
[Crossref]

Y. Zou, S. Chakravarty, P. Wray, and R. T. Chen, “Experimental demonstration of propagation characteristics of mid-infrared photonic crystal waveguides in silicon-on-sapphire,” Opt. Express 23, 6965–6975 (2015).
[Crossref]

Y. Zou, S. Chakravarty, and R. T. Chen, “Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 081109 (2015).
[Crossref]

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39, 3070–3073 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104, 141103 (2014).
[Crossref]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy,” Opt. Lett. 38, 3799–3802 (2013).
[Crossref]

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron. 38, 170–176 (2012).
[Crossref]

Y. Zou, S. Chakravarty, W.-C. Lai, C.-Y. Lin, and R. T. Chen, “Methods to array photonic crystal microcavities for high throughput high sensitivity biosensing on a silicon-chip based platform,” Lab Chip 12, 2309–2312 (2012).
[Crossref]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
[Crossref]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37, 1208–1210 (2012).
[Crossref]

Chen, X.

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39, 1406–1409 (2014).
[Crossref]

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, and J. Van Campenhout, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

M. Nedeljkovic, A. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. Chong, D. Thomson, F. Gardes, and G. Reed, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

Chen, Y.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

Chen, Y. M.

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Chen, Y.-F.

J. Huang, H. Han, A. Liu, H. Wang, X. Liu, Y. Zou, M.-H. Lu, and Y.-F. Chen, “Efficient second harmonic generation by mode phase matching in a silicon waveguide,” IEEE Photon. J. 9, 6100807 (2017).

Cheng, Z.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

Chiles, J.

J. Chiles and S. Fathpour, “Single-mode and single-polarization photonics with anchored-membrane waveguides,” Opt. Express 24, 19337–19343 (2016).
[Crossref]

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

Choi, D.-Y.

Chong, H.

Chong, H. M. H.

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Chung, C.-J.

Y. Zou, S. Chakravarty, C.-J. Chung, and R. T. Chen, “Miniature mid-infrared thermooptic switch with photonic crystal waveguide based silicon-on-sapphire Mach-Zehnder interferometers,” Proc. SPIE 9753, 97530Q (2016).
[Crossref]

Covey, J.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
[Crossref]

Dave, U.

Dave, U. D.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Davenport, M.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

A. Spott, M. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
[Crossref]

Davenport, M. L.

Debbarma, S.

Dekel, B.

B. Dekel and A. Katzir, “Silver halide planar waveguides and grating couplers for middle infrared integrated optics,” Appl. Phys. Lett. 97, 241106 (2010).
[Crossref]

Dela, A.

J. Schmid, P. Cheben, P. Bock, R. Halir, J. Lapointe, S. Janz, A. Dela, A. Densmore, J.-M. Fedeli, and T. Hall, “Refractive index engineering with subwavelength gratings in silicon microphotonic waveguides,” IEEE Photon. J. 3, 597–607 (2011).
[Crossref]

Delâge, A.

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28, 528–531 (2016).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
[Crossref]

Deng, F.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Densmore, A.

J. Schmid, P. Cheben, P. Bock, R. Halir, J. Lapointe, S. Janz, A. Dela, A. Densmore, J.-M. Fedeli, and T. Hall, “Refractive index engineering with subwavelength gratings in silicon microphotonic waveguides,” IEEE Photon. J. 3, 597–607 (2011).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
[Crossref]

Diehl, L.

R. Maulini, I. Dunayevskiy, A. Lyakh, A. Tsekoun, C. K. N. Patel, L. Diehl, C. Pflugl, and F. Capasso, “Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature,” Electron. Lett. 45, 107–108 (2009).
[Crossref]

Dinu, M.

P. Dong, T.-C. Hu, L. Zhang, M. Dinu, R. Kopf, A. Tate, L. Buhl, D. Neilson, X. Luo, and T.-Y. Liow, “1.9  μm hybrid silicon/III-V semiconductor laser,” Electron. Lett. 49, 664–666 (2013).
[Crossref]

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, A. Nikola, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Dong, B.

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5, 417–430 (2017).
[Crossref]

Dong, P.

P. Dong, T.-C. Hu, L. Zhang, M. Dinu, R. Kopf, A. Tate, L. Buhl, D. Neilson, X. Luo, and T.-Y. Liow, “1.9  μm hybrid silicon/III-V semiconductor laser,” Electron. Lett. 49, 664–666 (2013).
[Crossref]

Dunayevskiy, I.

R. Maulini, I. Dunayevskiy, A. Lyakh, A. Tsekoun, C. K. N. Patel, L. Diehl, C. Pflugl, and F. Capasso, “Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature,” Electron. Lett. 45, 107–108 (2009).
[Crossref]

Dunn, M.

Dutt, A.

Duvall, S. G.

Eggleton, B. J.

Emerson, N. G.

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Esnault, M. O.

Ettabib, M. A.

A. Bogris, A. Kapsalis, K. Hammani, M. A. Ettabib, M. Brun, P. Labeye, S. Nicoletti, P. Petropoulos, and D. Syvridis, “Silicon germanium platform enabling mid-infrared to near-infrared conversion for telecom and sensing applications,” in European Conference on Optical Communication (ECOC) (2014).

Eyal, O.

Fain, R.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Faist, J.

C. Charlton, M. Giovannini, J. Faist, and B. Mizaikoff, “Fabrication and characterization of molecular beam epitaxy grown thin-film GaAs waveguides for mid-infrared evanescent field chemical sensing,” Anal. Chem. 78, 4224–4227 (2006).
[Crossref]

Faraone, L.

X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium–telluride waveguides-a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
[Crossref]

Fathpour, S.

J. Chiles and S. Fathpour, “Single-mode and single-polarization photonics with anchored-membrane waveguides,” Opt. Express 24, 19337–19343 (2016).
[Crossref]

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

Fedeli, J.-M.

J. Schmid, P. Cheben, P. Bock, R. Halir, J. Lapointe, S. Janz, A. Dela, A. Densmore, J.-M. Fedeli, and T. Hall, “Refractive index engineering with subwavelength gratings in silicon microphotonic waveguides,” IEEE Photon. J. 3, 597–607 (2011).
[Crossref]

Florjanczyk, M.

Frish, M. B.

Fung, C. K.

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Fung, C. K. Y.

Gaeta, A. L.

Gai, X.

Gao, S.

Y. Huang, E. Tien, S. Gao, S. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett. 99, 181122 (2011).
[Crossref]

Gao, W.

Garcia, G. A.

R. A. Johnson, P. R. D. L. Houssaye, C. E. Chang, C. Pin-Fan, M. E. Wood, G. A. Garcia, I. Lagnado, and P. M. Asbeck, “Advanced thin-film silicon-on-sapphire technology: microwave circuit applications,” IEEE Trans. Electron. Devices 45, 1047–1054 (1998).
[Crossref]

Gardes, F.

Gardes, F. Y.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, and S. Stankovic, “Silicon photonic waveguides and devices for near-and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21, 407–418 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Gassenq, A.

Gauglitz, G.

M. Sieger, F. Balluff, X. Wang, S.-S. Kim, L. Leidner, G. Gauglitz, and B. Mizaikoff, “On-chip integrated mid-infrared GaAs/AlGaAs Mach-Zehnder interferometer,” Anal. Chem. 85, 3050–3052 (2013).
[Crossref]

Gencarelli, F.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

Giammarco, J.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Gill, D. M.

Giovannini, M.

C. Charlton, M. Giovannini, J. Faist, and B. Mizaikoff, “Fabrication and characterization of molecular beam epitaxy grown thin-film GaAs waveguides for mid-infrared evanescent field chemical sensing,” Anal. Chem. 78, 4224–4227 (2006).
[Crossref]

Glesk, I.

Gmachl, C. F.

Gonzalo Wangüemert-Pérez, J.

Grand, G.

Green, W.

Green, W. M.

Green, W. M. J.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

Griffith, A.

S. Miller, A. Griffith, M. Yu, A. L. Gaeta, and M. Lipson, “Low-loss air-clad suspended silicon platform for mid-infrared photonics,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper STu3Q.6.

Griffith, A. G.

Grillet, C.

Guo, X.

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

Hale, G. M.

Halir, R.

J. Soler Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24, 22908–22916 (2016).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
[Crossref]

R. Halir, A. Ortega-Monux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20, 279–291 (2014).
[Crossref]

J. Schmid, P. Cheben, P. Bock, R. Halir, J. Lapointe, S. Janz, A. Dela, A. Densmore, J.-M. Fedeli, and T. Hall, “Refractive index engineering with subwavelength gratings in silicon microphotonic waveguides,” IEEE Photon. J. 3, 597–607 (2011).
[Crossref]

Hall, T.

J. Schmid, P. Cheben, P. Bock, R. Halir, J. Lapointe, S. Janz, A. Dela, A. Densmore, J.-M. Fedeli, and T. Hall, “Refractive index engineering with subwavelength gratings in silicon microphotonic waveguides,” IEEE Photon. J. 3, 597–607 (2011).
[Crossref]

Hall, T. J.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

Hammani, K.

A. Bogris, A. Kapsalis, K. Hammani, M. A. Ettabib, M. Brun, P. Labeye, S. Nicoletti, P. Petropoulos, and D. Syvridis, “Silicon germanium platform enabling mid-infrared to near-infrared conversion for telecom and sensing applications,” in European Conference on Optical Communication (ECOC) (2014).

Han, H.

J. Huang, H. Han, A. Liu, H. Wang, X. Liu, Y. Zou, M.-H. Lu, and Y.-F. Chen, “Efficient second harmonic generation by mode phase matching in a silicon waveguide,” IEEE Photon. J. 9, 6100807 (2017).

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Hao, Y.

Hartmann, J. M.

Hartmann, J.-M.

Hattasan, N.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300  nm,” Opt. Express 21, 6101–6108 (2013).
[Crossref]

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave-infrared,” in 16th European Conference on Integrated Optics (ECIO) (2012).

Headley, W.

G. Mashanovich, W. Headley, M. Milosevic, N. Owens, E. Teo, B. Xiong, P. Yang, M. Nedeljkovic, J. Anguita, and I. Marko, “Waveguides for mid-infrared group IV photonics,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 374–376.

Healy, N.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

Heck, M. J. R.

Hens, Z.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

Hensley, J.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13, 2161–2166 (2013).
[Crossref]

Herzig, H. P.

Ho, C. P.

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

Hô, N.

Hochberg, M.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  mu m,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

T. Baehr-Jones, A. Spott, R. Ilic, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

Hongjun, L.

W. Zhaolu, L. Hongjun, H. Nan, S. Qibing, and L. Xuefeng, “Mid-infrared Raman amplification and wavelength conversion in dispersion engineered silicon-on-sapphire waveguides,” J. Opt. 16, 015206 (2014).
[Crossref]

Hosseini, A.

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39, 3070–3073 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
[Crossref]

Houssaye, P. R. D. L.

R. A. Johnson, P. R. D. L. Houssaye, C. E. Chang, C. Pin-Fan, M. E. Wood, G. A. Garcia, I. Lagnado, and P. M. Asbeck, “Advanced thin-film silicon-on-sapphire technology: microwave circuit applications,” IEEE Trans. Electron. Devices 45, 1047–1054 (1998).
[Crossref]

Hu, C.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

Hu, J.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13, 2161–2166 (2013).
[Crossref]

Hu, T.

Hu, T.-C.

P. Dong, T.-C. Hu, L. Zhang, M. Dinu, R. Kopf, A. Tate, L. Buhl, D. Neilson, X. Luo, and T.-Y. Liow, “1.9  μm hybrid silicon/III-V semiconductor laser,” Electron. Lett. 49, 664–666 (2013).
[Crossref]

Hu, Y.

Huang, H.

Y. Yue, L. Zhang, H. Huang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-nitride waveguide with ultralow dispersion over an octave-spanning mid-infrared wavelength range,” IEEE Photon. J. 4, 126–132 (2012).
[Crossref]

Huang, J.

J. Huang, H. Han, A. Liu, H. Wang, X. Liu, Y. Zou, M.-H. Lu, and Y.-F. Chen, “Efficient second harmonic generation by mode phase matching in a silicon waveguide,” IEEE Photon. J. 9, 6100807 (2017).

Huang, N.

Huang, Y.

Y. Huang, E. Tien, S. Gao, S. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett. 99, 181122 (2011).
[Crossref]

Hudson, D.

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, and S. G. Duvall, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011).
[Crossref]

L. Carletti, D. Allioux, P. Ma, Y. Yu, B. Luther-Davies, S. Madden, D. Hudson, M. Sinobad, D. Moss, and M. Brun, “Mid-infrared nonlinear optics in SiGe waveguides,” in Summer Topical Meeting Series (SUM) (IEEE, 2015), pp. 59–60.

Hudson, D. D.

Hvozdara, L.

Ilic, R.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  mu m,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

T. Baehr-Jones, A. Spott, R. Ilic, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

Imthurn, G.

G. Imthurn, “The history of silicon-on-sapphire,” White Paper (Peregrine Semiconductor Corporation, 2007), https://pdfs.semanticscholar.org/3383/eb0297213d217c88723662c10d263b186a7b.pdf .

Jaberansary, E.

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Jackson, S. D.

Janz, S.

R. Halir, A. Ortega-Monux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20, 279–291 (2014).
[Crossref]

J. Schmid, P. Cheben, P. Bock, R. Halir, J. Lapointe, S. Janz, A. Dela, A. Densmore, J.-M. Fedeli, and T. Hall, “Refractive index engineering with subwavelength gratings in silicon microphotonic waveguides,” IEEE Photon. J. 3, 597–607 (2011).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15, 18176–18189 (2007).
[Crossref]

Jessop, P. E.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Jetter, M.

X. Wang, S.-S. Kim, R. Roßbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst 137, 2322–2327 (2012).
[Crossref]

Jiang, X.

Joannopoulos, J. D.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

Johnson, R. A.

R. A. Johnson, P. R. D. L. Houssaye, C. E. Chang, C. Pin-Fan, M. E. Wood, G. A. Garcia, I. Lagnado, and P. M. Asbeck, “Advanced thin-film silicon-on-sapphire technology: microwave circuit applications,” IEEE Trans. Electron. Devices 45, 1047–1054 (1998).
[Crossref]

Jung, H.

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
[Crossref]

Kalyoncu, S.

Y. Huang, E. Tien, S. Gao, S. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett. 99, 181122 (2011).
[Crossref]

Kang, J.

Kapsalis, A.

A. Bogris, A. Kapsalis, K. Hammani, M. A. Ettabib, M. Brun, P. Labeye, S. Nicoletti, P. Petropoulos, and D. Syvridis, “Silicon germanium platform enabling mid-infrared to near-infrared conversion for telecom and sensing applications,” in European Conference on Optical Communication (ECOC) (2014).

Karthe, W.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” J. Opt. Pure Appl. Opt. 2, 683–700 (1993).
[Crossref]

Katzir, A.

Khan, S.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

Khokhar, A.

Khokhar, A. Z.

J. Soler Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24, 22908–22916 (2016).
[Crossref]

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28, 528–531 (2016).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, and S. Stankovic, “Silicon photonic waveguides and devices for near-and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21, 407–418 (2015).
[Crossref]

J. Soler Penades, A. Z. Khokhar, M. Nedeljkovic, and G. Z. Mashanovich, “Low loss mid-infrared SOI slot waveguides,” IEEE Photon. Technol. Lett. 27, 1197–1199 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39, 1406–1409 (2014).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. Soler Penades, V. M. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22, 23990–24003 (2014).
[Crossref]

Kim, C.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

Kim, C. S.

Kim, S.-S.

M. Sieger, F. Balluff, X. Wang, S.-S. Kim, L. Leidner, G. Gauglitz, and B. Mizaikoff, “On-chip integrated mid-infrared GaAs/AlGaAs Mach-Zehnder interferometer,” Anal. Chem. 85, 3050–3052 (2013).
[Crossref]

X. Wang, S.-S. Kim, R. Roßbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst 137, 2322–2327 (2012).
[Crossref]

Kimerling, L.

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102, 251121 (2013).
[Crossref]

Kimerling, L. C.

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
[Crossref]

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14, 231–238 (2013).
[Crossref]

P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett. 38, 1031–1033 (2013).
[Crossref]

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13, 2161–2166 (2013).
[Crossref]

Kirch, J.

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

Knights, A. P.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Kopf, R.

P. Dong, T.-C. Hu, L. Zhang, M. Dinu, R. Kopf, A. Tate, L. Buhl, D. Neilson, X. Luo, and T.-Y. Liow, “1.9  μm hybrid silicon/III-V semiconductor laser,” Electron. Lett. 49, 664–666 (2013).
[Crossref]

Krauss, T. F.

Krishnaswami, K.

Kumari, B.

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B 236, 759–764 (2016).
[Crossref]

Kuyken, B.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. N. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
[Crossref]

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, and J. Van Campenhout, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave-infrared,” in 16th European Conference on Integrated Optics (ECIO) (2012).

Kwok, S. W.

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14, 231–238 (2013).
[Crossref]

Kwong, D.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
[Crossref]

Kwong, D. N.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

Labeye, P.

M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22, 508–518 (2014).
[Crossref]

A. Bogris, A. Kapsalis, K. Hammani, M. A. Ettabib, M. Brun, P. Labeye, S. Nicoletti, P. Petropoulos, and D. Syvridis, “Silicon germanium platform enabling mid-infrared to near-infrared conversion for telecom and sensing applications,” in European Conference on Optical Communication (ECOC) (2014).

Laderer, M.

Lagnado, I.

R. A. Johnson, P. R. D. L. Houssaye, C. E. Chang, C. Pin-Fan, M. E. Wood, G. A. Garcia, I. Lagnado, and P. M. Asbeck, “Advanced thin-film silicon-on-sapphire technology: microwave circuit applications,” IEEE Trans. Electron. Devices 45, 1047–1054 (1998).
[Crossref]

Lai, W.-C.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39, 3070–3073 (2014).
[Crossref]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy,” Opt. Lett. 38, 3799–3802 (2013).
[Crossref]

Y. Zou, S. Chakravarty, W.-C. Lai, C.-Y. Lin, and R. T. Chen, “Methods to array photonic crystal microcavities for high throughput high sensitivity biosensing on a silicon-chip based platform,” Lab Chip 12, 2309–2312 (2012).
[Crossref]

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron. 38, 170–176 (2012).
[Crossref]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37, 1208–1210 (2012).
[Crossref]

Lamont, M. R. E.

Lamontagne, B.

Lapointe, J.

R. Halir, A. Ortega-Monux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20, 279–291 (2014).
[Crossref]

J. Schmid, P. Cheben, P. Bock, R. Halir, J. Lapointe, S. Janz, A. Dela, A. Densmore, J.-M. Fedeli, and T. Hall, “Refractive index engineering with subwavelength gratings in silicon microphotonic waveguides,” IEEE Photon. J. 3, 597–607 (2011).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
[Crossref]

Lau, R. K.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. Lau, A. Dutt, A. L. Gaeta, and M. Lipson, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Opt. Lett. 40, 4138–4141 (2015).
[Crossref]

Lau, R. K. W.

Lee, C.

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5, 417–430 (2017).
[Crossref]

Lee, Y. H. D.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Lei, W.

X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium–telluride waveguides-a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
[Crossref]

Leidner, L.

M. Sieger, F. Balluff, X. Wang, S.-S. Kim, L. Leidner, G. Gauglitz, and B. Mizaikoff, “On-chip integrated mid-infrared GaAs/AlGaAs Mach-Zehnder interferometer,” Anal. Chem. 85, 3050–3052 (2013).
[Crossref]

Leijssen, R.

Leo, F.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave-infrared,” in 16th European Conference on Integrated Optics (ECIO) (2012).

Lepage, G.

Lewi, T.

Li, B.

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

Li, F.

Li, G.

Li, K.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, and S. Stankovic, “Silicon photonic waveguides and devices for near-and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21, 407–418 (2015).
[Crossref]

Li, L.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Li, M.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

Li, T.

Li, X.

Li, Y.

Lim, A. E.-J.

Lin, C.-Y.

Y. Zou, S. Chakravarty, W.-C. Lai, C.-Y. Lin, and R. T. Chen, “Methods to array photonic crystal microcavities for high throughput high sensitivity biosensing on a silicon-chip based platform,” Lab Chip 12, 2309–2312 (2012).
[Crossref]

Lin, H.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

Lin, H.-Y. G.

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14, 231–238 (2013).
[Crossref]

Lin, P. T.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
[Crossref]

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14, 231–238 (2013).
[Crossref]

P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett. 38, 1031–1033 (2013).
[Crossref]

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13, 2161–2166 (2013).
[Crossref]

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102, 251121 (2013).
[Crossref]

Lin, X.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

Liow, T.-Y.

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5, 417–430 (2017).
[Crossref]

P. Dong, T.-C. Hu, L. Zhang, M. Dinu, R. Kopf, A. Tate, L. Buhl, D. Neilson, X. Luo, and T.-Y. Liow, “1.9  μm hybrid silicon/III-V semiconductor laser,” Electron. Lett. 49, 664–666 (2013).
[Crossref]

Lipson, M.

Littlejohns, C.

Littlejohns, C. G.

M. S. Rouifed, C. G. Littlejohns, G. X. Tina, H. Qiu, J. Soler Penades, M. Nedeljkovic, Z. Zhang, C. Liu, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and H. Wang, “Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55  μm and 2  μm,” Opt. Express 25, 10893–10900 (2017).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Liu, A.

J. Huang, H. Han, A. Liu, H. Wang, X. Liu, Y. Zou, M.-H. Lu, and Y.-F. Chen, “Efficient second harmonic generation by mode phase matching in a silicon waveguide,” IEEE Photon. J. 9, 6100807 (2017).

Liu, C.

Liu, H.

Liu, X.

J. Huang, H. Han, A. Liu, H. Wang, X. Liu, Y. Zou, M.-H. Lu, and Y.-F. Chen, “Efficient second harmonic generation by mode phase matching in a silicon waveguide,” IEEE Photon. J. 9, 6100807 (2017).

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

Liu, Y.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  mu m,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

Lo, G.-Q.

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5, 417–430 (2017).
[Crossref]

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

Lo, P. G.-Q.

Loncar, M.

Loo, R.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de) multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

Lu, M.-H.

J. Huang, H. Han, A. Liu, H. Wang, X. Liu, Y. Zou, M.-H. Lu, and Y.-F. Chen, “Efficient second harmonic generation by mode phase matching in a silicon waveguide,” IEEE Photon. J. 9, 6100807 (2017).

Luke, K.

Luo, X.

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5, 417–430 (2017).
[Crossref]

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

P. Dong, T.-C. Hu, L. Zhang, M. Dinu, R. Kopf, A. Tate, L. Buhl, D. Neilson, X. Luo, and T.-Y. Liow, “1.9  μm hybrid silicon/III-V semiconductor laser,” Electron. Lett. 49, 664–666 (2013).
[Crossref]

Luther-Davies, B.

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[Crossref]

L. Carletti, P. Ma, B. Luther-Davies, D. D. Hudson, C. Monat, S. Madden, D. J. Moss, M. Brun, S. Ortiz, and S. Nicoletti, “Nonlinear optical properties of SiGe waveguides in the mid-infrared,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper SW3M.7.

L. Carletti, D. Allioux, P. Ma, Y. Yu, B. Luther-Davies, S. Madden, D. Hudson, M. Sinobad, D. Moss, and M. Brun, “Mid-infrared nonlinear optics in SiGe waveguides,” in Summer Topical Meeting Series (SUM) (IEEE, 2015), pp. 59–60.

Luzinov, I.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13, 2161–2166 (2013).
[Crossref]

Lyakh, A.

R. Maulini, I. Dunayevskiy, A. Lyakh, A. Tsekoun, C. K. N. Patel, L. Diehl, C. Pflugl, and F. Capasso, “Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature,” Electron. Lett. 45, 107–108 (2009).
[Crossref]

Ma, J.

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

Ma, P.

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[Crossref]

L. Carletti, P. Ma, B. Luther-Davies, D. D. Hudson, C. Monat, S. Madden, D. J. Moss, M. Brun, S. Ortiz, and S. Nicoletti, “Nonlinear optical properties of SiGe waveguides in the mid-infrared,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper SW3M.7.

L. Carletti, D. Allioux, P. Ma, Y. Yu, B. Luther-Davies, S. Madden, D. Hudson, M. Sinobad, D. Moss, and M. Brun, “Mid-infrared nonlinear optics in SiGe waveguides,” in Summer Topical Meeting Series (SUM) (IEEE, 2015), pp. 59–60.

Madden, S.

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[Crossref]

L. Carletti, D. Allioux, P. Ma, Y. Yu, B. Luther-Davies, S. Madden, D. Hudson, M. Sinobad, D. Moss, and M. Brun, “Mid-infrared nonlinear optics in SiGe waveguides,” in Summer Topical Meeting Series (SUM) (IEEE, 2015), pp. 59–60.

L. Carletti, P. Ma, B. Luther-Davies, D. D. Hudson, C. Monat, S. Madden, D. J. Moss, M. Brun, S. Ortiz, and S. Nicoletti, “Nonlinear optical properties of SiGe waveguides in the mid-infrared,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper SW3M.7.

Madden, S. J.

Madsen, C. K.

Magi, E.

Mägi, E.

Malik, A.

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. N. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
[Crossref]

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E. Ryckeboer, D. Sanchez, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, M. K. Smit, and G. Roelkens, “Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring,” Opt. Express 22, 27300–27308 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de) multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, and J. Van Campenhout, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in IEEE Photonics Conference (2013).

Marko, I.

G. Mashanovich, W. Headley, M. Milosevic, N. Owens, E. Teo, B. Xiong, P. Yang, M. Nedeljkovic, J. Anguita, and I. Marko, “Waveguides for mid-infrared group IV photonics,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 374–376.

Masaud, T. B.

Masaud, T. M. B.

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Mashanovich, G.

G. Mashanovich, C. Mitchell, J. Soler Penades, A. Khokhar, C. Littlejohns, W. Cao, Z. Qu, S. Stankovic, F. Gardes, and T. B. Masaud, “Germanium mid-infrared photonic devices,” J. Lightwave Technol. 35, 624–630 (2017).
[Crossref]

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

J. Soler Penades, C. Alonso-Ramos, A. Khokhar, M. Nedeljkovic, L. Boodhoo, A. Ortega-Moñux, I. Molina-Fernández, P. Cheben, and G. Mashanovich, “Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared,” Opt. Lett. 39, 5661–5664 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

G. Mashanovich, W. Headley, M. Milosevic, N. Owens, E. Teo, B. Xiong, P. Yang, M. Nedeljkovic, J. Anguita, and I. Marko, “Waveguides for mid-infrared group IV photonics,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 374–376.

Mashanovich, G. Z.

M. S. Rouifed, C. G. Littlejohns, G. X. Tina, H. Qiu, J. Soler Penades, M. Nedeljkovic, Z. Zhang, C. Liu, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and H. Wang, “Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55  μm and 2  μm,” Opt. Express 25, 10893–10900 (2017).
[Crossref]

J. Soler Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24, 22908–22916 (2016).
[Crossref]

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28, 528–531 (2016).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, and S. Stankovic, “Silicon photonic waveguides and devices for near-and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21, 407–418 (2015).
[Crossref]

J. Soler Penades, A. Z. Khokhar, M. Nedeljkovic, and G. Z. Mashanovich, “Low loss mid-infrared SOI slot waveguides,” IEEE Photon. Technol. Lett. 27, 1197–1199 (2015).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39, 1406–1409 (2014).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. Soler Penades, V. M. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22, 23990–24003 (2014).
[Crossref]

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

C. Reimer, M. Nedeljkovic, D. J. Stothard, M. O. Esnault, C. Reardon, L. O’Faolain, M. Dunn, G. Z. Mashanovich, and T. F. Krauss, “Mid-infrared photonic crystal waveguides in silicon,” Opt. Express 20, 29361–29368 (2012).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011).
[Crossref]

Maulini, R.

R. Maulini, I. Dunayevskiy, A. Lyakh, A. Tsekoun, C. K. N. Patel, L. Diehl, C. Pflugl, and F. Capasso, “Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature,” Electron. Lett. 45, 107–108 (2009).
[Crossref]

Mawst, L.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

Mawst, L. J.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

Merritt, C.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

Merritt, C. D.

Meyer, J.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

A. Spott, M. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
[Crossref]

Meyer, J. R.

Michler, P.

X. Wang, S.-S. Kim, R. Roßbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst 137, 2322–2327 (2012).
[Crossref]

Miller, S.

S. Miller, A. Griffith, M. Yu, A. L. Gaeta, and M. Lipson, “Low-loss air-clad suspended silicon platform for mid-infrared photonics,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper STu3Q.6.

Milosevic, M.

G. Mashanovich, W. Headley, M. Milosevic, N. Owens, E. Teo, B. Xiong, P. Yang, M. Nedeljkovic, J. Anguita, and I. Marko, “Waveguides for mid-infrared group IV photonics,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 374–376.

Milosevic, M. M.

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Miloševic, M. M.

Mitchell, C.

Mitchell, C. J.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, and S. Stankovic, “Silicon photonic waveguides and devices for near-and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21, 407–418 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39, 1406–1409 (2014).
[Crossref]

Mizaikoff, B.

X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium–telluride waveguides-a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
[Crossref]

M. Sieger, F. Balluff, X. Wang, S.-S. Kim, L. Leidner, G. Gauglitz, and B. Mizaikoff, “On-chip integrated mid-infrared GaAs/AlGaAs Mach-Zehnder interferometer,” Anal. Chem. 85, 3050–3052 (2013).
[Crossref]

X. Wang, S.-S. Kim, R. Roßbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst 137, 2322–2327 (2012).
[Crossref]

C. Charlton, M. Giovannini, J. Faist, and B. Mizaikoff, “Fabrication and characterization of molecular beam epitaxy grown thin-film GaAs waveguides for mid-infrared evanescent field chemical sensing,” Anal. Chem. 78, 4224–4227 (2006).
[Crossref]

Moghe, Y.

Mohanty, A.

A. G. Griffith, M. Yu, Y. Okawachi, J. Cardenas, A. Mohanty, A. L. Gaeta, and M. Lipson, “Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects,” Opt. Express 24, 13044–13050 (2016).
[Crossref]

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Molina-Fernandez, I.

R. Halir, A. Ortega-Monux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20, 279–291 (2014).
[Crossref]

Molina-Fernández, I.

Monat, C.

L. Carletti, P. Ma, B. Luther-Davies, D. D. Hudson, C. Monat, S. Madden, D. J. Moss, M. Brun, S. Ortiz, and S. Nicoletti, “Nonlinear optical properties of SiGe waveguides in the mid-infrared,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper SW3M.7.

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, A. Nikola, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, A. Nikola, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Moss, D.

L. Carletti, D. Allioux, P. Ma, Y. Yu, B. Luther-Davies, S. Madden, D. Hudson, M. Sinobad, D. Moss, and M. Brun, “Mid-infrared nonlinear optics in SiGe waveguides,” in Summer Topical Meeting Series (SUM) (IEEE, 2015), pp. 59–60.

Moss, D. J.

L. Carletti, P. Ma, B. Luther-Davies, D. D. Hudson, C. Monat, S. Madden, D. J. Moss, M. Brun, S. Ortiz, and S. Nicoletti, “Nonlinear optical properties of SiGe waveguides in the mid-infrared,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper SW3M.7.

Mujagic, E.

Muneeb, M.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. N. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
[Crossref]

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3  μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
[Crossref]

R. Wang, S. Sprengel, M. Muneeb, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “2  μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits,” Opt. Express 23, 26834–26841 (2015).
[Crossref]

M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E. Ryckeboer, D. Sanchez, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, M. K. Smit, and G. Roelkens, “Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring,” Opt. Express 22, 27300–27308 (2014).
[Crossref]

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, and J. Van Campenhout, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de) multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300  nm,” Opt. Express 21, 6101–6108 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in IEEE Photonics Conference (2013).

Musgraves, J. D.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13, 2161–2166 (2013).
[Crossref]

Myers, T. L.

Nan, H.

W. Zhaolu, L. Hongjun, H. Nan, S. Qibing, and L. Xuefeng, “Mid-infrared Raman amplification and wavelength conversion in dispersion engineered silicon-on-sapphire waveguides,” J. Opt. 16, 015206 (2014).
[Crossref]

Nedeljkovic, M.

M. S. Rouifed, C. G. Littlejohns, G. X. Tina, H. Qiu, J. Soler Penades, M. Nedeljkovic, Z. Zhang, C. Liu, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and H. Wang, “Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55  μm and 2  μm,” Opt. Express 25, 10893–10900 (2017).
[Crossref]

J. Soler Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24, 22908–22916 (2016).
[Crossref]

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28, 528–531 (2016).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, and S. Stankovic, “Silicon photonic waveguides and devices for near-and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21, 407–418 (2015).
[Crossref]

J. Soler Penades, A. Z. Khokhar, M. Nedeljkovic, and G. Z. Mashanovich, “Low loss mid-infrared SOI slot waveguides,” IEEE Photon. Technol. Lett. 27, 1197–1199 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. Soler Penades, V. M. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22, 23990–24003 (2014).
[Crossref]

J. Soler Penades, C. Alonso-Ramos, A. Khokhar, M. Nedeljkovic, L. Boodhoo, A. Ortega-Moñux, I. Molina-Fernández, P. Cheben, and G. Mashanovich, “Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared,” Opt. Lett. 39, 5661–5664 (2014).
[Crossref]

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, and J. Van Campenhout, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

M. Nedeljkovic, A. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. Chong, D. Thomson, F. Gardes, and G. Reed, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

C. Reimer, M. Nedeljkovic, D. J. Stothard, M. O. Esnault, C. Reardon, L. O’Faolain, M. Dunn, G. Z. Mashanovich, and T. F. Krauss, “Mid-infrared photonic crystal waveguides in silicon,” Opt. Express 20, 29361–29368 (2012).
[Crossref]

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011).
[Crossref]

G. Mashanovich, W. Headley, M. Milosevic, N. Owens, E. Teo, B. Xiong, P. Yang, M. Nedeljkovic, J. Anguita, and I. Marko, “Waveguides for mid-infrared group IV photonics,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 374–376.

Neilson, D.

P. Dong, T.-C. Hu, L. Zhang, M. Dinu, R. Kopf, A. Tate, L. Buhl, D. Neilson, X. Luo, and T.-Y. Liow, “1.9  μm hybrid silicon/III-V semiconductor laser,” Electron. Lett. 49, 664–666 (2013).
[Crossref]

Ni, C.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Nicoletti, S.

M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22, 508–518 (2014).
[Crossref]

A. Bogris, A. Kapsalis, K. Hammani, M. A. Ettabib, M. Brun, P. Labeye, S. Nicoletti, P. Petropoulos, and D. Syvridis, “Silicon germanium platform enabling mid-infrared to near-infrared conversion for telecom and sensing applications,” in European Conference on Optical Communication (ECOC) (2014).

L. Carletti, P. Ma, B. Luther-Davies, D. D. Hudson, C. Monat, S. Madden, D. J. Moss, M. Brun, S. Ortiz, and S. Nicoletti, “Nonlinear optical properties of SiGe waveguides in the mid-infrared,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper SW3M.7.

Nikola, A.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, A. Nikola, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

O’Brien, C.

O’Faolain, L.

Okawachi, Y.

Ortega-Monux, A.

R. Halir, A. Ortega-Monux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20, 279–291 (2014).
[Crossref]

Ortega-Moñux, A.

Ortiz, S.

L. Carletti, P. Ma, B. Luther-Davies, D. D. Hudson, C. Monat, S. Madden, D. J. Moss, M. Brun, S. Ortiz, and S. Nicoletti, “Nonlinear optical properties of SiGe waveguides in the mid-infrared,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper SW3M.7.

Osgood, R.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

Osgood, R. M.

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

Owens, N.

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011).
[Crossref]

G. Mashanovich, W. Headley, M. Milosevic, N. Owens, E. Teo, B. Xiong, P. Yang, M. Nedeljkovic, J. Anguita, and I. Marko, “Waveguides for mid-infrared group IV photonics,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 374–376.

Paeder, V.

Pal, B. P.

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B 236, 759–764 (2016).
[Crossref]

Palomba, S.

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, A. Nikola, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Passaro, V. M.

Patel, C. K. N.

R. Maulini, I. Dunayevskiy, A. Lyakh, A. Tsekoun, C. K. N. Patel, L. Diehl, C. Pflugl, and F. Capasso, “Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature,” Electron. Lett. 45, 107–108 (2009).
[Crossref]

Patel, N.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Pathak, S.

Peacock, A. C.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

Penkov, B.

Pérez-Galacho, D.

Peters, J.

Petropoulos, P.

A. Bogris, A. Kapsalis, K. Hammani, M. A. Ettabib, M. Brun, P. Labeye, S. Nicoletti, P. Petropoulos, and D. Syvridis, “Silicon germanium platform enabling mid-infrared to near-infrared conversion for telecom and sensing applications,” in European Conference on Optical Communication (ECOC) (2014).

Pflugl, C.

R. Maulini, I. Dunayevskiy, A. Lyakh, A. Tsekoun, C. K. N. Patel, L. Diehl, C. Pflugl, and F. Capasso, “Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature,” Electron. Lett. 45, 107–108 (2009).
[Crossref]

Phare, C. T.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Phillips, M. C.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Pin-Fan, C.

R. A. Johnson, P. R. D. L. Houssaye, C. E. Chang, C. Pin-Fan, M. E. Wood, G. A. Garcia, I. Lagnado, and P. M. Asbeck, “Advanced thin-film silicon-on-sapphire technology: microwave circuit applications,” IEEE Trans. Electron. Devices 45, 1047–1054 (1998).
[Crossref]

Poitras, C. B.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. Lau, A. Dutt, A. L. Gaeta, and M. Lipson, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Opt. Lett. 40, 4138–4141 (2015).
[Crossref]

Poulton, C. V.

E. Timurdogan, C. V. Poulton, M. Byrd, and M. Watts, “Electric field-induced second-order nonlinear optical effects in silicon waveguides,” Nat. Photonics 11, 200–206 (2017).
[Crossref]

Putrino, G.

X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium–telluride waveguides-a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
[Crossref]

Qian, F.

Y. Huang, E. Tien, S. Gao, S. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett. 99, 181122 (2011).
[Crossref]

Qiao, H.

Qibing, S.

W. Zhaolu, L. Hongjun, H. Nan, S. Qibing, and L. Xuefeng, “Mid-infrared Raman amplification and wavelength conversion in dispersion engineered silicon-on-sapphire waveguides,” J. Opt. 16, 015206 (2014).
[Crossref]

Qiu, C.

Qiu, H.

Qu, Z.

Querry, M. R.

Radic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, A. Nikola, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Read, A.

Reardon, C.

Reed, G.

Reed, G. T.

M. S. Rouifed, C. G. Littlejohns, G. X. Tina, H. Qiu, J. Soler Penades, M. Nedeljkovic, Z. Zhang, C. Liu, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and H. Wang, “Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55  μm and 2  μm,” Opt. Express 25, 10893–10900 (2017).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39, 1406–1409 (2014).
[Crossref]

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Reimer, C.

Reynolds, S. A.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Rice, P. M.

Richard, A. S.

A. S. Richard, J. E. Stephen, and R. B. Walter, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Richardson, K.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13, 2161–2166 (2013).
[Crossref]

Richter, B.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” J. Opt. Pure Appl. Opt. 2, 683–700 (1993).
[Crossref]

Riley, B. J.

Rodriguez, J. B.

M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E. Ryckeboer, D. Sanchez, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, M. K. Smit, and G. Roelkens, “Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring,” Opt. Express 22, 27300–27308 (2014).
[Crossref]

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300  nm,” Opt. Express 21, 6101–6108 (2013).
[Crossref]

Rodriguez, J.-B.

Roelkens, G.

R. Wang, S. Sprengel, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Broad wavelength coverage 2.3  μm III-V-on-silicon DFB laser array,” Optica 4, 972–975 (2017).
[Crossref]

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3  μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
[Crossref]

R. Wang, S. Sprengel, M. Muneeb, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “2  μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits,” Opt. Express 23, 26834–26841 (2015).
[Crossref]

M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E. Ryckeboer, D. Sanchez, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, M. K. Smit, and G. Roelkens, “Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring,” Opt. Express 22, 27300–27308 (2014).
[Crossref]

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de) multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300  nm,” Opt. Express 21, 6101–6108 (2013).
[Crossref]

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave-infrared,” in 16th European Conference on Integrated Optics (ECIO) (2012).

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in IEEE Photonics Conference (2013).

Roelkens, G. N.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. N. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
[Crossref]

Roßbach, R.

X. Wang, S.-S. Kim, R. Roßbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst 137, 2322–2327 (2012).
[Crossref]

Rouifed, M. S.

Ruocco, A.

Ryckeboer, E.

M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E. Ryckeboer, D. Sanchez, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, M. K. Smit, and G. Roelkens, “Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring,” Opt. Express 22, 27300–27308 (2014).
[Crossref]

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, and J. Van Campenhout, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300  nm,” Opt. Express 21, 6101–6108 (2013).
[Crossref]

Ryckeboer, E. M. P.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

Sanchez, D.

M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E. Ryckeboer, D. Sanchez, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, M. K. Smit, and G. Roelkens, “Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring,” Opt. Express 22, 27300–27308 (2014).
[Crossref]

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Scharf, V.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Schmid, J.

J. Schmid, P. Cheben, P. Bock, R. Halir, J. Lapointe, S. Janz, A. Dela, A. Densmore, J.-M. Fedeli, and T. Hall, “Refractive index engineering with subwavelength gratings in silicon microphotonic waveguides,” IEEE Photon. J. 3, 597–607 (2011).
[Crossref]

Schmid, J. H.

Scott, A.

Shalem, S.

Shank, S. M.

Shankar, R.

Shen, L.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

Shimura, Y.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de) multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in IEEE Photonics Conference (2013).

Shu, J.

Sieger, M.

M. Sieger, F. Balluff, X. Wang, S.-S. Kim, L. Leidner, G. Gauglitz, and B. Mizaikoff, “On-chip integrated mid-infrared GaAs/AlGaAs Mach-Zehnder interferometer,” Anal. Chem. 85, 3050–3052 (2013).
[Crossref]

Singh, N.

Singh, V.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14, 231–238 (2013).
[Crossref]

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13, 2161–2166 (2013).
[Crossref]

P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett. 38, 1031–1033 (2013).
[Crossref]

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102, 251121 (2013).
[Crossref]

Sinobad, M.

L. Carletti, D. Allioux, P. Ma, Y. Yu, B. Luther-Davies, S. Madden, D. Hudson, M. Sinobad, D. Moss, and M. Brun, “Mid-infrared nonlinear optics in SiGe waveguides,” in Summer Topical Meeting Series (SUM) (IEEE, 2015), pp. 59–60.

Smit, M. K.

Smith, C. J.

Soler Penades, J.

G. Mashanovich, C. Mitchell, J. Soler Penades, A. Khokhar, C. Littlejohns, W. Cao, Z. Qu, S. Stankovic, F. Gardes, and T. B. Masaud, “Germanium mid-infrared photonic devices,” J. Lightwave Technol. 35, 624–630 (2017).
[Crossref]

M. S. Rouifed, C. G. Littlejohns, G. X. Tina, H. Qiu, J. Soler Penades, M. Nedeljkovic, Z. Zhang, C. Liu, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and H. Wang, “Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55  μm and 2  μm,” Opt. Express 25, 10893–10900 (2017).
[Crossref]

J. Soler Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24, 22908–22916 (2016).
[Crossref]

J. Soler Penades, A. Z. Khokhar, M. Nedeljkovic, and G. Z. Mashanovich, “Low loss mid-infrared SOI slot waveguides,” IEEE Photon. Technol. Lett. 27, 1197–1199 (2015).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, and S. Stankovic, “Silicon photonic waveguides and devices for near-and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21, 407–418 (2015).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. Soler Penades, V. M. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22, 23990–24003 (2014).
[Crossref]

J. Soler Penades, C. Alonso-Ramos, A. Khokhar, M. Nedeljkovic, L. Boodhoo, A. Ortega-Moñux, I. Molina-Fernández, P. Cheben, and G. Mashanovich, “Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared,” Opt. Lett. 39, 5661–5664 (2014).
[Crossref]

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39, 1406–1409 (2014).
[Crossref]

M. Nedeljkovic, A. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. Chong, D. Thomson, F. Gardes, and G. Reed, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

Solgaard, O.

C.-M. Chang and O. Solgaard, “Fano resonances in integrated silicon Bragg reflectors for sensing applications,” Opt. Express 21, 27209–27218 (2013).
[Crossref]

C. M. Chang and O. Solgaard, “Monolithic silicon waveguides in standard silicon,” IEEE Micro 33, 32–40 (2013).
[Crossref]

Solheim, B.

Soljacic, M.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Song, J.

Song, Q.

Y. Huang, E. Tien, S. Gao, S. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett. 99, 181122 (2011).
[Crossref]

Soref, R.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Spott, A.

Sprengel, S.

Stankovic, S.

G. Mashanovich, C. Mitchell, J. Soler Penades, A. Khokhar, C. Littlejohns, W. Cao, Z. Qu, S. Stankovic, F. Gardes, and T. B. Masaud, “Germanium mid-infrared photonic devices,” J. Lightwave Technol. 35, 624–630 (2017).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, and S. Stankovic, “Silicon photonic waveguides and devices for near-and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21, 407–418 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

M. Nedeljkovic, A. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. Chong, D. Thomson, F. Gardes, and G. Reed, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

Stanton, E.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

Stanton, E. J.

Stephen, J. E.

A. S. Richard, J. E. Stephen, and R. B. Walter, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Stothard, D. J.

Subbaraman, H.

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39, 3070–3073 (2014).
[Crossref]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
[Crossref]

Sun, Q.

Syvridis, D.

A. Bogris, A. Kapsalis, K. Hammani, M. A. Ettabib, M. Brun, P. Labeye, S. Nicoletti, P. Petropoulos, and D. Syvridis, “Silicon germanium platform enabling mid-infrared to near-infrared conversion for telecom and sensing applications,” in European Conference on Optical Communication (ECOC) (2014).

Takagi, S.

Takenaka, M.

Tang, H. X.

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
[Crossref]

Tate, A.

P. Dong, T.-C. Hu, L. Zhang, M. Dinu, R. Kopf, A. Tate, L. Buhl, D. Neilson, X. Luo, and T.-Y. Liow, “1.9  μm hybrid silicon/III-V semiconductor laser,” Electron. Lett. 49, 664–666 (2013).
[Crossref]

Teo, E.

G. Mashanovich, W. Headley, M. Milosevic, N. Owens, E. Teo, B. Xiong, P. Yang, M. Nedeljkovic, J. Anguita, and I. Marko, “Waveguides for mid-infrared group IV photonics,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 374–376.

Teo, E. J.

Thomson, D.

Thomson, D. J.

M. S. Rouifed, C. G. Littlejohns, G. X. Tina, H. Qiu, J. Soler Penades, M. Nedeljkovic, Z. Zhang, C. Liu, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and H. Wang, “Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55  μm and 2  μm,” Opt. Express 25, 10893–10900 (2017).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, and S. Stankovic, “Silicon photonic waveguides and devices for near-and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21, 407–418 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39, 1406–1409 (2014).
[Crossref]

Tien, E.

Y. Huang, E. Tien, S. Gao, S. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett. 99, 181122 (2011).
[Crossref]

Timurdogan, E.

E. Timurdogan, C. V. Poulton, M. Byrd, and M. Watts, “Electric field-induced second-order nonlinear optical effects in silicon waveguides,” Nat. Photonics 11, 200–206 (2017).
[Crossref]

Tina, G. X.

Tittelbach, G.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” J. Opt. Pure Appl. Opt. 2, 683–700 (1993).
[Crossref]

Topuria, T.

Tournié, E.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E. Ryckeboer, D. Sanchez, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, M. K. Smit, and G. Roelkens, “Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring,” Opt. Express 22, 27300–27308 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300  nm,” Opt. Express 21, 6101–6108 (2013).
[Crossref]

Troia, B.

Tsang, H.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

Tsang, H. K.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

Tsay, C.

Tsekoun, A.

R. Maulini, I. Dunayevskiy, A. Lyakh, A. Tsekoun, C. K. N. Patel, L. Diehl, C. Pflugl, and F. Capasso, “Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature,” Electron. Lett. 45, 107–108 (2009).
[Crossref]

Uvin, S.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

Van Camp, M. A.

Van Campenhout, J.

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de) multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, and J. Van Campenhout, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in IEEE Photonics Conference (2013).

Vanga, S. K.

Varshney, R. K.

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B 236, 759–764 (2016).
[Crossref]

Vasiliev, A.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. N. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
[Crossref]

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

Velasco, A. V.

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28, 528–531 (2016).
[Crossref]

Verheyen, P.

Vermeulen, D.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

Vincent, B.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

Vlasov, Y. A.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

Vurgaftman, I.

Walter, R. B.

A. S. Richard, J. E. Stephen, and R. B. Walter, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Wang, H.

J. Huang, H. Han, A. Liu, H. Wang, X. Liu, Y. Zou, M.-H. Lu, and Y.-F. Chen, “Efficient second harmonic generation by mode phase matching in a silicon waveguide,” IEEE Photon. J. 9, 6100807 (2017).

M. S. Rouifed, C. G. Littlejohns, G. X. Tina, H. Qiu, J. Soler Penades, M. Nedeljkovic, Z. Zhang, C. Liu, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and H. Wang, “Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55  μm and 2  μm,” Opt. Express 25, 10893–10900 (2017).
[Crossref]

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

Wang, J.

Wang, M.

Wang, R.

R. Wang, S. Sprengel, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Broad wavelength coverage 2.3  μm III-V-on-silicon DFB laser array,” Optica 4, 972–975 (2017).
[Crossref]

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3  μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
[Crossref]

R. Wang, S. Sprengel, M. Muneeb, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “2  μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits,” Opt. Express 23, 26834–26841 (2015).
[Crossref]

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Wang, X.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

M. Sieger, F. Balluff, X. Wang, S.-S. Kim, L. Leidner, G. Gauglitz, and B. Mizaikoff, “On-chip integrated mid-infrared GaAs/AlGaAs Mach-Zehnder interferometer,” Anal. Chem. 85, 3050–3052 (2013).
[Crossref]

X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium–telluride waveguides-a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
[Crossref]

X. Wang, S.-S. Kim, R. Roßbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst 137, 2322–2327 (2012).
[Crossref]

Wang, Z.

Wanguemert-Perez, J. G.

R. Halir, A. Ortega-Monux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20, 279–291 (2014).
[Crossref]

Wangüemert-Pérez, J. G.

Watts, M.

E. Timurdogan, C. V. Poulton, M. Byrd, and M. Watts, “Electric field-induced second-order nonlinear optical effects in silicon waveguides,” Nat. Photonics 11, 200–206 (2017).
[Crossref]

Wei, Y.

Wen, J.

Whitesides, G. M.

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14, 231–238 (2013).
[Crossref]

Willner, A. E.

Y. Yue, L. Zhang, H. Huang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-nitride waveguide with ultralow dispersion over an octave-spanning mid-infrared wavelength range,” IEEE Photon. J. 4, 126–132 (2012).
[Crossref]

Wong, C.

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

Wong, C. Y.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Wood, M. E.

R. A. Johnson, P. R. D. L. Houssaye, C. E. Chang, C. Pin-Fan, M. E. Wood, G. A. Garcia, I. Lagnado, and P. M. Asbeck, “Advanced thin-film silicon-on-sapphire technology: microwave circuit applications,” IEEE Trans. Electron. Devices 45, 1047–1054 (1998).
[Crossref]

Wray, P.

Xia, Y.

Xiong, B.

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011).
[Crossref]

G. Mashanovich, W. Headley, M. Milosevic, N. Owens, E. Teo, B. Xiong, P. Yang, M. Nedeljkovic, J. Anguita, and I. Marko, “Waveguides for mid-infrared group IV photonics,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 374–376.

Xu, D.-X.

Xu, J.-B.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

Xu, K.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

Xu, Q.

Xu, X.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39, 3070–3073 (2014).
[Crossref]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
[Crossref]

Xuefeng, L.

W. Zhaolu, L. Hongjun, H. Nan, S. Qibing, and L. Xuefeng, “Mid-infrared Raman amplification and wavelength conversion in dispersion engineered silicon-on-sapphire waveguides,” J. Opt. 16, 015206 (2014).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

Yang, J.

Yang, P.

G. Mashanovich, W. Headley, M. Milosevic, N. Owens, E. Teo, B. Xiong, P. Yang, M. Nedeljkovic, J. Anguita, and I. Marko, “Waveguides for mid-infrared group IV photonics,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 374–376.

Yang, Z.

Yildirim, D.

Y. Huang, E. Tien, S. Gao, S. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett. 99, 181122 (2011).
[Crossref]

Younis, U.

Yu, M.

A. G. Griffith, M. Yu, Y. Okawachi, J. Cardenas, A. Mohanty, A. L. Gaeta, and M. Lipson, “Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects,” Opt. Express 24, 13044–13050 (2016).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3, 854–860 (2016).
[Crossref]

J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. Lau, A. Dutt, A. L. Gaeta, and M. Lipson, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Opt. Lett. 40, 4138–4141 (2015).
[Crossref]

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

S. Miller, A. Griffith, M. Yu, A. L. Gaeta, and M. Lipson, “Low-loss air-clad suspended silicon platform for mid-infrared photonics,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper STu3Q.6.

Yu, Y.

Yue, Y.

Y. Yue, L. Zhang, H. Huang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-nitride waveguide with ultralow dispersion over an octave-spanning mid-infrared wavelength range,” IEEE Photon. J. 4, 126–132 (2012).
[Crossref]

Zhang, C.

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

Zhang, L.

P. Dong, T.-C. Hu, L. Zhang, M. Dinu, R. Kopf, A. Tate, L. Buhl, D. Neilson, X. Luo, and T.-Y. Liow, “1.9  μm hybrid silicon/III-V semiconductor laser,” Electron. Lett. 49, 664–666 (2013).
[Crossref]

Y. Yue, L. Zhang, H. Huang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-nitride waveguide with ultralow dispersion over an octave-spanning mid-infrared wavelength range,” IEEE Photon. J. 4, 126–132 (2012).
[Crossref]

Zhang, X.

Zhang, Z.

Zhaolu, W.

W. Zhaolu, L. Hongjun, H. Nan, S. Qibing, and L. Xuefeng, “Mid-infrared Raman amplification and wavelength conversion in dispersion engineered silicon-on-sapphire waveguides,” J. Opt. 16, 015206 (2014).
[Crossref]

Zhu, L.

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104, 141103 (2014).
[Crossref]

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, A. Nikola, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Zou, Y.

J. Huang, H. Han, A. Liu, H. Wang, X. Liu, Y. Zou, M.-H. Lu, and Y.-F. Chen, “Efficient second harmonic generation by mode phase matching in a silicon waveguide,” IEEE Photon. J. 9, 6100807 (2017).

Y. Zou, S. Chakravarty, C.-J. Chung, and R. T. Chen, “Miniature mid-infrared thermooptic switch with photonic crystal waveguide based silicon-on-sapphire Mach-Zehnder interferometers,” Proc. SPIE 9753, 97530Q (2016).
[Crossref]

Y. Zou, S. Chakravarty, P. Wray, and R. T. Chen, “Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection,” Sens. Actuators B 221, 1094–1103 (2015).
[Crossref]

Y. Zou, S. Chakravarty, P. Wray, and R. T. Chen, “Experimental demonstration of propagation characteristics of mid-infrared photonic crystal waveguides in silicon-on-sapphire,” Opt. Express 23, 6965–6975 (2015).
[Crossref]

Y. Zou, S. Chakravarty, and R. T. Chen, “Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 081109 (2015).
[Crossref]

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39, 3070–3073 (2014).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104, 141103 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy,” Opt. Lett. 38, 3799–3802 (2013).
[Crossref]

Y. Zou, S. Chakravarty, W.-C. Lai, C.-Y. Lin, and R. T. Chen, “Methods to array photonic crystal microcavities for high throughput high sensitivity biosensing on a silicon-chip based platform,” Lab Chip 12, 2309–2312 (2012).
[Crossref]

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron. 38, 170–176 (2012).
[Crossref]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37, 1208–1210 (2012).
[Crossref]

ACS Nano (1)

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

ACS Sens. (1)

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. N. Roelkens, “On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators,” ACS Sens. 1, 1301–1307 (2016).
[Crossref]

Anal. Chem. (3)

C. Charlton, M. Giovannini, J. Faist, and B. Mizaikoff, “Fabrication and characterization of molecular beam epitaxy grown thin-film GaAs waveguides for mid-infrared evanescent field chemical sensing,” Anal. Chem. 78, 4224–4227 (2006).
[Crossref]

M. Sieger, F. Balluff, X. Wang, S.-S. Kim, L. Leidner, G. Gauglitz, and B. Mizaikoff, “On-chip integrated mid-infrared GaAs/AlGaAs Mach-Zehnder interferometer,” Anal. Chem. 85, 3050–3052 (2013).
[Crossref]

X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium–telluride waveguides-a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
[Crossref]

Analyst (1)

X. Wang, S.-S. Kim, R. Roßbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst 137, 2322–2327 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (13)

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

B. Dekel and A. Katzir, “Silver halide planar waveguides and grating couplers for middle infrared integrated optics,” Appl. Phys. Lett. 97, 241106 (2010).
[Crossref]

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett. 102, 251121 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de) multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103, 151106 (2013).
[Crossref]

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Y. Zou, S. Chakravarty, and R. T. Chen, “Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 081109 (2015).
[Crossref]

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  mu m,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
[Crossref]

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104, 141103 (2014).
[Crossref]

Y. Huang, E. Tien, S. Gao, S. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett. 99, 181122 (2011).
[Crossref]

Biosens. Bioelectron. (1)

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron. 38, 170–176 (2012).
[Crossref]

Electron. Lett. (2)

P. Dong, T.-C. Hu, L. Zhang, M. Dinu, R. Kopf, A. Tate, L. Buhl, D. Neilson, X. Luo, and T.-Y. Liow, “1.9  μm hybrid silicon/III-V semiconductor laser,” Electron. Lett. 49, 664–666 (2013).
[Crossref]

R. Maulini, I. Dunayevskiy, A. Lyakh, A. Tsekoun, C. K. N. Patel, L. Diehl, C. Pflugl, and F. Capasso, “Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature,” Electron. Lett. 45, 107–108 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, and S. Stankovic, “Silicon photonic waveguides and devices for near-and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21, 407–418 (2015).
[Crossref]

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

R. Halir, A. Ortega-Monux, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Recent advances in silicon waveguide devices using sub-wavelength gratings,” IEEE J. Sel. Top. Quantum Electron. 20, 279–291 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

IEEE Micro (1)

C. M. Chang and O. Solgaard, “Monolithic silicon waveguides in standard silicon,” IEEE Micro 33, 32–40 (2013).
[Crossref]

IEEE Photon. J. (8)

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

Y. Yue, L. Zhang, H. Huang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-nitride waveguide with ultralow dispersion over an octave-spanning mid-infrared wavelength range,” IEEE Photon. J. 4, 126–132 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

J. Schmid, P. Cheben, P. Bock, R. Halir, J. Lapointe, S. Janz, A. Dela, A. Densmore, J.-M. Fedeli, and T. Hall, “Refractive index engineering with subwavelength gratings in silicon microphotonic waveguides,” IEEE Photon. J. 3, 597–607 (2011).
[Crossref]

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

J. Huang, H. Han, A. Liu, H. Wang, X. Liu, Y. Zou, M.-H. Lu, and Y.-F. Chen, “Efficient second harmonic generation by mode phase matching in a silicon waveguide,” IEEE Photon. J. 9, 6100807 (2017).

IEEE Photon. Technol. Lett. (5)

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

J. Soler Penades, A. Z. Khokhar, M. Nedeljkovic, and G. Z. Mashanovich, “Low loss mid-infrared SOI slot waveguides,” IEEE Photon. Technol. Lett. 27, 1197–1199 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28, 528–531 (2016).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

IEEE Trans. Electron. Devices (1)

R. A. Johnson, P. R. D. L. Houssaye, C. E. Chang, C. Pin-Fan, M. E. Wood, G. A. Garcia, I. Lagnado, and P. M. Asbeck, “Advanced thin-film silicon-on-sapphire technology: microwave circuit applications,” IEEE Trans. Electron. Devices 45, 1047–1054 (1998).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

W. Zhaolu, L. Hongjun, H. Nan, S. Qibing, and L. Xuefeng, “Mid-infrared Raman amplification and wavelength conversion in dispersion engineered silicon-on-sapphire waveguides,” J. Opt. 16, 015206 (2014).
[Crossref]

J. Opt. A (1)

A. S. Richard, J. E. Stephen, and R. B. Walter, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

J. Opt. Pure Appl. Opt. (1)

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” J. Opt. Pure Appl. Opt. 2, 683–700 (1993).
[Crossref]

Lab Chip (2)

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13, 2161–2166 (2013).
[Crossref]

Y. Zou, S. Chakravarty, W.-C. Lai, C.-Y. Lin, and R. T. Chen, “Methods to array photonic crystal microcavities for high throughput high sensitivity biosensing on a silicon-chip based platform,” Lab Chip 12, 2309–2312 (2012).
[Crossref]

Laser Photon. Rev. (1)

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
[Crossref]

Nano Lett. (1)

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14, 231–238 (2013).
[Crossref]

Nanophotonics (1)

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
[Crossref]

Nat. Commun. (1)

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Nat. Mater. (1)

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref]

Nat. Photonics (8)

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6, 667–671 (2012).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, A. Nikola, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

E. Timurdogan, C. V. Poulton, M. Byrd, and M. Watts, “Electric field-induced second-order nonlinear optical effects in silicon waveguides,” Nat. Photonics 11, 200–206 (2017).
[Crossref]

Nature (2)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Opt. Express (31)

M. S. Rouifed, C. G. Littlejohns, G. X. Tina, H. Qiu, J. Soler Penades, M. Nedeljkovic, Z. Zhang, C. Liu, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and H. Wang, “Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55  μm and 2  μm,” Opt. Express 25, 10893–10900 (2017).
[Crossref]

J. Chiles and S. Fathpour, “Single-mode and single-polarization photonics with anchored-membrane waveguides,” Opt. Express 24, 19337–19343 (2016).
[Crossref]

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3  μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
[Crossref]

J. Soler Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24, 22908–22916 (2016).
[Crossref]

J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Opt. Express 22, 15335–15345 (2014).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. Soler Penades, V. M. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22, 23990–24003 (2014).
[Crossref]

M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E. Ryckeboer, D. Sanchez, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, M. K. Smit, and G. Roelkens, “Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring,” Opt. Express 22, 27300–27308 (2014).
[Crossref]

C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, and M. G. Allen, “Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators,” Opt. Express 23, 5491–5499 (2015).
[Crossref]

Y. Zou, S. Chakravarty, P. Wray, and R. T. Chen, “Experimental demonstration of propagation characteristics of mid-infrared photonic crystal waveguides in silicon-on-sapphire,” Opt. Express 23, 6965–6975 (2015).
[Crossref]

N. Singh, D. D. Hudson, and B. J. Eggleton, “Silicon-on-sapphire pillar waveguides for mid-IR supercontinuum generation,” Opt. Express 23, 17345–17354 (2015).
[Crossref]

R. Wang, S. Sprengel, M. Muneeb, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “2  μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits,” Opt. Express 23, 26834–26841 (2015).
[Crossref]

J. Kang, M. Takenaka, and S. Takagi, “Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits,” Opt. Express 24, 11855–11864 (2016).
[Crossref]

U. Younis, S. K. Vanga, A. E.-J. Lim, P. G.-Q. Lo, A. A. Bettiol, and K.-W. Ang, “Germanium-on-SOI waveguides for mid-infrared wavelengths,” Opt. Express 24, 11987–11993 (2016).
[Crossref]

A. G. Griffith, M. Yu, Y. Okawachi, J. Cardenas, A. Mohanty, A. L. Gaeta, and M. Lipson, “Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects,” Opt. Express 24, 13044–13050 (2016).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, and J. Van Campenhout, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

C.-M. Chang and O. Solgaard, “Fano resonances in integrated silicon Bragg reflectors for sensing applications,” Opt. Express 21, 27209–27218 (2013).
[Crossref]

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[Crossref]

M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22, 508–518 (2014).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15, 18176–18189 (2007).
[Crossref]

T. Baehr-Jones, A. Spott, R. Ilic, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express 18, 15523–15530 (2010).
[Crossref]

M. A. Van Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, and W. M. Green, “Demonstration of electrooptic modulation at 2165  nm using a silicon Mach-Zehnder interferometer,” Opt. Express 20, 28009–28016 (2012).
[Crossref]

C. Reimer, M. Nedeljkovic, D. J. Stothard, M. O. Esnault, C. Reardon, L. O’Faolain, M. Dunn, G. Z. Mashanovich, and T. F. Krauss, “Mid-infrared photonic crystal waveguides in silicon,” Opt. Express 20, 29361–29368 (2012).
[Crossref]

Z. Wang, H. Liu, N. Huang, Q. Sun, J. Wen, and X. Li, “Influence of three-photon absorption on mid-infrared cross-phase modulation in silicon-on-sapphire waveguides,” Opt. Express 21, 1840–1848 (2013).
[Crossref]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300  nm,” Opt. Express 21, 6101–6108 (2013).
[Crossref]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19, 5579–5586 (2011).
[Crossref]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011).
[Crossref]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, and S. G. Duvall, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011).
[Crossref]

Y. Wei, G. Li, Y. Hao, Y. Li, J. Yang, M. Wang, and X. Jiang, “Long-wave infrared 1 × 2 MMI based on air-gap beneath silicon rib waveguides,” Opt. Express 19, 15803–15809 (2011).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19, 20172–20181 (2011).
[Crossref]

R. Shankar, I. Bulu, R. Leijssen, and M. Lončar, “Study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities,” Opt. Express 19, 24828–24837 (2011).
[Crossref]

Opt. Lett. (20)

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37, 1208–1210 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Wong, K. Xu, C. K. Fung, Y. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

T. Lewi and A. Katzir, “Silver halide single-mode strip waveguides for the mid-infrared,” Opt. Lett. 37, 2733–2735 (2012).
[Crossref]

Y. C. Chang, V. Paeder, L. Hvozdara, J. M. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37, 2883–2885 (2012).
[Crossref]

X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
[Crossref]

O. Eyal, V. Scharf, S. Shalem, and A. Katzir, “Single-mode mid-infrared silver halide planar waveguides,” Opt. Lett. 21, 1147–1149 (1996).
[Crossref]

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier, “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31, 1860–1862 (2006).
[Crossref]

P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett. 38, 1031–1033 (2013).
[Crossref]

Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, and Q. Xu, “Suspended Si ring resonator for mid-IR application,” Opt. Lett. 38, 1122–1124. (2013).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
[Crossref]

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39, 1406–1409 (2014).
[Crossref]

Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39, 3070–3073 (2014).
[Crossref]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy,” Opt. Lett. 38, 3799–3802 (2013).
[Crossref]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
[Crossref]

J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. Lau, A. Dutt, A. L. Gaeta, and M. Lipson, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Opt. Lett. 40, 4138–4141 (2015).
[Crossref]

A. Spott, M. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
[Crossref]

J. Soler Penades, C. Alonso-Ramos, A. Khokhar, M. Nedeljkovic, L. Boodhoo, A. Ortega-Moñux, I. Molina-Fernández, P. Cheben, and G. Mashanovich, “Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared,” Opt. Lett. 39, 5661–5664 (2014).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
[Crossref]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
[Crossref]

N. Singh, A. Casas-Bedoya, D. D. Hudson, A. Read, E. Mägi, and B. J. Eggleton, “Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide,” Opt. Lett. 41, 5776–5779 (2016).
[Crossref]

Opt. Mater. Express (2)

Optica (5)

Photon. Res. (1)

Photonics (1)

A. Spott, J. Peters, M. Davenport, E. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. Kim, J. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

Proc. SPIE (1)

Y. Zou, S. Chakravarty, C.-J. Chung, and R. T. Chen, “Miniature mid-infrared thermooptic switch with photonic crystal waveguide based silicon-on-sapphire Mach-Zehnder interferometers,” Proc. SPIE 9753, 97530Q (2016).
[Crossref]

Sci. Technol. Adv. Mater. (1)

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Sens. Actuators B (2)

Y. Zou, S. Chakravarty, P. Wray, and R. T. Chen, “Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection,” Sens. Actuators B 221, 1094–1103 (2015).
[Crossref]

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B 236, 759–764 (2016).
[Crossref]

Other (13)

G. Mashanovich, W. Headley, M. Milosevic, N. Owens, E. Teo, B. Xiong, P. Yang, M. Nedeljkovic, J. Anguita, and I. Marko, “Waveguides for mid-infrared group IV photonics,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 374–376.

G. Imthurn, “The history of silicon-on-sapphire,” White Paper (Peregrine Semiconductor Corporation, 2007), https://pdfs.semanticscholar.org/3383/eb0297213d217c88723662c10d263b186a7b.pdf .

S. Miller, A. Griffith, M. Yu, A. L. Gaeta, and M. Lipson, “Low-loss air-clad suspended silicon platform for mid-infrared photonics,” in CLEO: Science and Innovations (Optical Society of America, 2016), paper STu3Q.6.

http://www.thorlabs.us/newgrouppage9.cfm?objectgroup_id=7062 .

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave-infrared,” in 16th European Conference on Integrated Optics (ECIO) (2012).

http://www.mksinst.com/product/ .

http://www.tdlas.com/index.shtml .

http://www.tigeroptics.com/technology.html#cavity-ring-down-spectroscopy .

http://www.gasera.fi/technology/photoacoustics/solid-phase-pas/ .

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in IEEE Photonics Conference (2013).

A. Bogris, A. Kapsalis, K. Hammani, M. A. Ettabib, M. Brun, P. Labeye, S. Nicoletti, P. Petropoulos, and D. Syvridis, “Silicon germanium platform enabling mid-infrared to near-infrared conversion for telecom and sensing applications,” in European Conference on Optical Communication (ECOC) (2014).

L. Carletti, P. Ma, B. Luther-Davies, D. D. Hudson, C. Monat, S. Madden, D. J. Moss, M. Brun, S. Ortiz, and S. Nicoletti, “Nonlinear optical properties of SiGe waveguides in the mid-infrared,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper SW3M.7.

L. Carletti, D. Allioux, P. Ma, Y. Yu, B. Luther-Davies, S. Madden, D. Hudson, M. Sinobad, D. Moss, and M. Brun, “Mid-infrared nonlinear optics in SiGe waveguides,” in Summer Topical Meeting Series (SUM) (IEEE, 2015), pp. 59–60.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1.
Fig. 1. Passive devices on an SOI platform for SWIR. (a) and (b) Top view and cross section of scanning electron microscope (SEM) images of the fabricated SWIR grating couplers [57]. (c) SOI single-mode waveguide propagation loss in the SWIR [57]. (d) Microscope image of an AWG [40]. (e) Transmission spectrum of a ring resonator (inset) in wavelength range between 2.28 and 2.32 μm [58]. Figures are reproduced from: (a)–(c) Ref. [57]; (d) Ref. [40]; (e) Ref. [58].
Fig. 2.
Fig. 2. Passive devices on SOI with a thicker silicon layer. SEM images of strip-waveguide-based (a) bending [61]; (b) MMI device [61]; (c) racetrack resonator [61]. (d) SEM cross section image of a waveguide implemented in the imecAP process where the thickness of the p-Si layer is 160 nm and the thickness of c-Si is 220 nm [39]. (e) SEM image of the mode converter between a strip waveguide and a slot waveguide [62]. Figures are reproduced from: (a)–(c) Ref. [61]; (d) Ref. [39]; (e) Ref. [62].
Fig. 3.
Fig. 3. Other passive devices on SOI operating beyond SWIR. Optical microscopy images of (a) FTIR spectrometer with conventional asymmetric MZIs [41]; (b) the Vernier architecture [67]; (c) fabricated MZI and the AMMIs’ inputs [68]; (d) output of IAMMI. The inset shows the cross section of the waveguides [68]. Figures are reproduced from: (a) Ref. [41]; (b) Ref. [67]; (c) and (d) Ref. [68].
Fig. 4.
Fig. 4. Active devices on an SOI platform. (a) Optical microscope image of the asymmetric MZI modulator. Inset: magnified detail of the 50/50 Y-junction, optical path imbalance, thermo-optic heaters, and RF signal inputs [37]. (b) Optical microscope images of a spiral-arm asymmetric MZI [36]. (c) Aluminum heater sits on top of one arm of the spiral MZI [36]. (d) SEM image of the longitudinal cross section of the gain region shown in Fig. 4(e) [69]. (e) Schematic of the III-V-on-silicon DFB laser [69]. (f) Cross section view of the photodetector shown in false color to distinguish the materials. Inset shows schematic of the silicon waveguide with dimensions labeled in nanometers, and with TE mode at 2 μm overlaid [38]. Figures are reproduced from: (a) Ref. [37]; (b) and (c) Ref. [36]; (d) and (e) Ref. [69]; (f) Ref. [38].
Fig. 5.
Fig. 5. Nonlinear response on an SOI platform. Output transmission spectrum with pump operating at 1946 nm when the input signal is (a) off, (b) on. Parametric amplification of the signal occurs, with simultaneous spectral translation across 62 THz, to an idler at 1620 nm [44]. (c) SEM image of cross section of the etchless silicon microresonator with integrated PIN diode, shown in false colors [43]. (d) MIR broadband frequency comb generation from 2.1 to 3.5 μm in the etchless silicon microresonator [43]. Figures are reproduced from: (a) and (b) Ref. [44]; (c) and (d) Ref. [43].
Fig. 6.
Fig. 6. Suspended-membrane-based devices on an SOI platform. (a)–(d) SEM images of suspended devices in SOI: (a) focusing SWG coupler; (b) SM waveguide cross section with etch depth 240  nm, residual slab thickness 100  nm, and width 1  μm; (c) straight and bending SM waveguide with bending radius 40  μm; (d) SM-based ring resonator with radius 10  μm [78]. (e) SM-based ring resonator for MIR photothermal spectroscopy. Heat generated through absorption of the MIR pump beam increases the temperature of the suspended ring resonator and then shifts the resonance wavelength induced by the thermo-optic effect. It leads to a change in the output power of the fixed-wavelength NIR probe light. The absorption spectrum of the analyte can be reconstructed through pumping wavelength scanning [81]. Figures are reproduced from: (a)–(d) Ref. [78]; (e) Ref. [81].
Fig. 7.
Fig. 7. Suspended-membrane-based PCs on an SOI platform. (a) Mode profile of Ez field component of L3 PC cavity with lattice constant a=1.34  μm, radius r=0.263a, silicon layer thickness t=0.5  μm, and shift of the two edge holes of the cavity s=0.15a, with resonance wavelength of 4.604 μm and Q factor of 24,000 [88]. (b) and (c) SEM images of fabricated device: (b) L3 PC cavity; (c) 45° tilt view of etched side wall of PC cavity hole [88]. (d) SEM image of an MIR W1 PCW [89]. (e) Measured transmission of a PCW with lattice period a=1060  nm. Three colored regions, both in the spectrum and the simulated band diagram (inset), correspond to guided region, above the light line, and bandgap, respectively [89]. Figures are reproduced from: (a)–(c) Ref. [88]; (d) and (e) Ref. [89].
Fig. 8.
Fig. 8. Suspended-subwavelength-grating-waveguide-based devices on an SOI platform. SEM images of (a) a waveguide with SWG cladding, focusing coupling grating, and taper [35]; (b) the 90° bend [97]; (c) the MMI [97]; (d) a cleaved facet of a 90° bend [97]. Figures are reproduced from: (a) Ref. [35]; (b)–(d) Ref. [97].
Fig. 9.
Fig. 9. Waveguides on an SOS platform. (a) False-colored SEM image of the cleaved facet of a waveguide. Here silicon is in green while sapphire is in blue [100]. (b) Cut-back loss measurements at λ=5.18  μm for TE polarization along with imaged mode profiles for each length [101]. (c) Ridge waveguide propagation loss for wavelengths ranging from 2.9 to 4.1 μm. Inset shows the cross section of 2400 nm by 480 nm [102]. (d) SEM image of a fabricated slot waveguide working at 3.43 μm wavelength [103]. (e) Close-up of strip waveguide to slot waveguide mode converter [103]. (f) 1×2 MMI-based power splitter [104]. Figures are reproduced from: (a) Ref. [100]; (b) Ref. [101]; (c) Ref. [102]; (d) and (e) Ref. [103]; (f) Ref. [104].
Fig. 10.
Fig. 10. Grating couplers on an SOS platform. (a) SEM image of shallow-etched uniform grating on the 10-μm-wide waveguide [107]. (b) Zoom-in image of (a) with 405-nm etch depth, 0.4 fill factor, and 1120-nm period [107]. (c) SEM image of full-etched nanoholes subwavelength grating on the 10-μm-wide waveguide [107]. (d) Zoom-in image of (c) with 600 nm etch depth, 253 nm nanoholes radius, and 1250 nm period [107]. (e) SEM image of full-etched subwavelength grating coupler [103]. (f) Magnified view of air holes in (e) with 152 nm width, 825 nm length while the periods in vertical and horizontal directions are 800 nm and 1500 nm, respectively [103]. (g) Optical image of a fully etched 1D grating coupler [106]. Figures are reproduced from: (a)–(d) Ref. [107]; (e) and (f) Ref. [103]; (g) Ref. [106].
Fig. 11.
Fig. 11. Ring resonators on an SOS platform. (a) Optical micrographs of the primary MIR ring resonator with Q3,000 around λ=5.45  μm wavelength (top) and a group of ring resonators with various dimensions (bottom) [105]. (b) Transmission (λ=4.354.6  μm) of a ring resonator after resist-reflow and post-fabrication treatment, showing loaded Qt151,000, and intrinsic Q0278,000 (inset) [106]. (c) Normalized temperature-dependent transmission of a quasi-TE ring resonator working at λ=2.75  μm at 25°C–65°C scanning (left) and 25°C–40°C scanning (right) [110]. Figures are reproduced from: (a) Ref. [105]; (b) Ref. [106]; (c) Ref. [110].
Fig. 12.
Fig. 12. PCs on an SOS platform. (a) Side view SEM image of the W1 PCW at the PCW-strip waveguide interface [112]. (b) 70° tilt view of the slot mode converter at the input (or output) of the slotted PCW [115]. (c) Top view SEM image of the HPCW [115]. (d) Top view of an L21 PC microcavity side coupled to W1.05 PCW [104]. Figures are reproduced from: (a) Ref. [112]; (b) and (c) Ref. [115]; (d) Ref. [104].
Fig. 13.
Fig. 13. TEM images of SOS wafer (a) before and (b) after annealing.
Fig. 14.
Fig. 14. Sensing application of devices on an SOS platform. Change in transmitted light intensity at λ=3.43  μm through silicon devices in SOS for TEP sensing: an 800-μm-long HPCW with lattice constant a=845  nm with introduction of (a) 10 ppm TEP and (b) 50 ppm TEP; an 800-μm-long silicon slot waveguide when introducing of (c) 25 ppm TEP and (d) 28 pph TEP; (e) a silicon strip waveguide in the presence and absence of 28 pph TEP [115]. (f) Comparison of theoretical and measured Q of a MIR ring resonator in zero and 5000 ppmv N2O [118]. (g) Zoom-in spectral of resonance variation in pure N2 and in 5000 ppmv N2O concentration. The upper/lower panel corresponding to resonator line overlaps/away from N2O absorption line [118]. (h) Normalized transmission of a 3-μm-wide multi-mode strip waveguide with 1.2-μm-thick SiO2 up cladding at different D2OH2O mixtures [119]. Figures are reproduced from: (a)–(e) Ref. [115]; (f) and (g) Ref. [118]; (h) Ref. [119].
Fig. 15.
Fig. 15. MIR PC TO switch. (a) SEM image of the whole MZI structure; the gold heater is adjacent to one PCW on one arm. Inset shows the zoom-in image of the heater and PCW [121]. (b) Normalized optical intensity from the TO switch against applied heating power at λ=3.43  μm [121]. Figures are reproduced from Ref. [121].
Fig. 16.
Fig. 16. MIR supercontinuum generation in an SOS waveguide. (a) Experimentally observed output spectra for different coupled input peak powers [102]. (b)–(e) Measured and calculated transmission as a function of coupled intensity at the input of a 5 μm by 0.5 μm SOS waveguide at (b) λ=3.5  μm, (c) λ=3.7  μm, (d) λ=3.9  μm, and (e) λ=4.1  μm [102]. Figures are reproduced from Ref. [102].
Fig. 17.
Fig. 17. Standard silicon wafer. (a) Fabrication scheme for producing suspended silicon rib waveguide in a standard silicon wafer [34]. (b) SEM image of a fabricated suspended silicon waveguide with dimensions of 2.4 μm wide and 1.07 μm above the membrane, which is 1 μm thick and 17 μm wide [34]. (c) SEM cross section of an MIR silicon T-guide, which only supports a single mode and a single polarization in the range from 1.2 to 8.1 μm [129]. (d) Measured transmission at different lengths for two different waveguide structures [129]. Figures are reproduced from: (a) and (b) Ref. [34]; (c) and (d) Ref. [129].
Fig. 18.
Fig. 18. Pedestal-type waveguides on a standard silicon wafer. (a) Fabrication procedure to make a pedestal-type waveguide [131]. (b) SEM images of fabricated pedestal MIR devices including waveguide, waveguide bending, and Y-splitter [131]. (c) Real-time trace of toluene using a pedestal-waveguide-based MIR sensor, showing output intensity drops when adding analytes and recovers during evaporation of analytes [132]. (d) Output intensity decreases as toluene ratios increase since the aromatic C-H stretch in toluene strongly absorbs the transmitting light at 3.3 μm wavelength [132]. (e) Absorbance of six different chemicals at 3.55 μm [132]. Figures are reproduced from: (a) and (b) Ref. [131]; (c) and (d) Ref. [132].
Fig. 19.
Fig. 19. Silicon-on-porous-silicon. (a) Cross section of a silicon waveguide on porous-silicon bottom cladding [136]. (b) Measured propagation loss for oxidized SiPSi waveguides in both NIR and MIR through the cut-back method [60]. Figures are reproduced from: (a) Ref. [136]; (b) Ref. [60].
Fig. 20.
Fig. 20. Silicon-on-nitride (SON). (a) Schematic of the SON fabrication process [135]. (b) SEM image of the facet of a fabricated silicon waveguide on silicon nitride [135]. (c) Microscope image of an integrated QCL on SONOI platform [137]. (d) Facet of an integrated QCL on SONOI platform [137]. (e) Schematic of an integrated DFB QCL on SONOI. An SONOI waveguide with surface DFB grating (left panel). A DFB QCL is heterogeneously integrated with an SONOI waveguide (middle panel). One taper of the fabricated DFB QCL is removed (right panel) [138]. Figures are reproduced from: (a) and (b) Ref. [135]; (c) and (d) Ref. [137]; (e) Ref. [138].
Fig. 21.
Fig. 21. Silicon-on-calcium-fluoride. (a)–(f) Schematic of the device fabrication process, showing a silicon membrane is transferred to a CaF2 substrate. (g) Image of a fabricated silicon device (light purple) on CaF2 (transparent). SEM images of (h) a silicon microring resonator on CaF2 and (i) a taper at the edge of the chip for light coupling. (j) Measured transmittance of a fabricated microring immersed in different concentration ratios of ethanol and toluene in a cyclohexane mixture. (k) Derived absorption coefficient (α) and refractive index change (Δn) of the mixture from the measured extinction ratio and resonance peak shift in (j). Calibration samples of ethanol, toluene, and blank solvent are plotted. (l) Calculated concentrations of ethanol and toluene from (k) using linear transformation showing good agreement with FTIR data. Figures are reproduced from Ref. [140].
Fig. 22.
Fig. 22. Silicon-on-lithium-niobate. (a) Fabrication process for a silicon-on-lithium-niobate chip and the electro-optic modulators on it. (b) SEM image of a fabricated modulator in a silicon-on-lithium-niobate substrate. The applied field will follow the direction shown in white lines. (c) Modulator response (blue) in the time domain. The red line represents the drive voltage divided by 20. The inset shows the modulator response in the frequency domain. Figures are reproduced from Ref. [141].

Tables (6)

Tables Icon

Table 1. Devices and Applications on an SOI Platform

Tables Icon

Table 2. Devices and Applications on SOI with Free-Standing Structure

Tables Icon

Table 3. Summary for Devices on SOS

Tables Icon

Table 4. Summary of Devices on a Standard Silicon Wafer

Tables Icon

Table 5. Summary for SON, SOCF, and SOLN

Tables Icon

Table 6. Comparison of MIR Silicon Platforms

Metrics