Abstract

The high-temperature sensitivity of the silicon material index limits the applications of silicon-based micro-ring resonators in integrated photonics. To realize a low but broadband temperature-dependent-wavelength-shift microring resonator, designing a broadband athermal waveguide becomes a significant task. In this work, we propose a broadband athermal waveguide that shows a low effective thermo-optical coefficient of ±1×106/K from 1400 to 1700 nm. The proposed waveguide shows a low-loss performance and stable broadband athermal property when it is applied to ring resonators, and the bending loss of ring resonators with a radius of >30  μm is 0.02 dB/cm.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Athermal silicon optical add-drop multiplexers based on thermo-optic coefficient tuning of sol-gel material

Soha Namnabat, Kyung-Jo Kim, Adam Jones, Roland Himmelhuber, Christopher T. DeRose, Douglas C. Trotter, Andrew L. Starbuck, Andrew Pomerene, Anthony L. Lentine, and Robert A. Norwood
Opt. Express 25(18) 21471-21482 (2017)

Polycrystalline anatase titanium dioxide microring resonators with negative thermo-optic coefficient

Orad Reshef, Katia Shtyrkova, Michael G. Moebius, Sarah Griesse-Nascimento, Steven Spector, Christopher C. Evans, Erich Ippen, and Eric Mazur
J. Opt. Soc. Am. B 32(11) 2288-2293 (2015)

Athermal silicon ring resonators clad with titanium dioxide for 1.3µm wavelength operation

Shaoqi Feng, Kuanping Shang, Jock T. Bovington, Rui Wu, Binbin Guan, Kwang-Ting Cheng, John E. Bowers, and S. J. Ben Yoo
Opt. Express 23(20) 25653-25660 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  2. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
    [Crossref]
  3. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [Crossref]
  4. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
    [Crossref]
  5. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
    [Crossref]
  6. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-µm radius,” Opt. Express 16, 4309–4315 (2008).
    [Crossref]
  7. I. Chremmos, O. Schwelb, and N. Uzunoglu, Photonic Microresonator Research and Applications (Springer, 2010).
  8. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20, 27999–28008 (2012).
    [Crossref]
  9. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18, 3487–3493 (2010).
    [Crossref]
  10. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25  Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
    [Crossref]
  11. B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37, 2253–2255 (2012).
    [Crossref]
  12. V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18, 17631–17639 (2010).
    [Crossref]
  13. Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55 mum wavelength using a silica-based athermal waveguide,” Electron. Lett. 34, 367–369 (1998).
    [Crossref]
  14. J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, “Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer,” J. Lightwave Technol. 25, 2236–2243 (2007).
    [Crossref]
  15. W. Ye, J. Michel, and L. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20, 885–887 (2008).
    [Crossref]
  16. L. Zhou, K. Ken, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95, 1101–1109 (2009).
    [Crossref]
  17. P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Athermal performance in high-Q polymer-clad silicon microdisk resonators,” Opt. Lett. 35, 3462–3464 (2010).
    [Crossref]
  18. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).
    [Crossref]
  19. F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3, 780–783 (2016).
    [Crossref]
  20. J. T. Bovington, “Athermal laser designs on Si and heterogeneous III-V/Si3N4 integration,” Dissertations & Theses (Gradworks, 2014).
  21. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21, 26557–26563 (2013).
    [Crossref]
  22. F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal oxide semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
    [Crossref]
  23. F. Qiu, A. M. Spring, and S. Yokoyama, “Athermal and high-Q hybrid TiO2–Si3N4 ring resonator via an etching-free fabrication technique,” ACS Photon. 2, 405–409 (2015).
    [Crossref]
  24. S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958–13968 (2013).
    [Crossref]
  25. H. Hirota, M. Itoh, M. Oguma, and Y. Hibino, “Athermal arrayed-waveguide grating multi/demultiplexers composed of TiO2-SiO2 waveguides on Si,” IEEE Photon. Technol. Lett. 17, 375–377 (2005).
    [Crossref]
  26. T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Athermal and wavelength-trimmable photonic filters based on TiO2-cladded amorphous-SOI,” Opt. Express 23, 20075–20088 (2015).
    [Crossref]
  27. J. Bovington, S. Srinivasan, and J. E. Bowers, “Athermal laser design,” Opt. Express 22, 19357–19364 (2014).
    [Crossref]
  28. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances,” Opt. Lett. 38, 3878–3881 (2013).
    [Crossref]
  29. I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits,” IEEE Photon. J. 8, 2701009 (2016).
    [Crossref]
  30. G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550  K at the wavelength of 1523  nm,” Appl. Phys. Lett. 74, 3338–3340 (1999).
    [Crossref]
  31. A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98, 041102 (2011).
    [Crossref]

2016 (2)

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3, 780–783 (2016).
[Crossref]

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits,” IEEE Photon. J. 8, 2701009 (2016).
[Crossref]

2015 (2)

F. Qiu, A. M. Spring, and S. Yokoyama, “Athermal and high-Q hybrid TiO2–Si3N4 ring resonator via an etching-free fabrication technique,” ACS Photon. 2, 405–409 (2015).
[Crossref]

T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Athermal and wavelength-trimmable photonic filters based on TiO2-cladded amorphous-SOI,” Opt. Express 23, 20075–20088 (2015).
[Crossref]

2014 (1)

2013 (4)

2012 (2)

2011 (2)

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25  Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref]

A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98, 041102 (2011).
[Crossref]

2010 (5)

2009 (2)

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).
[Crossref]

L. Zhou, K. Ken, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95, 1101–1109 (2009).
[Crossref]

2008 (2)

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-µm radius,” Opt. Express 16, 4309–4315 (2008).
[Crossref]

W. Ye, J. Michel, and L. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20, 885–887 (2008).
[Crossref]

2007 (2)

2006 (1)

R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

2005 (1)

H. Hirota, M. Itoh, M. Oguma, and Y. Hibino, “Athermal arrayed-waveguide grating multi/demultiplexers composed of TiO2-SiO2 waveguides on Si,” IEEE Photon. Technol. Lett. 17, 375–377 (2005).
[Crossref]

1999 (1)

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550  K at the wavelength of 1523  nm,” Appl. Phys. Lett. 74, 3338–3340 (1999).
[Crossref]

1998 (1)

Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55 mum wavelength using a silica-based athermal waveguide,” Electron. Lett. 34, 367–369 (1998).
[Crossref]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Adibi, A.

Ahn, H.

Akella, V.

L. Zhou, K. Ken, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95, 1101–1109 (2009).
[Crossref]

Alipour, P.

Arbabi, A.

Baets, R.

Basak, J.

Beausoleil, R. G.

Bergman, K.

Bogaerts, W.

Bovington, J.

Bovington, J. T.

J. T. Bovington, “Athermal laser designs on Si and heterogeneous III-V/Si3N4 integration,” Dissertations & Theses (Gradworks, 2014).

Bowers, J. E.

Brongersma, M. L.

A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98, 041102 (2011).
[Crossref]

Cardenas, J.

Chan, J.

Chen, L.

Cheung, S. T. S.

Chremmos, I.

I. Chremmos, O. Schwelb, and N. Uzunoglu, Photonic Microresonator Research and Applications (Springer, 2010).

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550  K at the wavelength of 1523  nm,” Appl. Phys. Lett. 74, 3338–3340 (1999).
[Crossref]

Cunningham, J. E.

Dal Negro, L.

A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98, 041102 (2011).
[Crossref]

Dalacu, D.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits,” IEEE Photon. J. 8, 2701009 (2016).
[Crossref]

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550  K at the wavelength of 1523  nm,” Appl. Phys. Lett. 74, 3338–3340 (1999).
[Crossref]

Ding, D.

L. Zhou, K. Ken, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95, 1101–1109 (2009).
[Crossref]

Djordjevic, S. S.

Dumon, P.

Eftekhar, A. A.

Elshaari, A. W.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits,” IEEE Photon. J. 8, 2701009 (2016).
[Crossref]

Fattal, D.

Fognini, A.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits,” IEEE Photon. J. 8, 2701009 (2016).
[Crossref]

Fontaine, N. K.

L. Zhou, K. Ken, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95, 1101–1109 (2009).
[Crossref]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Goddard, L. L.

Guan, B.

Guha, B.

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Hibino, Y.

H. Hirota, M. Itoh, M. Oguma, and Y. Hibino, “Athermal arrayed-waveguide grating multi/demultiplexers composed of TiO2-SiO2 waveguides on Si,” IEEE Photon. Technol. Lett. 17, 375–377 (2005).
[Crossref]

Hirota, H.

H. Hirota, M. Itoh, M. Oguma, and Y. Hibino, “Athermal arrayed-waveguide grating multi/demultiplexers composed of TiO2-SiO2 waveguides on Si,” IEEE Photon. Technol. Lett. 17, 375–377 (2005).
[Crossref]

Hosseini, E. S.

Hryciw, A. C.

A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98, 041102 (2011).
[Crossref]

Hu, J.

Itoh, M.

H. Hirota, M. Itoh, M. Oguma, and Y. Hibino, “Athermal arrayed-waveguide grating multi/demultiplexers composed of TiO2-SiO2 waveguides on Si,” IEEE Photon. Technol. Lett. 17, 375–377 (2005).
[Crossref]

Izuhara, T.

Jian, X.

Jöns, K. D.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits,” IEEE Photon. J. 8, 2701009 (2016).
[Crossref]

Kekatpure, R. D.

A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98, 041102 (2011).
[Crossref]

Ken, K.

L. Zhou, K. Ken, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95, 1101–1109 (2009).
[Crossref]

Kim, D. J.

Kim, G.

Kimerling, L.

V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18, 17631–17639 (2010).
[Crossref]

W. Ye, J. Michel, and L. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20, 885–887 (2008).
[Crossref]

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
[Crossref]

Kirchain, R.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
[Crossref]

Kokubun, Y.

Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55 mum wavelength using a silica-based athermal waveguide,” Electron. Lett. 34, 367–369 (1998).
[Crossref]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Krishnamoorthy, A. V.

Kyotoku, B. B. C.

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Lee, J. M.

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Li, G.

Liao, L.

Lipka, T.

Lipson, M.

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Liu, H.-F.

Luo, Y.

Maeda, D.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3, 780–783 (2016).
[Crossref]

Matsuura, S.

Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55 mum wavelength using a silica-based athermal waveguide,” Electron. Lett. 34, 367–369 (1998).
[Crossref]

Michel, J.

Miura, H.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3, 780–783 (2016).
[Crossref]

Moldenhauer, L.

Momeni, B.

Morthier, G.

Müller, J.

Odoi, K.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3, 780–783 (2016).
[Crossref]

Oguma, M.

H. Hirota, M. Itoh, M. Oguma, and Y. Hibino, “Athermal arrayed-waveguide grating multi/demultiplexers composed of TiO2-SiO2 waveguides on Si,” IEEE Photon. Technol. Lett. 17, 375–377 (2005).
[Crossref]

Okamoto, K.

L. Zhou, K. Ken, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95, 1101–1109 (2009).
[Crossref]

Ozawa, M.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3, 780–783 (2016).
[Crossref]

Padmaraju, K.

Park, S. H.

Poole, P. J.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits,” IEEE Photon. J. 8, 2701009 (2016).
[Crossref]

Preston, K.

Qiu, F.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3, 780–783 (2016).
[Crossref]

F. Qiu, A. M. Spring, and S. Yokoyama, “Athermal and high-Q hybrid TiO2–Si3N4 ring resonator via an etching-free fabrication technique,” ACS Photon. 2, 405–409 (2015).
[Crossref]

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal oxide semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

Raghunathan, V.

Raj, K.

Reimer, M. E.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits,” IEEE Photon. J. 8, 2701009 (2016).
[Crossref]

Rendina, I.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550  K at the wavelength of 1523  nm,” Appl. Phys. Lett. 74, 3338–3340 (1999).
[Crossref]

Schwelb, O.

I. Chremmos, O. Schwelb, and N. Uzunoglu, Photonic Microresonator Research and Applications (Springer, 2010).

Scott, R. P.

L. Zhou, K. Ken, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95, 1101–1109 (2009).
[Crossref]

Shang, K.

Shubin, I.

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Soref, R. A.

R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

Spring, A. M.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3, 780–783 (2016).
[Crossref]

F. Qiu, A. M. Spring, and S. Yokoyama, “Athermal and high-Q hybrid TiO2–Si3N4 ring resonator via an etching-free fabrication technique,” ACS Photon. 2, 405–409 (2015).
[Crossref]

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal oxide semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

Srinivasan, S.

Teng, J.

Thacker, H.

Trieu, H. K.

Uzunoglu, N.

I. Chremmos, O. Schwelb, and N. Uzunoglu, Photonic Microresonator Research and Applications (Springer, 2010).

Xu, Q.

Yao, J.

Ye, W.

W. Ye, J. Michel, and L. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20, 885–887 (2008).
[Crossref]

Ye, W. N.

Yerci, S.

A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98, 041102 (2011).
[Crossref]

Yokoyama, S.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3, 780–783 (2016).
[Crossref]

F. Qiu, A. M. Spring, and S. Yokoyama, “Athermal and high-Q hybrid TiO2–Si3N4 ring resonator via an etching-free fabrication technique,” ACS Photon. 2, 405–409 (2015).
[Crossref]

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal oxide semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

Yoneda, S.

Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55 mum wavelength using a silica-based athermal waveguide,” Electron. Lett. 34, 367–369 (1998).
[Crossref]

Yoo, S. J. B.

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958–13968 (2013).
[Crossref]

L. Zhou, K. Ken, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95, 1101–1109 (2009).
[Crossref]

Yu, F.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal oxide semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

Zadeh, I. E.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits,” IEEE Photon. J. 8, 2701009 (2016).
[Crossref]

Zhang, H.

Zhao, M.

Zheng, X.

Zhou, L.

L. Zhou, K. Ken, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95, 1101–1109 (2009).
[Crossref]

Zwiller, V.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits,” IEEE Photon. J. 8, 2701009 (2016).
[Crossref]

ACS Photon. (2)

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3, 780–783 (2016).
[Crossref]

F. Qiu, A. M. Spring, and S. Yokoyama, “Athermal and high-Q hybrid TiO2–Si3N4 ring resonator via an etching-free fabrication technique,” ACS Photon. 2, 405–409 (2015).
[Crossref]

Appl. Phys. A (1)

L. Zhou, K. Ken, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys. A 95, 1101–1109 (2009).
[Crossref]

Appl. Phys. Lett. (3)

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal oxide semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550  K at the wavelength of 1523  nm,” Appl. Phys. Lett. 74, 3338–3340 (1999).
[Crossref]

A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, and M. L. Brongersma, “Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators,” Appl. Phys. Lett. 98, 041102 (2011).
[Crossref]

Electron. Lett. (1)

Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55 mum wavelength using a silica-based athermal waveguide,” Electron. Lett. 34, 367–369 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

IEEE Photon. J. (1)

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits,” IEEE Photon. J. 8, 2701009 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (2)

H. Hirota, M. Itoh, M. Oguma, and Y. Hibino, “Athermal arrayed-waveguide grating multi/demultiplexers composed of TiO2-SiO2 waveguides on Si,” IEEE Photon. Technol. Lett. 17, 375–377 (2005).
[Crossref]

W. Ye, J. Michel, and L. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20, 885–887 (2008).
[Crossref]

J. Lightwave Technol. (2)

J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, “Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer,” J. Lightwave Technol. 25, 2236–2243 (2007).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Nat. Photonics (3)

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Opt. Express (10)

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20, 27999–28008 (2012).
[Crossref]

B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18, 3487–3493 (2010).
[Crossref]

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25  Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-µm radius,” Opt. Express 16, 4309–4315 (2008).
[Crossref]

V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18, 17631–17639 (2010).
[Crossref]

T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Athermal and wavelength-trimmable photonic filters based on TiO2-cladded amorphous-SOI,” Opt. Express 23, 20075–20088 (2015).
[Crossref]

J. Bovington, S. Srinivasan, and J. E. Bowers, “Athermal laser design,” Opt. Express 22, 19357–19364 (2014).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).
[Crossref]

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21, 26557–26563 (2013).
[Crossref]

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958–13968 (2013).
[Crossref]

Opt. Lett. (3)

Other (2)

I. Chremmos, O. Schwelb, and N. Uzunoglu, Photonic Microresonator Research and Applications (Springer, 2010).

J. T. Bovington, “Athermal laser designs on Si and heterogeneous III-V/Si3N4 integration,” Dissertations & Theses (Gradworks, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Structure of the proposed broadband athermal waveguide, which consists of a Si core, a TiO2 lower cladding, and a Si3N4 upper cladding.
Fig. 2.
Fig. 2. Effective TOC of the proposed broadband athermal waveguide, with a small variation of ±1×106/K in the waveband of 1400 to 1700 nm. The insets show the norm of the electric field, |E|, of the waveguide mode at different wavelengths, 1450, 1550, 1650, and 1750 nm, respectively.
Fig. 3.
Fig. 3. Shifts of effective TOC curves when the structural parameters are changed, with (a) varied W of ±10%, (b) varied H1 of ±50%, (c) varied H2 of ±5%, and (d) varied H3 of ±1%.
Fig. 4.
Fig. 4. (a) Optical loss of the proposed waveguide. It shows a low-loss performance in the bandwidth with a broadband athermal property. (b) Effective-TOC curves of the micro-ring resonators with different ring radii. (c) Bending loss with different radii. This shows a low-loss performance and a stable athermal property of the proposed broadband athermal micro-ring resonators.
Fig. 5.
Fig. 5. TDWS of the microring resonator with a radius of 30 μm using the proposed waveguide. The TDWS is ±0.5  pm/K in the wavelength range of 1400 to 1700 nm, corresponding to a wavelength shift of <15  pm with a temperature change of 30°C.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dneffdT=Γc(λ)dncdT+Γcl(λ)dncldT+Γsub(λ)dnsubdT.
dneffdT=Γc(λ)dncdT+Γu(λ)dnudT+Γl(λ)dnldT+Γsub(λ)dnsubdT.
1λrdλrdT(λ)=1ngdneffdT(λ).

Metrics