Abstract

We report low-noise, high-performance single transverse mode 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on silicon (Si) using molecular beam epitaxy. The fabricated narrow-ridge-waveguide Fabry–Perot (FP) lasers have achieved a room-temperature continuous-wave (CW) threshold current of 12.5 mA and high CW temperature tolerance up to 90°C. An ultra-low relative intensity noise of less than 150  dB/Hz is measured in the 4–16 GHz range. Using this low-noise Si-based laser, we then demonstrate 25.6 Gb/s data transmission over 13.5 km SMF-28. These low-cost FP laser devices are promising candidates to provide cost-effective solutions for use in uncooled Si photonics transmitters in inter/hyper data centers and metropolitan data links.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge

Yue-Guang Zhou, Cheng Zhou, Chun-Fang Cao, Jiang-Bing Du, Qian Gong, and Cheng Wang
Opt. Express 25(23) 28817-28824 (2017)

Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities

Andrew Lee, Qi Jiang, Mingchu Tang, Alwyn Seeds, and Huiyun Liu
Opt. Express 20(20) 22181-22187 (2012)

1.3  μm submilliamp threshold quantum dot micro-lasers on Si

Yating Wan, Justin Norman, Qiang Li, M. J. Kennedy, Di Liang, Chong Zhang, Duanni Huang, Zeyu Zhang, Alan Y. Liu, Alfredo Torres, Daehwan Jung, Arthur C. Gossard, Evelyn L. Hu, Kei May Lau, and John E. Bowers
Optica 4(8) 940-944 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photon. Res. 3, B1–B9 (2015).
    [Crossref]
  2. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
    [Crossref]
  3. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  4. S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3  μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25, 4632–4639 (2017).
    [Crossref]
  5. D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
    [Crossref]
  6. Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 13  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
    [Crossref]
  7. Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
    [Crossref]
  8. N. Kryzhanovskaya, E. Moiseev, Y. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. Zadiranov, Y. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. Zhukov, “Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm,” Opt. Lett. 42, 3319–3322 (2017).
    [Crossref]
  9. S. Chen, M. Tang, Q. Jiang, J. Wu, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1, 638–642 (2014).
    [Crossref]
  10. M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
    [Crossref]
  11. Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
    [Crossref]
  12. J. Wu, S. Chen, A. Seeds, and H. Liu, “Quantum dot optoelectronic devices: lasers, photodetectors and solar cells,” J. Phys. D 48, 363001 (2015).
    [Crossref]
  13. E. Tournié, L. Cerutti, J.-B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41, 218–223 (2016).
    [Crossref]
  14. G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010).
  15. M. Krakowski, P. Resneau, M. Calligaro, H. Liu, and M. Hopkinson, “High power, very low noise, C.W. operation of 1.32  μm quantum-dot Fabry–Perot laser diodes,” in IEEE 20th International Semiconductor Laser Conference, Conference Digest (IEEE, 2006), pp. 39–40.
  16. A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, and D. Bimberg, “Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser,” Opt. Express 15, 5388–5393 (2007).
    [Crossref]
  17. A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43, 1430–1431 (2007).
    [Crossref]
  18. M. A. Tischler, T. Katsuyama, N. A. El-Masry, and S. M. Bedair, “Defect reduction in GaAs epitaxial layers using a GaAsP-InGaAs strained-layer superlattice,” Appl. Phys. Lett. 46, 294–296 (1985).
    [Crossref]
  19. A. Y. Liu, T. Komljenovic, M. L. Davenport, A. C. Gossard, and J. E. Bowers, “Reflection sensitivity of 1.3  μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 25, 9535–9543 (2017).
    [Crossref]
  20. Y.-G. Zhou, C. Zhou, C.-F. Cao, J.-B. Du, Q. Gong, and C. Wang, “Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge,” Opt. Express 25, 28817–28824 (2017).
    [Crossref]
  21. A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
    [Crossref]
  22. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
    [Crossref]
  23. M. Akiyama, Y. Kawarada, and K. Kaminishi, “Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD,” Jpn. J. Appl. Phys. 23, L843–L845 (1984).
    [Crossref]
  24. M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
    [Crossref]
  25. J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24, 6196–6202 (2016).
    [Crossref]
  26. “IEEE P802.3ba 40  Gb/s and 100  Gb/s Ethernet task force,” (2010).
  27. L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24  μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
    [Crossref]
  28. A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3  μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
    [Crossref]

2018 (1)

2017 (7)

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3  μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25, 4632–4639 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

N. Kryzhanovskaya, E. Moiseev, Y. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. Zadiranov, Y. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. Zhukov, “Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm,” Opt. Lett. 42, 3319–3322 (2017).
[Crossref]

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

A. Y. Liu, T. Komljenovic, M. L. Davenport, A. C. Gossard, and J. E. Bowers, “Reflection sensitivity of 1.3  μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 25, 9535–9543 (2017).
[Crossref]

Y.-G. Zhou, C. Zhou, C.-F. Cao, J.-B. Du, Q. Gong, and C. Wang, “Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge,” Opt. Express 25, 28817–28824 (2017).
[Crossref]

2016 (5)

E. Tournié, L. Cerutti, J.-B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41, 218–223 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 13  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24, 6196–6202 (2016).
[Crossref]

2015 (3)

J. Wu, S. Chen, A. Seeds, and H. Liu, “Quantum dot optoelectronic devices: lasers, photodetectors and solar cells,” J. Phys. D 48, 363001 (2015).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photon. Res. 3, B1–B9 (2015).
[Crossref]

A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
[Crossref]

2014 (2)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1, 638–642 (2014).
[Crossref]

2007 (2)

A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, and D. Bimberg, “Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser,” Opt. Express 15, 5388–5393 (2007).
[Crossref]

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43, 1430–1431 (2007).
[Crossref]

2006 (1)

2003 (1)

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3  μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

1999 (1)

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24  μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

1985 (1)

M. A. Tischler, T. Katsuyama, N. A. El-Masry, and S. M. Bedair, “Defect reduction in GaAs epitaxial layers using a GaAsP-InGaAs strained-layer superlattice,” Appl. Phys. Lett. 46, 294–296 (1985).
[Crossref]

1984 (1)

M. Akiyama, Y. Kawarada, and K. Kaminishi, “Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD,” Jpn. J. Appl. Phys. 23, L843–L845 (1984).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010).

Akiyama, M.

M. Akiyama, Y. Kawarada, and K. Kaminishi, “Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD,” Jpn. J. Appl. Phys. 23, L843–L845 (1984).
[Crossref]

Alferov, Z. I.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3  μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Baron, T.

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3  μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25, 4632–4639 (2017).
[Crossref]

Beanland, R.

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24, 6196–6202 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

Bedair, S. M.

M. A. Tischler, T. Katsuyama, N. A. El-Masry, and S. M. Bedair, “Defect reduction in GaAs epitaxial layers using a GaAsP-InGaAs strained-layer superlattice,” Appl. Phys. Lett. 46, 294–296 (1985).
[Crossref]

Benamara, M.

S. Chen, M. Tang, Q. Jiang, J. Wu, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1, 638–642 (2014).
[Crossref]

Bimberg, D.

A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, and D. Bimberg, “Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser,” Opt. Express 15, 5388–5393 (2007).
[Crossref]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3  μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Bornholdt, C.

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43, 1430–1431 (2007).
[Crossref]

Bowers, J.

A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
[Crossref]

Bowers, J. E.

Calligaro, M.

M. Krakowski, P. Resneau, M. Calligaro, H. Liu, and M. Hopkinson, “High power, very low noise, C.W. operation of 1.32  μm quantum-dot Fabry–Perot laser diodes,” in IEEE 20th International Semiconductor Laser Conference, Conference Digest (IEEE, 2006), pp. 39–40.

Cao, C.-F.

Capua, A.

Cerutti, L.

E. Tournié, L. Cerutti, J.-B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41, 218–223 (2016).
[Crossref]

Chen, S.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

N. Kryzhanovskaya, E. Moiseev, Y. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. Zadiranov, Y. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. Zhukov, “Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm,” Opt. Lett. 42, 3319–3322 (2017).
[Crossref]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3  μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25, 4632–4639 (2017).
[Crossref]

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

E. Tournié, L. Cerutti, J.-B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41, 218–223 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24, 6196–6202 (2016).
[Crossref]

J. Wu, S. Chen, A. Seeds, and H. Liu, “Quantum dot optoelectronic devices: lasers, photodetectors and solar cells,” J. Phys. D 48, 363001 (2015).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1, 638–642 (2014).
[Crossref]

Davenport, M. L.

Dorogan, V.

S. Chen, M. Tang, Q. Jiang, J. Wu, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1, 638–642 (2014).
[Crossref]

Du, J.-B.

Eisenstein, G.

Elliott, S.

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

El-Masry, N. A.

M. A. Tischler, T. Katsuyama, N. A. El-Masry, and S. M. Bedair, “Defect reduction in GaAs epitaxial layers using a GaAsP-InGaAs strained-layer superlattice,” Appl. Phys. Lett. 46, 294–296 (1985).
[Crossref]

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Fathpour, S.

Fuchs, B. A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24  μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

Gong, Q.

Gossard, A.

A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
[Crossref]

Gossard, A. C.

Grote, N.

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43, 1430–1431 (2007).
[Crossref]

Gubenko, A.

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43, 1430–1431 (2007).
[Crossref]

Guseva, Y.

Herrick, R.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
[Crossref]

Hopkinson, M.

M. Krakowski, P. Resneau, M. Calligaro, H. Liu, and M. Hopkinson, “High power, very low noise, C.W. operation of 1.32  μm quantum-dot Fabry–Perot laser diodes,” in IEEE 20th International Semiconductor Laser Conference, Conference Digest (IEEE, 2006), pp. 39–40.

Hu, E. L.

Huang, D.

Huo, S.

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

Jalali, B.

Jan, C.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24, 6196–6202 (2016).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1, 638–642 (2014).
[Crossref]

Jin, C.

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

Jung, D.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Jurczak, P.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

Kaminishi, K.

M. Akiyama, Y. Kawarada, and K. Kaminishi, “Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD,” Jpn. J. Appl. Phys. 23, L843–L845 (1984).
[Crossref]

Katsuyama, T.

M. A. Tischler, T. Katsuyama, N. A. El-Masry, and S. M. Bedair, “Defect reduction in GaAs epitaxial layers using a GaAsP-InGaAs strained-layer superlattice,” Appl. Phys. Lett. 46, 294–296 (1985).
[Crossref]

Kawarada, Y.

M. Akiyama, Y. Kawarada, and K. Kaminishi, “Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD,” Jpn. J. Appl. Phys. 23, L843–L845 (1984).
[Crossref]

Kennedy, K.

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

Kennedy, M. J.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Komljenovic, T.

Kovsh, A.

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43, 1430–1431 (2007).
[Crossref]

Kovsh, A. R.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3  μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Krakowski, M.

M. Krakowski, P. Resneau, M. Calligaro, H. Liu, and M. Hopkinson, “High power, very low noise, C.W. operation of 1.32  μm quantum-dot Fabry–Perot laser diodes,” in IEEE 20th International Semiconductor Laser Conference, Conference Digest (IEEE, 2006), pp. 39–40.

Krestnikov, I.

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43, 1430–1431 (2007).
[Crossref]

Kryzhanovskaya, N.

Kulagina, M.

Kumar, S.

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

Kuntz, M.

Laemmlin, M.

Lau, K. M.

Ledentsov, N. N.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3  μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Lester, L. F.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24  μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

Li, H.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24  μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

Li, Q.

Li, W.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liang, D.

Liao, M.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

N. Kryzhanovskaya, E. Moiseev, Y. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. Zadiranov, Y. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. Zhukov, “Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm,” Opt. Lett. 42, 3319–3322 (2017).
[Crossref]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3  μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25, 4632–4639 (2017).
[Crossref]

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

Lipovskii, A.

Liu, A.

A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
[Crossref]

Liu, A. W. K.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Liu, A. Y.

Liu, H.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3  μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25, 4632–4639 (2017).
[Crossref]

N. Kryzhanovskaya, E. Moiseev, Y. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. Zadiranov, Y. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. Zhukov, “Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm,” Opt. Lett. 42, 3319–3322 (2017).
[Crossref]

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

E. Tournié, L. Cerutti, J.-B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41, 218–223 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24, 6196–6202 (2016).
[Crossref]

J. Wu, S. Chen, A. Seeds, and H. Liu, “Quantum dot optoelectronic devices: lasers, photodetectors and solar cells,” J. Phys. D 48, 363001 (2015).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1, 638–642 (2014).
[Crossref]

M. Krakowski, P. Resneau, M. Calligaro, H. Liu, and M. Hopkinson, “High power, very low noise, C.W. operation of 1.32  μm quantum-dot Fabry–Perot laser diodes,” in IEEE 20th International Semiconductor Laser Conference, Conference Digest (IEEE, 2006), pp. 39–40.

Liu, L.

Liu, Z.

Livshits, D. A.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3  μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Livshtis, D.

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43, 1430–1431 (2007).
[Crossref]

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Maleev, N. A.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3  μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Malloy, K. J.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24  μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

Martin, M.

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3  μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25, 4632–4639 (2017).
[Crossref]

Maximov, M.

Maximov, M. V.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3  μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Mazur, Y.

S. Chen, M. Tang, Q. Jiang, J. Wu, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1, 638–642 (2014).
[Crossref]

Mikhelashvili, V.

Mikhrin, S.

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43, 1430–1431 (2007).
[Crossref]

Mikhrin, S. S.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3  μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Moiseev, E.

Mowbray, D. J.

Newell, T. C.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24  μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

Norman, J.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photon. Res. 3, B1–B9 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Orchard, J. R.

Patel, P.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Pease, E. A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24  μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

Petroff, P.

A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
[Crossref]

Polubavkina, Y.

Resneau, P.

M. Krakowski, P. Resneau, M. Calligaro, H. Liu, and M. Hopkinson, “High power, very low noise, C.W. operation of 1.32  μm quantum-dot Fabry–Perot laser diodes,” in IEEE 20th International Semiconductor Laser Conference, Conference Digest (IEEE, 2006), pp. 39–40.

Rodriguez, J.-B.

E. Tournié, L. Cerutti, J.-B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41, 218–223 (2016).
[Crossref]

Ross, I.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Rozenfeld, L.

Salamo, G.

S. Chen, M. Tang, Q. Jiang, J. Wu, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1, 638–642 (2014).
[Crossref]

Seeds, A.

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3  μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25, 4632–4639 (2017).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

J. Wu, S. Chen, A. Seeds, and H. Liu, “Quantum dot optoelectronic devices: lasers, photodetectors and solar cells,” J. Phys. D 48, 363001 (2015).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1, 638–642 (2014).
[Crossref]

Seeds, A. J.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Semenova, E. A.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3  μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Shernyakov, Y. M.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3  μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24, 6196–6202 (2016).
[Crossref]

Smowton, P.

S. Chen, M. Tang, Q. Jiang, J. Wu, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1, 638–642 (2014).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24, 6196–6202 (2016).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24, 6196–6202 (2016).
[Crossref]

Srinivasan, S.

Stintz, A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24  μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

Tang, M.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3  μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25, 4632–4639 (2017).
[Crossref]

N. Kryzhanovskaya, E. Moiseev, Y. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. Zadiranov, Y. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. Zhukov, “Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm,” Opt. Lett. 42, 3319–3322 (2017).
[Crossref]

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24, 6196–6202 (2016).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1, 638–642 (2014).
[Crossref]

Tischler, M. A.

M. A. Tischler, T. Katsuyama, N. A. El-Masry, and S. M. Bedair, “Defect reduction in GaAs epitaxial layers using a GaAsP-InGaAs strained-layer superlattice,” Appl. Phys. Lett. 46, 294–296 (1985).
[Crossref]

Torres, A.

Tournié, E.

E. Tournié, L. Cerutti, J.-B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41, 218–223 (2016).
[Crossref]

Troshkov, S.

Turnlund, K.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Ueda, O.

A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
[Crossref]

Ustinov, V. M.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3  μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Vasil’ev, A. P.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3  μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Wan, Y.

Wang, C.

Wang, Y.

West, L.

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43, 1430–1431 (2007).
[Crossref]

Wu, J.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

N. Kryzhanovskaya, E. Moiseev, Y. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. Zadiranov, Y. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. Zhukov, “Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm,” Opt. Lett. 42, 3319–3322 (2017).
[Crossref]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3  μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25, 4632–4639 (2017).
[Crossref]

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

E. Tournié, L. Cerutti, J.-B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41, 218–223 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24, 6196–6202 (2016).
[Crossref]

J. Wu, S. Chen, A. Seeds, and H. Liu, “Quantum dot optoelectronic devices: lasers, photodetectors and solar cells,” J. Phys. D 48, 363001 (2015).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1, 638–642 (2014).
[Crossref]

Yang, C.

Yu, S.

Yu, Y.

Zadiranov, Y.

Zhang, C.

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Zhang, Z.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Zhou, C.

Zhou, L.

Zhou, Y.-G.

Zhukov, A.

N. Kryzhanovskaya, E. Moiseev, Y. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. Zadiranov, Y. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. Zhukov, “Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm,” Opt. Lett. 42, 3319–3322 (2017).
[Crossref]

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43, 1430–1431 (2007).
[Crossref]

Zhukov, A. E.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3  μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

ACS Photon. (2)

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate,” ACS Photon. 1, 638–642 (2014).
[Crossref]

Appl. Phys. Lett. (2)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

M. A. Tischler, T. Katsuyama, N. A. El-Masry, and S. M. Bedair, “Defect reduction in GaAs epitaxial layers using a GaAsP-InGaAs strained-layer superlattice,” Appl. Phys. Lett. 46, 294–296 (1985).
[Crossref]

Electron. Lett. (1)

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43, 1430–1431 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 1900910 (2017).
[Crossref]

A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24  μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[Crossref]

J. Cryst. Growth (1)

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3  μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. D (1)

J. Wu, S. Chen, A. Seeds, and H. Liu, “Quantum dot optoelectronic devices: lasers, photodetectors and solar cells,” J. Phys. D 48, 363001 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Akiyama, Y. Kawarada, and K. Kaminishi, “Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD,” Jpn. J. Appl. Phys. 23, L843–L845 (1984).
[Crossref]

MRS Bull. (1)

E. Tournié, L. Cerutti, J.-B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41, 218–223 (2016).
[Crossref]

Nat. Photonics (1)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Optica (2)

Photon. Res. (1)

Other (3)

G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010).

M. Krakowski, P. Resneau, M. Calligaro, H. Liu, and M. Hopkinson, “High power, very low noise, C.W. operation of 1.32  μm quantum-dot Fabry–Perot laser diodes,” in IEEE 20th International Semiconductor Laser Conference, Conference Digest (IEEE, 2006), pp. 39–40.

“IEEE P802.3ba 40  Gb/s and 100  Gb/s Ethernet task force,” (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Bright-field scanning TEM image of the QD active layers. (b) PL comparison of InAs/GaAs QDs SLD structure grown on Si to a reference sample grown on native GaAs under the same pump conditions. The inset shows the representative AFM image of an uncapped QD sample grown on Si. (c) Optical micrography of rows of the fabricated narrow-ridge-waveguide laser. (d) Cross-sectional SEM image of the fabricated laser with as-cleaved facets.
Fig. 2.
Fig. 2. Experimental setup of RIN measurement. ISO, optical isolator.
Fig. 3.
Fig. 3. Experimental system for data transmission. PC, polarization controller; Amp., radio frequency amplifier; PPG, pseudorandom pattern generator; SMF-28, standard single-mode fiber.
Fig. 4.
Fig. 4. (a) RT CW LIV curves for total power and single-mode coupled power from a 2.2  μm×2.5  mm narrow-ridge-waveguide laser. (b) Lateral near-field intensity profiles with different injection currents. Inset: infrared (IR) camera image of lasing near-field at the threshold of 20 mA (well above threshold). (c) High-resolution CW lasing spectrum from a 2.2  μm×2.5  mm narrow-ridge-waveguide laser at an injection current of 40 mA. (d) Measured CW L-I curve from a 2.2  μm×4  mm narrow-ridge-waveguide laser as a function of temperature.
Fig. 5.
Fig. 5. (a) RIN spectra up to 16 GHz at gain currents of 40, 60, and 80 mA. (b) Measured RIN in the 6–10 GHz region with bias. (c) Relaxation oscillation frequency with bias.
Fig. 6.
Fig. 6. (a) Experimental results. 25.6 Gb/s eye diagrams (a) at back-to-back (received power of 7  dBm) and (b) after transmission over 13 km SMF-28. (c) BER at different received power at back-to-back (square marker) and after transmission (circle marker) using threshold detection.

Metrics