Abstract

Optical traps use focused laser beams to generate forces on targeted objects ranging in size from nanometers to micrometers. However, for their high coefficients of scattering and absorption, micrometer-sized metallic particles were deemed non-trappable in three dimensions using a single beam. This barrier is now removed. We demonstrate, both in theory and experiment, three-dimensional (3D) dynamic all-optical manipulations of micrometer-sized gold particles under high focusing conditions. The force of gravity is found to balance the positive axial optical force exerted on particles in an inverted optical tweezers system to form two trapping positions along the vertical direction. Both theoretical and experimental results confirm that stable 3D manipulations are achievable for these particles regardless of beam polarization and wavelength. The present work opens up new opportunities for a variety of in-depth research requiring metallic particles.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
FDTD approach to optical forces of tightly focused vector beams on metal particles

Jian-Qi Qin, Xi-Lin Wang, Ding Jia, Jing Chen, Ya-Xian Fan, Jianping Ding, and Hui-Tian Wang
Opt. Express 17(10) 8407-8416 (2009)

Manipulation of resonant metallic nanoparticle using 4Pi focusing system

Xiaoyan Wang, Guanghao Rui, Liping Gong, Bing Gu, and Yiping Cui
Opt. Express 24(21) 24143-24152 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [Crossref]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref]
  3. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
    [Crossref]
  4. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
    [Crossref]
  5. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
    [Crossref]
  6. A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
    [Crossref]
  7. J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force,” Phys. Rev. Lett. 118, 043601 (2017).
    [Crossref]
  8. Q. Zhan, “Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams,” J. Opt. A 5, 229–232 (2003).
    [Crossref]
  9. H. Lu, X. T. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5, 162 (2017).
    [Crossref]
  10. J. Liu and Z. Li, “Light-driven crystallization of polystyrene micro-spheres,” Photon. Res. 5, 201 (2017).
    [Crossref]
  11. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32, 1839–1841 (2007).
    [Crossref]
  12. Y. Zhang, J. Shen, Z. Xie, X. Dou, C. Min, T. Lei, J. Liu, S. Zhu, and X. Yuan, “Dynamic plasmonic nano-traps for single molecule surface enhanced Raman scattering,” Nanoscale, 9, 10694–10700 (2017).
    [Crossref]
  13. V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration,” J. Am. Chem. Soc. 126, 4943–4950 (2004).
    [Crossref]
  14. K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single‐crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater. 16, 387–394 (2006).
    [Crossref]
  15. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. Elsayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
    [Crossref]
  16. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
    [Crossref]
  17. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
    [Crossref]
  18. T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33, 122–124 (2008).
    [Crossref]
  19. L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37, 1694–1696 (2012).
    [Crossref]
  20. L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8, 1486–1491 (2008).
    [Crossref]
  21. F. Hajizadeh and S. N. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18, 551–559 (2010).
    [Crossref]
  22. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
    [Crossref]
  23. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
    [Crossref]
  24. K. Sasaki, M. Koshioka, H. Misawa, and N. Kitamura, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
    [Crossref]
  25. S. Sato, Y. Harada, and Y. Waseda, “Optical trapping of microscopic metal particles,” Opt. Lett. 19, 1807–1809 (1994).
    [Crossref]
  26. M. Gu and D. Morrish, “Three-dimensional trapping of Mie metallic particles by the use of obstructed laser beams,” J. Appl. Phys. 91, 1606–1612 (2002).
    [Crossref]
  27. P. Ke and M. Gu, “Characterization of trapping force on metallic Mie particles,” Appl. Opt. 38, 160–167 (1999).
    [Crossref]
  28. A. T. O’Neil and M. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Commun. 185, 139–143 (2000).
    [Crossref]
  29. M. Gu and P. Ke, “Depolarization of evanescent waves scattered by laser-trapped gold particles: effect of particle size,” J. Appl. Phys. 88, 5415–5420 (2000).
    [Crossref]
  30. Y. Zhang, W. Shi, Z. Shen, Z. Man, C. Min, J. Shen, S. Zhu, H. P. Urbach, and X. Yuan, “A plasmonic spanner for metal particle manipulation,” Sci. Rep. 5, 15446 (2015).
    [Crossref]
  31. J. Qin, X. L. Wang, D. Jia, J. Chen, Y. Fan, J. Ding, and H. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17, 8407–8416 (2009).
    [Crossref]
  32. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
    [Crossref]
  33. P. F. Liao and M. B. Stern, “Surface-enhanced Raman scattering on gold and aluminum particle arrays,” Opt. Lett. 7, 483–485 (1982).
    [Crossref]
  34. T. V. W. Janssens, A. Carlsson, A. Puig-Molina, and B. S. Clausen, “Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalysts,” J. Catal. 240, 108–113 (2006).
    [Crossref]

2017 (5)

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
[Crossref]

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force,” Phys. Rev. Lett. 118, 043601 (2017).
[Crossref]

Y. Zhang, J. Shen, Z. Xie, X. Dou, C. Min, T. Lei, J. Liu, S. Zhu, and X. Yuan, “Dynamic plasmonic nano-traps for single molecule surface enhanced Raman scattering,” Nanoscale, 9, 10694–10700 (2017).
[Crossref]

H. Lu, X. T. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5, 162 (2017).
[Crossref]

J. Liu and Z. Li, “Light-driven crystallization of polystyrene micro-spheres,” Photon. Res. 5, 201 (2017).
[Crossref]

2015 (1)

Y. Zhang, W. Shi, Z. Shen, Z. Man, C. Min, J. Shen, S. Zhu, H. P. Urbach, and X. Yuan, “A plasmonic spanner for metal particle manipulation,” Sci. Rep. 5, 15446 (2015).
[Crossref]

2013 (1)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

2012 (1)

2010 (1)

2009 (1)

2008 (4)

T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33, 122–124 (2008).
[Crossref]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. Elsayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8, 1486–1491 (2008).
[Crossref]

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref]

2007 (1)

2006 (2)

T. V. W. Janssens, A. Carlsson, A. Puig-Molina, and B. S. Clausen, “Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalysts,” J. Catal. 240, 108–113 (2006).
[Crossref]

K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single‐crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater. 16, 387–394 (2006).
[Crossref]

2005 (1)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

2004 (2)

V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration,” J. Am. Chem. Soc. 126, 4943–4950 (2004).
[Crossref]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
[Crossref]

2003 (2)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Q. Zhan, “Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams,” J. Opt. A 5, 229–232 (2003).
[Crossref]

2002 (1)

M. Gu and D. Morrish, “Three-dimensional trapping of Mie metallic particles by the use of obstructed laser beams,” J. Appl. Phys. 91, 1606–1612 (2002).
[Crossref]

2000 (2)

A. T. O’Neil and M. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Commun. 185, 139–143 (2000).
[Crossref]

M. Gu and P. Ke, “Depolarization of evanescent waves scattered by laser-trapped gold particles: effect of particle size,” J. Appl. Phys. 88, 5415–5420 (2000).
[Crossref]

1999 (1)

1997 (1)

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

1994 (2)

1992 (1)

K. Sasaki, M. Koshioka, H. Misawa, and N. Kitamura, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[Crossref]

1986 (2)

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[Crossref]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref]

1982 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Aabo, T.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8, 1486–1491 (2008).
[Crossref]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[Crossref]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Bendix, P. M.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8, 1486–1491 (2008).
[Crossref]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Bjorkholm, J. E.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[Crossref]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref]

Block, S. M.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
[Crossref]

Bogdanov, A. A.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
[Crossref]

Bosanac, L.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8, 1486–1491 (2008).
[Crossref]

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref]

Cable, A.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[Crossref]

Carlsson, A.

T. V. W. Janssens, A. Carlsson, A. Puig-Molina, and B. S. Clausen, “Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalysts,” J. Catal. 240, 108–113 (2006).
[Crossref]

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref]

Chen, J.

Chu, S.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[Crossref]

Clausen, B. S.

T. V. W. Janssens, A. Carlsson, A. Puig-Molina, and B. S. Clausen, “Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalysts,” J. Catal. 240, 108–113 (2006).
[Crossref]

Ding, J.

Dou, X.

Y. Zhang, J. Shen, Z. Xie, X. Dou, C. Min, T. Lei, J. Liu, S. Zhu, and X. Yuan, “Dynamic plasmonic nano-traps for single molecule surface enhanced Raman scattering,” Nanoscale, 9, 10694–10700 (2017).
[Crossref]

Du, L.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Dziedzic, J. M.

Elsayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. Elsayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. Elsayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

Fan, Y.

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single‐crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater. 16, 387–394 (2006).
[Crossref]

Feng, B.

Gan, X. T.

Gelles, J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Ginzburg, P.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
[Crossref]

Gu, M.

M. Gu and D. Morrish, “Three-dimensional trapping of Mie metallic particles by the use of obstructed laser beams,” J. Appl. Phys. 91, 1606–1612 (2002).
[Crossref]

M. Gu and P. Ke, “Depolarization of evanescent waves scattered by laser-trapped gold particles: effect of particle size,” J. Appl. Phys. 88, 5415–5420 (2000).
[Crossref]

P. Ke and M. Gu, “Characterization of trapping force on metallic Mie particles,” Appl. Opt. 38, 160–167 (1999).
[Crossref]

Guo, H.

Hajizadeh, F.

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Harada, Y.

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Heckenberg, N.

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Hu, J.

K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single‐crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater. 16, 387–394 (2006).
[Crossref]

Huang, L.

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. Elsayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

Ivinskaya, A.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
[Crossref]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. Elsayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

Janssens, T. V. W.

T. V. W. Janssens, A. Carlsson, A. Puig-Molina, and B. S. Clausen, “Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalysts,” J. Catal. 240, 108–113 (2006).
[Crossref]

Jia, D.

Kamat, P. V.

V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration,” J. Am. Chem. Soc. 126, 4943–4950 (2004).
[Crossref]

Kawauchi, H.

Ke, P.

M. Gu and P. Ke, “Depolarization of evanescent waves scattered by laser-trapped gold particles: effect of particle size,” J. Appl. Phys. 88, 5415–5420 (2000).
[Crossref]

P. Ke and M. Gu, “Characterization of trapping force on metallic Mie particles,” Appl. Opt. 38, 160–167 (1999).
[Crossref]

Kitamura, N.

K. Sasaki, M. Koshioka, H. Misawa, and N. Kitamura, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[Crossref]

Koshioka, M.

K. Sasaki, M. Koshioka, H. Misawa, and N. Kitamura, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[Crossref]

Kozawa, Y.

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Landick, R.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Lee, S. T.

K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single‐crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater. 16, 387–394 (2006).
[Crossref]

Lei, T.

Y. Zhang, J. Shen, Z. Xie, X. Dou, C. Min, T. Lei, J. Liu, S. Zhu, and X. Yuan, “Dynamic plasmonic nano-traps for single molecule surface enhanced Raman scattering,” Nanoscale, 9, 10694–10700 (2017).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Li, J.

Li, Q.

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force,” Phys. Rev. Lett. 118, 043601 (2017).
[Crossref]

Li, Z.

Liao, P. F.

Ling, L.

Liu, J.

Y. Zhang, J. Shen, Z. Xie, X. Dou, C. Min, T. Lei, J. Liu, S. Zhu, and X. Yuan, “Dynamic plasmonic nano-traps for single molecule surface enhanced Raman scattering,” Nanoscale, 9, 10694–10700 (2017).
[Crossref]

J. Liu and Z. Li, “Light-driven crystallization of polystyrene micro-spheres,” Photon. Res. 5, 201 (2017).
[Crossref]

Lu, H.

Lu, J.

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force,” Phys. Rev. Lett. 118, 043601 (2017).
[Crossref]

Luo, S.

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force,” Phys. Rev. Lett. 118, 043601 (2017).
[Crossref]

Man, Z.

Y. Zhang, W. Shi, Z. Shen, Z. Man, C. Min, J. Shen, S. Zhu, H. P. Urbach, and X. Yuan, “A plasmonic spanner for metal particle manipulation,” Sci. Rep. 5, 15446 (2015).
[Crossref]

Mao, D.

Min, C.

Y. Zhang, J. Shen, Z. Xie, X. Dou, C. Min, T. Lei, J. Liu, S. Zhu, and X. Yuan, “Dynamic plasmonic nano-traps for single molecule surface enhanced Raman scattering,” Nanoscale, 9, 10694–10700 (2017).
[Crossref]

Y. Zhang, W. Shi, Z. Shen, Z. Man, C. Min, J. Shen, S. Zhu, H. P. Urbach, and X. Yuan, “A plasmonic spanner for metal particle manipulation,” Sci. Rep. 5, 15446 (2015).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Misawa, H.

K. Sasaki, M. Koshioka, H. Misawa, and N. Kitamura, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[Crossref]

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref]

Morrish, D.

M. Gu and D. Morrish, “Three-dimensional trapping of Mie metallic particles by the use of obstructed laser beams,” J. Appl. Phys. 91, 1606–1612 (2002).
[Crossref]

Nieminen, T.

O’Neil, A. T.

A. T. O’Neil and M. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Commun. 185, 139–143 (2000).
[Crossref]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Oddershede, L. B.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8, 1486–1491 (2008).
[Crossref]

Padgett, M.

A. T. O’Neil and M. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Commun. 185, 139–143 (2000).
[Crossref]

Peng, K.

K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single‐crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater. 16, 387–394 (2006).
[Crossref]

Petrov, M. I.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
[Crossref]

Puig-Molina, A.

T. V. W. Janssens, A. Carlsson, A. Puig-Molina, and B. S. Clausen, “Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalysts,” J. Catal. 240, 108–113 (2006).
[Crossref]

Qin, J.

Qiu, M.

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force,” Phys. Rev. Lett. 118, 043601 (2017).
[Crossref]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Reihani, S. N.

Rubinsztein-Dunlop, H.

Sasaki, K.

K. Sasaki, M. Koshioka, H. Misawa, and N. Kitamura, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[Crossref]

Sato, S.

Shalin, A. S.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
[Crossref]

Shen, J.

Y. Zhang, J. Shen, Z. Xie, X. Dou, C. Min, T. Lei, J. Liu, S. Zhu, and X. Yuan, “Dynamic plasmonic nano-traps for single molecule surface enhanced Raman scattering,” Nanoscale, 9, 10694–10700 (2017).
[Crossref]

Y. Zhang, W. Shi, Z. Shen, Z. Man, C. Min, J. Shen, S. Zhu, H. P. Urbach, and X. Yuan, “A plasmonic spanner for metal particle manipulation,” Sci. Rep. 5, 15446 (2015).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Shen, Z.

Y. Zhang, W. Shi, Z. Shen, Z. Man, C. Min, J. Shen, S. Zhu, H. P. Urbach, and X. Yuan, “A plasmonic spanner for metal particle manipulation,” Sci. Rep. 5, 15446 (2015).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Shi, W.

Y. Zhang, W. Shi, Z. Shen, Z. Man, C. Min, J. Shen, S. Zhu, H. P. Urbach, and X. Yuan, “A plasmonic spanner for metal particle manipulation,” Sci. Rep. 5, 15446 (2015).
[Crossref]

Shishkin, I.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
[Crossref]

Smith, S. B.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref]

Stern, M. B.

Subramanian, V.

V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration,” J. Am. Chem. Soc. 126, 4943–4950 (2004).
[Crossref]

Svoboda, K.

Urbach, H. P.

Y. Zhang, W. Shi, Z. Shen, Z. Man, C. Min, J. Shen, S. Zhu, H. P. Urbach, and X. Yuan, “A plasmonic spanner for metal particle manipulation,” Sci. Rep. 5, 15446 (2015).
[Crossref]

Wang, H.

Wang, M. D.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Wang, X. L.

Waseda, Y.

Wolf, E. E.

V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration,” J. Am. Chem. Soc. 126, 4943–4950 (2004).
[Crossref]

Wu, Y.

K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single‐crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater. 16, 387–394 (2006).
[Crossref]

Xie, Z.

Y. Zhang, J. Shen, Z. Xie, X. Dou, C. Min, T. Lei, J. Liu, S. Zhu, and X. Yuan, “Dynamic plasmonic nano-traps for single molecule surface enhanced Raman scattering,” Nanoscale, 9, 10694–10700 (2017).
[Crossref]

Xu, Y.

K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single‐crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater. 16, 387–394 (2006).
[Crossref]

Yan, Y.

K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single‐crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater. 16, 387–394 (2006).
[Crossref]

Yang, H.

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force,” Phys. Rev. Lett. 118, 043601 (2017).
[Crossref]

Yang, Y.

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force,” Phys. Rev. Lett. 118, 043601 (2017).
[Crossref]

Yin, H.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Yonezawa, K.

Yuan, G.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Yuan, X.

Y. Zhang, J. Shen, Z. Xie, X. Dou, C. Min, T. Lei, J. Liu, S. Zhu, and X. Yuan, “Dynamic plasmonic nano-traps for single molecule surface enhanced Raman scattering,” Nanoscale, 9, 10694–10700 (2017).
[Crossref]

Y. Zhang, W. Shi, Z. Shen, Z. Man, C. Min, J. Shen, S. Zhu, H. P. Urbach, and X. Yuan, “A plasmonic spanner for metal particle manipulation,” Sci. Rep. 5, 15446 (2015).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Zhan, Q.

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
[Crossref]

Q. Zhan, “Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams,” J. Opt. A 5, 229–232 (2003).
[Crossref]

Zhang, Y.

Y. Zhang, J. Shen, Z. Xie, X. Dou, C. Min, T. Lei, J. Liu, S. Zhu, and X. Yuan, “Dynamic plasmonic nano-traps for single molecule surface enhanced Raman scattering,” Nanoscale, 9, 10694–10700 (2017).
[Crossref]

Y. Zhang, W. Shi, Z. Shen, Z. Man, C. Min, J. Shen, S. Zhu, H. P. Urbach, and X. Yuan, “A plasmonic spanner for metal particle manipulation,” Sci. Rep. 5, 15446 (2015).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Zhao, J.

Zhou, L.

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force,” Phys. Rev. Lett. 118, 043601 (2017).
[Crossref]

Zhu, J.

K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single‐crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater. 16, 387–394 (2006).
[Crossref]

Zhu, S.

Y. Zhang, J. Shen, Z. Xie, X. Dou, C. Min, T. Lei, J. Liu, S. Zhu, and X. Yuan, “Dynamic plasmonic nano-traps for single molecule surface enhanced Raman scattering,” Nanoscale, 9, 10694–10700 (2017).
[Crossref]

Y. Zhang, W. Shi, Z. Shen, Z. Man, C. Min, J. Shen, S. Zhu, H. P. Urbach, and X. Yuan, “A plasmonic spanner for metal particle manipulation,” Sci. Rep. 5, 15446 (2015).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Acc. Chem. Res. (1)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. Elsayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

Adv. Funct. Mater. (1)

K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single‐crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater. 16, 387–394 (2006).
[Crossref]

Annu. Rev. Biochem. (1)

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Sasaki, M. Koshioka, H. Misawa, and N. Kitamura, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[Crossref]

Biophys. J. (1)

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

J. Am. Chem. Soc. (1)

V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration,” J. Am. Chem. Soc. 126, 4943–4950 (2004).
[Crossref]

J. Appl. Phys. (2)

M. Gu and P. Ke, “Depolarization of evanescent waves scattered by laser-trapped gold particles: effect of particle size,” J. Appl. Phys. 88, 5415–5420 (2000).
[Crossref]

M. Gu and D. Morrish, “Three-dimensional trapping of Mie metallic particles by the use of obstructed laser beams,” J. Appl. Phys. 91, 1606–1612 (2002).
[Crossref]

J. Catal. (1)

T. V. W. Janssens, A. Carlsson, A. Puig-Molina, and B. S. Clausen, “Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalysts,” J. Catal. 240, 108–113 (2006).
[Crossref]

J. Opt. A (1)

Q. Zhan, “Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams,” J. Opt. A 5, 229–232 (2003).
[Crossref]

Light Sci. Appl. (1)

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
[Crossref]

Nano Lett. (2)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8, 1486–1491 (2008).
[Crossref]

Nanoscale (1)

Y. Zhang, J. Shen, Z. Xie, X. Dou, C. Min, T. Lei, J. Liu, S. Zhu, and X. Yuan, “Dynamic plasmonic nano-traps for single molecule surface enhanced Raman scattering,” Nanoscale, 9, 10694–10700 (2017).
[Crossref]

Nat. Commun. (1)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Opt. Commun. (2)

A. T. O’Neil and M. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Commun. 185, 139–143 (2000).
[Crossref]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

Photon. Res. (2)

Phys. Rev. Lett. (3)

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[Crossref]

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force,” Phys. Rev. Lett. 118, 043601 (2017).
[Crossref]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Sci. Rep. (1)

Y. Zhang, W. Shi, Z. Shen, Z. Man, C. Min, J. Shen, S. Zhu, H. P. Urbach, and X. Yuan, “A plasmonic spanner for metal particle manipulation,” Sci. Rep. 5, 15446 (2015).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1       supplementary video 1
» Visualization 2       supplementary video 2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematics of the experimental setup for the all-optical metallic-particle trap. (a) Particles may be trapped at two positions located in front of and behind the focus plane. (b) Detailed experimental setup of the entire system. Gold particle diameters vary from 1.0 to 5.0 μm. L, lens.
Fig. 2.
Fig. 2. Forces exerted on gold particles. (a) Axial forces acting on particles of different radii at different points on the optical axis. The focus plane is at z=0. (b), (c) Transverse components of the optical force along the x and y axes, respectively, for various planes along the z-axial direction. Balance (F=0) is achieved at the crossing point of a curve with the abscissa. The gold particle diameter is 2.5 μm in (b) and (c); the 532 nm laser beam is x-directional polarized with a trapping power of 20 mW, in accordance with experimental conditions.
Fig. 3.
Fig. 3. All-optical manipulation of Au particles of different diameters trapped using a linearly polarized 532 nm laser beam. Black crosses indicate the position of the focused beam; blue and yellow arrows indicate the positions of the reference particles for calibration. Particle diameters range between 1.0 and 5.0 μm: (a) 1.5  μm, (b) and (d) 2.5  μm, and (c) 3.5  μm. The scale bar (black line in lower far-right corner) has length 5.0 μm.
Fig. 4.
Fig. 4. Axial components of forces exerted on the gold particle (diameter of 2.5 μm) located at the optical axis with (a) linear, (b) radial, and (c) azimuthal polarizations. Beams of wavelengths 532, 1064, and 1550 nm were applied, each with a trapping power of 20 mW.
Fig. 5.
Fig. 5. Transverse components of force exerted on a gold particle (diameter of 2.5 μm) located at the trapping plane in front of the focus with different polarizations and wavelengths. The open symbols and dotted lines represent the forces acting on the particle located at the plane of z=1.8  μm, and the solid symbol and line are those on the plane of z=1.5  μm. Trapping power is 20 mW.
Fig. 6.
Fig. 6. Dynamic all-optical manipulation of Au particles using beams of different polarizations and wavelengths. (a) Radially polarized 532 nm laser, (b) azimuthally polarized 532 nm laser, (c) radially polarized 1064 nm laser, and (d) linearly polarized 1550 nm laser. A jump is observed in (c). Black crosses indicate the positions of the focused beam, blue and yellow arrows indicate positions of the reference particles for calibration. The Au particles in the experiments have diameter of 2.5  μm. The scale bar (black line in lower far-right corner) is of length 5 μm.

Metrics