Abstract

The miniaturization of polarization beam splitters (PBSs) is vital for ultradense chip-scale photonic integrated circuits. However, the small PBSs based on complex hybrid plasmonic structures exhibit large fabrication difficulties or high insertion losses. Here, by designing a bending multimode plasmonic waveguide, an ultrabroadband on-chip plasmonic PBS with low insertion losses is numerically and experimentally realized. The multimode plasmonic waveguide, consisting of a metal strip with a V-shaped groove on the metal surface, supports the symmetric and antisymmetric surface plasmon polariton (SPP) waveguide modes in nature. Due to the different field confinements of the two SPP waveguide modes, which result in different bending losses, the two incident SPP waveguide modes of orthogonal polarization states are efficiently split in the bending multimode plasmonic waveguide. The numerical simulations show that the operation bandwidth of the proposed PBS is as large as 430 nm because there is no resonance or interference effect in the splitting process. Compared with the complex hybrid plasmonic structure, the simple bending multimode plasmonic waveguide is much easier to fabricate. In the experiment, a broadband (Δλ120  nm) and low-insertion-loss (<3  dB with a minimum insertion loss of 0.7 dB) PBS is demonstrated by using the strongly confined waveguide modes as the incident sources in the bending multimode plasmonic waveguide.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Compact polarizing beam splitter based on a metal-insulator-metal inserted into multimode interference coupler

Vuthy Chheang, Tae-Kyeong Lee, Geum-Yoon Oh, Hong-Seung Kim, Byeong-Hyeon Lee, Doo Gun Kim, and Young-Wan Choi
Opt. Express 21(18) 20880-20887 (2013)

Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide

Xiaowei Guan, Hao Wu, Yaocheng Shi, and Daoxin Dai
Opt. Lett. 39(2) 259-262 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
    [Crossref]
  2. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1–e12 (2012).
    [Crossref]
  3. D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7, 303–328 (2013).
    [Crossref]
  4. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
    [Crossref]
  5. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
    [Crossref]
  6. S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101 (2011).
    [Crossref]
  7. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36, 2590–2592 (2011).
    [Crossref]
  8. B.-K. Yang, S.-Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett. 21, 432–434 (2009).
    [Crossref]
  9. A. Hosseini, S. Rahimi, X. Xu, D. Kwong, J. Covey, and R. Chen, “Ultracompact and fabrication-tolerant integrated polarization splitter,” Opt. Lett. 36, 4047–4049 (2011).
    [Crossref]
  10. Z. Su, E. Timurdogan, E. S. Hosseini, J. Sun, G. Leake, D. D. Coolbaugh, and M. R. Watts, “Four-port integrated polarizing beam splitter,” Opt. Lett. 39, 965–968 (2014).
    [Crossref]
  11. M. Watts, H. Haus, and E. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
    [Crossref]
  12. L. Augustin, R. Hanfoug, J. Van der Tol, W. De Laat, and M. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photon. Technol. Lett. 19, 1286–1288 (2007).
    [Crossref]
  13. D. Dai, Z. Wang, and J. E. Bowers, “Considerations for the design of asymmetrical Mach–Zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol. 29, 1808–1817 (2011).
    [Crossref]
  14. X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
    [Crossref]
  15. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [Crossref]
  16. W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11, 1603–1608 (2011).
    [Crossref]
  17. M. Cohen, Z. Zalevsky, and R. Shavit, “Towards integrated nanoplasmonic logic circuitry,” Nanoscale 5, 5442–5449 (2013).
    [Crossref]
  18. C.-L. Zou, F.-W. Sun, C.-H. Dong, X.-F. Ren, J.-M. Cui, X.-D. Chen, Z.-F. Han, and G.-C. Guo, “Broadband integrated polarization beam splitter with surface plasmon,” Opt. Lett. 36, 3630–3632 (2011).
    [Crossref]
  19. Q. Tan, X. Huang, W. Zhou, and K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep. 3, 2206 (2013).
    [Crossref]
  20. F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37, 3372–3374 (2012).
    [Crossref]
  21. X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39, 259–262 (2014).
    [Crossref]
  22. L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113, 199–203 (2013).
    [Crossref]
  23. J. Chee, S. Zhu, and G. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express 20, 25345–25355 (2012).
    [Crossref]
  24. K. W. Chang and C. C. Huang, “Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide,” Sci. Rep. 6, 19609 (2016).
    [Crossref]
  25. J. Chen, C. Sun, H. Li, and Q. Gong, “Experimental demonstration of an on-chip polarization splitter in a submicron asymmetric dielectric-coated metal slit,” Appl. Phys. Lett. 104, 231111 (2014).
    [Crossref]
  26. C. Sun, H. Li, Q. Gong, and J. Chen, “Ultra-small and broadband polarization splitters based on double-slit interference,” Appl. Phys. Lett. 108, 101106 (2016).
    [Crossref]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  28. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
    [Crossref]
  29. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [Crossref]
  30. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
    [Crossref]
  31. E. Moreno, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006).
    [Crossref]
  32. F. Gan, C. Sun, Y. Wang, H. Li, Q. Gong, and J. Chen, “Multimode metallic double-strip waveguides for polarization manipulation,” Adv. Mater. Technol. 2, 1600248 (2017).
    [Crossref]
  33. C. Sun, K. Rong, Y. Wang, H. Li, Q. Gong, and J. Chen, “Plasmonic ridge waveguides with deep-subwavelength outside-field confinements,” Nanotechnology 27, 065501 (2016).
    [Crossref]
  34. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
    [Crossref]
  35. C. Sun, K. Rong, F. Gan, S. Chu, Q. Gong, and J. Chen, “An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure,” Appl. Phys. Lett. 111, 101105 (2017).
    [Crossref]
  36. Y. H. Ding, H. Y. Ou, and C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett. 38, 1227–1229 (2013).
    [Crossref]
  37. D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).
    [Crossref]
  38. Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photon. Technol. Lett. 21, 242–244 (2009).
    [Crossref]

2017 (2)

F. Gan, C. Sun, Y. Wang, H. Li, Q. Gong, and J. Chen, “Multimode metallic double-strip waveguides for polarization manipulation,” Adv. Mater. Technol. 2, 1600248 (2017).
[Crossref]

C. Sun, K. Rong, F. Gan, S. Chu, Q. Gong, and J. Chen, “An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure,” Appl. Phys. Lett. 111, 101105 (2017).
[Crossref]

2016 (3)

C. Sun, K. Rong, Y. Wang, H. Li, Q. Gong, and J. Chen, “Plasmonic ridge waveguides with deep-subwavelength outside-field confinements,” Nanotechnology 27, 065501 (2016).
[Crossref]

K. W. Chang and C. C. Huang, “Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide,” Sci. Rep. 6, 19609 (2016).
[Crossref]

C. Sun, H. Li, Q. Gong, and J. Chen, “Ultra-small and broadband polarization splitters based on double-slit interference,” Appl. Phys. Lett. 108, 101106 (2016).
[Crossref]

2015 (2)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

2014 (3)

2013 (6)

M. Cohen, Z. Zalevsky, and R. Shavit, “Towards integrated nanoplasmonic logic circuitry,” Nanoscale 5, 5442–5449 (2013).
[Crossref]

Q. Tan, X. Huang, W. Zhou, and K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep. 3, 2206 (2013).
[Crossref]

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113, 199–203 (2013).
[Crossref]

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7, 303–328 (2013).
[Crossref]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).
[Crossref]

Y. H. Ding, H. Y. Ou, and C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett. 38, 1227–1229 (2013).
[Crossref]

2012 (3)

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37, 3372–3374 (2012).
[Crossref]

J. Chee, S. Zhu, and G. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express 20, 25345–25355 (2012).
[Crossref]

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1–e12 (2012).
[Crossref]

2011 (7)

2010 (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

2009 (3)

B.-K. Yang, S.-Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett. 21, 432–434 (2009).
[Crossref]

Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photon. Technol. Lett. 21, 242–244 (2009).
[Crossref]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[Crossref]

2007 (2)

L. Augustin, R. Hanfoug, J. Van der Tol, W. De Laat, and M. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photon. Technol. Lett. 19, 1286–1288 (2007).
[Crossref]

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

2006 (3)

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

E. Moreno, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006).
[Crossref]

2005 (2)

M. Watts, H. Haus, and E. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Ao, X.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[Crossref]

Augustin, L.

L. Augustin, R. Hanfoug, J. Van der Tol, W. De Laat, and M. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photon. Technol. Lett. 19, 1286–1288 (2007).
[Crossref]

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1–e12 (2012).
[Crossref]

Bowers, J. E.

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[Crossref]

E. Moreno, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

Chang, K. W.

K. W. Chang and C. C. Huang, “Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide,” Sci. Rep. 6, 19609 (2016).
[Crossref]

Chee, J.

Chen, J.

F. Gan, C. Sun, Y. Wang, H. Li, Q. Gong, and J. Chen, “Multimode metallic double-strip waveguides for polarization manipulation,” Adv. Mater. Technol. 2, 1600248 (2017).
[Crossref]

C. Sun, K. Rong, F. Gan, S. Chu, Q. Gong, and J. Chen, “An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure,” Appl. Phys. Lett. 111, 101105 (2017).
[Crossref]

C. Sun, K. Rong, Y. Wang, H. Li, Q. Gong, and J. Chen, “Plasmonic ridge waveguides with deep-subwavelength outside-field confinements,” Nanotechnology 27, 065501 (2016).
[Crossref]

C. Sun, H. Li, Q. Gong, and J. Chen, “Ultra-small and broadband polarization splitters based on double-slit interference,” Appl. Phys. Lett. 108, 101106 (2016).
[Crossref]

J. Chen, C. Sun, H. Li, and Q. Gong, “Experimental demonstration of an on-chip polarization splitter in a submicron asymmetric dielectric-coated metal slit,” Appl. Phys. Lett. 104, 231111 (2014).
[Crossref]

Chen, R.

Chen, X.-D.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chu, S.

C. Sun, K. Rong, F. Gan, S. Chu, Q. Gong, and J. Chen, “An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure,” Appl. Phys. Lett. 111, 101105 (2017).
[Crossref]

Cohen, M.

M. Cohen, Z. Zalevsky, and R. Shavit, “Towards integrated nanoplasmonic logic circuitry,” Nanoscale 5, 5442–5449 (2013).
[Crossref]

Coolbaugh, D. D.

Covey, J.

Crozier, K. B.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101 (2011).
[Crossref]

Cui, J.-M.

Dai, D.

X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39, 259–262 (2014).
[Crossref]

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7, 303–328 (2013).
[Crossref]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).
[Crossref]

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37, 3372–3374 (2012).
[Crossref]

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1–e12 (2012).
[Crossref]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
[Crossref]

D. Dai, Z. Wang, and J. E. Bowers, “Considerations for the design of asymmetrical Mach–Zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol. 29, 1808–1817 (2011).
[Crossref]

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36, 2590–2592 (2011).
[Crossref]

Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photon. Technol. Lett. 21, 242–244 (2009).
[Crossref]

De Laat, W.

L. Augustin, R. Hanfoug, J. Van der Tol, W. De Laat, and M. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photon. Technol. Lett. 19, 1286–1288 (2007).
[Crossref]

Devaux, E.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

Ding, Y. H.

Dong, C.-H.

Ebbesen, T. W.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

Fan, F.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11, 1603–1608 (2011).
[Crossref]

Gan, F.

C. Sun, K. Rong, F. Gan, S. Chu, Q. Gong, and J. Chen, “An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure,” Appl. Phys. Lett. 111, 101105 (2017).
[Crossref]

F. Gan, C. Sun, Y. Wang, H. Li, Q. Gong, and J. Chen, “Multimode metallic double-strip waveguides for polarization manipulation,” Adv. Mater. Technol. 2, 1600248 (2017).
[Crossref]

Gao, L.

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113, 199–203 (2013).
[Crossref]

Gao, S.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7, 303–328 (2013).
[Crossref]

Garcia-Vidal, F.

García-Vidal, F. J.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[Crossref]

Gong, Q.

C. Sun, K. Rong, F. Gan, S. Chu, Q. Gong, and J. Chen, “An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure,” Appl. Phys. Lett. 111, 101105 (2017).
[Crossref]

F. Gan, C. Sun, Y. Wang, H. Li, Q. Gong, and J. Chen, “Multimode metallic double-strip waveguides for polarization manipulation,” Adv. Mater. Technol. 2, 1600248 (2017).
[Crossref]

C. Sun, K. Rong, Y. Wang, H. Li, Q. Gong, and J. Chen, “Plasmonic ridge waveguides with deep-subwavelength outside-field confinements,” Nanotechnology 27, 065501 (2016).
[Crossref]

C. Sun, H. Li, Q. Gong, and J. Chen, “Ultra-small and broadband polarization splitters based on double-slit interference,” Appl. Phys. Lett. 108, 101106 (2016).
[Crossref]

J. Chen, C. Sun, H. Li, and Q. Gong, “Experimental demonstration of an on-chip polarization splitter in a submicron asymmetric dielectric-coated metal slit,” Appl. Phys. Lett. 104, 231111 (2014).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Guan, X.

Guo, G.-C.

Han, Z.-F.

Hanfoug, R.

L. Augustin, R. Hanfoug, J. Van der Tol, W. De Laat, and M. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photon. Technol. Lett. 19, 1286–1288 (2007).
[Crossref]

Haus, H.

He, S.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7, 303–328 (2013).
[Crossref]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).
[Crossref]

Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photon. Technol. Lett. 21, 242–244 (2009).
[Crossref]

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[Crossref]

Hosseini, A.

Hosseini, E. S.

Hu, F.

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113, 199–203 (2013).
[Crossref]

Hu, J.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101 (2011).
[Crossref]

Huang, C. C.

K. W. Chang and C. C. Huang, “Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide,” Sci. Rep. 6, 19609 (2016).
[Crossref]

Huang, X.

Q. Tan, X. Huang, W. Zhou, and K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep. 3, 2206 (2013).
[Crossref]

Ippen, E.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Kwong, D.

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Leake, G.

Li, H.

F. Gan, C. Sun, Y. Wang, H. Li, Q. Gong, and J. Chen, “Multimode metallic double-strip waveguides for polarization manipulation,” Adv. Mater. Technol. 2, 1600248 (2017).
[Crossref]

C. Sun, H. Li, Q. Gong, and J. Chen, “Ultra-small and broadband polarization splitters based on double-slit interference,” Appl. Phys. Lett. 108, 101106 (2016).
[Crossref]

C. Sun, K. Rong, Y. Wang, H. Li, Q. Gong, and J. Chen, “Plasmonic ridge waveguides with deep-subwavelength outside-field confinements,” Nanotechnology 27, 065501 (2016).
[Crossref]

J. Chen, C. Sun, H. Li, and Q. Gong, “Experimental demonstration of an on-chip polarization splitter in a submicron asymmetric dielectric-coated metal slit,” Appl. Phys. Lett. 104, 231111 (2014).
[Crossref]

Lin, S.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101 (2011).
[Crossref]

Liu, L.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7, 303–328 (2013).
[Crossref]

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[Crossref]

Lo, G.

Lou, F.

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Martin-Moreno, L.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[Crossref]

E. Moreno, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006).
[Crossref]

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Moreno, E.

Ou, H. Y.

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Peucheret, C.

Piggott, A. Y.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Rahimi, S.

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Ren, X.-F.

Rodrigo, S. G.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[Crossref]

E. Moreno, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006).
[Crossref]

Rong, K.

C. Sun, K. Rong, F. Gan, S. Chu, Q. Gong, and J. Chen, “An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure,” Appl. Phys. Lett. 111, 101105 (2017).
[Crossref]

C. Sun, K. Rong, Y. Wang, H. Li, Q. Gong, and J. Chen, “Plasmonic ridge waveguides with deep-subwavelength outside-field confinements,” Nanotechnology 27, 065501 (2016).
[Crossref]

Shavit, R.

M. Cohen, Z. Zalevsky, and R. Shavit, “Towards integrated nanoplasmonic logic circuitry,” Nanoscale 5, 5442–5449 (2013).
[Crossref]

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Shi, Y.

Shin, S.-Y.

B.-K. Yang, S.-Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett. 21, 432–434 (2009).
[Crossref]

Smit, M.

L. Augustin, R. Hanfoug, J. Van der Tol, W. De Laat, and M. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photon. Technol. Lett. 19, 1286–1288 (2007).
[Crossref]

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Su, Z.

Sun, C.

F. Gan, C. Sun, Y. Wang, H. Li, Q. Gong, and J. Chen, “Multimode metallic double-strip waveguides for polarization manipulation,” Adv. Mater. Technol. 2, 1600248 (2017).
[Crossref]

C. Sun, K. Rong, F. Gan, S. Chu, Q. Gong, and J. Chen, “An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure,” Appl. Phys. Lett. 111, 101105 (2017).
[Crossref]

C. Sun, H. Li, Q. Gong, and J. Chen, “Ultra-small and broadband polarization splitters based on double-slit interference,” Appl. Phys. Lett. 108, 101106 (2016).
[Crossref]

C. Sun, K. Rong, Y. Wang, H. Li, Q. Gong, and J. Chen, “Plasmonic ridge waveguides with deep-subwavelength outside-field confinements,” Nanotechnology 27, 065501 (2016).
[Crossref]

J. Chen, C. Sun, H. Li, and Q. Gong, “Experimental demonstration of an on-chip polarization splitter in a submicron asymmetric dielectric-coated metal slit,” Appl. Phys. Lett. 104, 231111 (2014).
[Crossref]

Sun, F.-W.

Sun, J.

Tan, Q.

Q. Tan, X. Huang, W. Zhou, and K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep. 3, 2206 (2013).
[Crossref]

Tang, L.

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113, 199–203 (2013).
[Crossref]

Tang, Y.

Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photon. Technol. Lett. 21, 242–244 (2009).
[Crossref]

Timurdogan, E.

Van der Tol, J.

L. Augustin, R. Hanfoug, J. Van der Tol, W. De Laat, and M. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photon. Technol. Lett. 19, 1286–1288 (2007).
[Crossref]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

Vuckovic, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Wang, J.

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).
[Crossref]

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Wang, W.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11, 1603–1608 (2011).
[Crossref]

Wang, X.

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113, 199–203 (2013).
[Crossref]

Wang, Y.

F. Gan, C. Sun, Y. Wang, H. Li, Q. Gong, and J. Chen, “Multimode metallic double-strip waveguides for polarization manipulation,” Adv. Mater. Technol. 2, 1600248 (2017).
[Crossref]

C. Sun, K. Rong, Y. Wang, H. Li, Q. Gong, and J. Chen, “Plasmonic ridge waveguides with deep-subwavelength outside-field confinements,” Nanotechnology 27, 065501 (2016).
[Crossref]

Wang, Z.

Wang, Z. L.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11, 1603–1608 (2011).
[Crossref]

Watts, M.

Watts, M. R.

Z. Su, E. Timurdogan, E. S. Hosseini, J. Sun, G. Leake, D. D. Coolbaugh, and M. R. Watts, “Four-port integrated polarizing beam splitter,” Opt. Lett. 39, 965–968 (2014).
[Crossref]

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Wosinski, L.

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37, 3372–3374 (2012).
[Crossref]

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[Crossref]

Wu, H.

Xu, D. X.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7, 303–328 (2013).
[Crossref]

Xu, H.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11, 1603–1608 (2011).
[Crossref]

Xu, X.

Yang, B.-K.

B.-K. Yang, S.-Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett. 21, 432–434 (2009).
[Crossref]

Yang, K.

Q. Tan, X. Huang, W. Zhou, and K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep. 3, 2206 (2013).
[Crossref]

Yang, Q.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11, 1603–1608 (2011).
[Crossref]

Zalevsky, Z.

M. Cohen, Z. Zalevsky, and R. Shavit, “Towards integrated nanoplasmonic logic circuitry,” Nanoscale 5, 5442–5449 (2013).
[Crossref]

Zhang, D.

B.-K. Yang, S.-Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett. 21, 432–434 (2009).
[Crossref]

Zhou, W.

Q. Tan, X. Huang, W. Zhou, and K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep. 3, 2206 (2013).
[Crossref]

Zhou, Z.

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113, 199–203 (2013).
[Crossref]

Zhu, S.

Zou, C.-L.

Adv. Mater. Technol. (1)

F. Gan, C. Sun, Y. Wang, H. Li, Q. Gong, and J. Chen, “Multimode metallic double-strip waveguides for polarization manipulation,” Adv. Mater. Technol. 2, 1600248 (2017).
[Crossref]

Appl. Phys. B (1)

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113, 199–203 (2013).
[Crossref]

Appl. Phys. Lett. (5)

J. Chen, C. Sun, H. Li, and Q. Gong, “Experimental demonstration of an on-chip polarization splitter in a submicron asymmetric dielectric-coated metal slit,” Appl. Phys. Lett. 104, 231111 (2014).
[Crossref]

C. Sun, H. Li, Q. Gong, and J. Chen, “Ultra-small and broadband polarization splitters based on double-slit interference,” Appl. Phys. Lett. 108, 101106 (2016).
[Crossref]

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101 (2011).
[Crossref]

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[Crossref]

C. Sun, K. Rong, F. Gan, S. Chu, Q. Gong, and J. Chen, “An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure,” Appl. Phys. Lett. 111, 101105 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (3)

Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photon. Technol. Lett. 21, 242–244 (2009).
[Crossref]

B.-K. Yang, S.-Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett. 21, 432–434 (2009).
[Crossref]

L. Augustin, R. Hanfoug, J. Van der Tol, W. De Laat, and M. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photon. Technol. Lett. 19, 1286–1288 (2007).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7, 303–328 (2013).
[Crossref]

Light Sci. Appl. (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1–e12 (2012).
[Crossref]

Nano Lett. (2)

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11, 1603–1608 (2011).
[Crossref]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282 (2009).
[Crossref]

Nanoscale (1)

M. Cohen, Z. Zalevsky, and R. Shavit, “Towards integrated nanoplasmonic logic circuitry,” Nanoscale 5, 5442–5449 (2013).
[Crossref]

Nanotechnology (1)

C. Sun, K. Rong, Y. Wang, H. Li, Q. Gong, and J. Chen, “Plasmonic ridge waveguides with deep-subwavelength outside-field confinements,” Nanotechnology 27, 065501 (2016).
[Crossref]

Nat. Photonics (4)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (9)

Y. H. Ding, H. Y. Ou, and C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett. 38, 1227–1229 (2013).
[Crossref]

X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39, 259–262 (2014).
[Crossref]

Z. Su, E. Timurdogan, E. S. Hosseini, J. Sun, G. Leake, D. D. Coolbaugh, and M. R. Watts, “Four-port integrated polarizing beam splitter,” Opt. Lett. 39, 965–968 (2014).
[Crossref]

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36, 2590–2592 (2011).
[Crossref]

C.-L. Zou, F.-W. Sun, C.-H. Dong, X.-F. Ren, J.-M. Cui, X.-D. Chen, Z.-F. Han, and G.-C. Guo, “Broadband integrated polarization beam splitter with surface plasmon,” Opt. Lett. 36, 3630–3632 (2011).
[Crossref]

A. Hosseini, S. Rahimi, X. Xu, D. Kwong, J. Covey, and R. Chen, “Ultracompact and fabrication-tolerant integrated polarization splitter,” Opt. Lett. 36, 4047–4049 (2011).
[Crossref]

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37, 3372–3374 (2012).
[Crossref]

M. Watts, H. Haus, and E. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
[Crossref]

E. Moreno, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

Prog. Electromagn. Res. (1)

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).
[Crossref]

Sci. Rep. (2)

Q. Tan, X. Huang, W. Zhou, and K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep. 3, 2206 (2013).
[Crossref]

K. W. Chang and C. C. Huang, “Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide,” Sci. Rep. 6, 19609 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic and geometrical parameters of the multimode plasmonic waveguide. Power flow distributions of the (b) symmetric waveguide mode and (c) antisymmetric waveguide mode for w=700  nm, h=400  nm, d=400  nm, θ=16°, t=200  nm, and r=5  nm. The green arrows denote the vectors of the electric field. (d) Effective refractive indices, (e) propagation lengths, and (f) field confinements of the symmetric (black lines) as well as antisymmetric (red lines) SPP waveguide modes varying with wavelengths. The green dashed line in (d) denotes the effective refractive indices of the SPP mode on the flat metal surface.

Fig. 2.
Fig. 2.

(a) Schematic of the bending multimode plasmonic waveguide. (b) Transmittances of the symmetric (dashed lines) and antisymmetric (solid lines) SPP waveguide modes passing through the bending waveguide at different bending radii and bending angles (λ=900  nm). Power flow distributions of the (c) symmetric and (d) antisymmetric waveguide modes at R=2  μm and α=30°.

Fig. 3.
Fig. 3.

(a) Schematic and (b) top view of the proposed PBS. Power flow distributions of the (c) symmetric and (d) antisymmetric waveguide modes at λ=900  nm. Normalized output powers of the (e) symmetric and (f) antisymmetric waveguide modes at different wavelengths in the simulation.

Fig. 4.
Fig. 4.

(a) SEM image of the fabricated structures. (b) Cross-sectional SEM image of the multimode plasmonic waveguide. CMOS captured pictures under (c), (e), (g) p-polarized and (d), (f), (h) s-polarized incident light at different wavelengths. The red dashed rectangles in (c)−(h) denote the decoupling gratings.

Fig. 5.
Fig. 5.

Measured normalized scattered powers under (a) p-polarized and (b) s-polarized incident light at different wavelengths. (c) Power flow distribution of the higher-order mode at λ=830  nm. The green arrows denote the vectors of the electric field. (d) Effective indices of the symmetric (black line), antisymmtric (red line) and higher-order (blue line) modes at different wavelengths. The green dashed line in (d) shows the effective indices of the SPP mode on the flat metal surface.

Metrics