Abstract

An overview of the progress on pulse-preserving, coherent, nonlinear fiber-based supercontinuum generation is presented. The context encompasses various wavelength ranges and pump sources, starting with silica photonic crystal fibers pumped with 1.0 μm femtosecond lasers up to chalcogenide step-index and microstructured fibers pumped from optical parametric amplifiers tuned to mid-infrared wavelengths. In particular, silica and silicate-based all-normal dispersion (ANDi) photonic crystal fibers have been demonstrated for pumping with femtosecond lasers operating at 1.56 μm with the recorded spectra covering 0.9–2.3 μm. This matches amplification bands of robust fiber amplifiers and femtosecond lasers. The review therefore focuses specifically on this wavelength range, discussing glass and nonlinear fiber designs, experimental results on supercontinuum generation up to the fundamental limit of oxide glass fiber transmission around 2.8 μm, and various limitations of supercontinuum bandwidth and coherence. Specifically, the role of nonlinear response against the role of dispersion profile shape is analyzed for two different soft glass ANDi fibers pumped at more than 2.0 μm. A spatio-temporal interaction of the fundamental fiber mode with modes propagating in the photonic lattice of the discussed ANDi fibers is shown to have positive effects on the coherence of the supercontinuum at pump pulse durations of 400 fs. Finally, the design and development of graded-index, nanostructured core optical fibers are discussed. In such structures the arbitrary shaping of the core refractive index profile could significantly improve the engineering flexibility of dispersion and effective mode area characteristics, and would be an interesting platform to further study the intermodal interaction mechanisms and their impact on supercontinuum coherence for sub-picosecond laser pumped setups.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 µm in all-solid soft glass photonic crystal fibers

Mariusz Klimczak, Bartłomiej Siwicki, Binbin Zhou, Morten Bache, Dariusz Pysz, Ole Bang, and Ryszard Buczyński
Opt. Express 24(26) 29406-29416 (2016)

Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion

Mariusz Klimczak, Bartłomiej Siwicki, Piotr Skibiński, Dariusz Pysz, Ryszard Stępień, Alexander Heidt, Czesław Radzewicz, and Ryszard Buczyński
Opt. Express 22(15) 18824-18832 (2014)

Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy

Mbaye Diouf, Amine Ben Salem, Rim Cherif, Hamed Saghaei, and Ahmadou Wague
Appl. Opt. 56(2) 163-169 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700  nm wavelength region,” Biomed. Opt. Express 3, 282–294 (2012).
    [Crossref]
  2. Y. Takushima and K. Kikuchi, “10-GHz over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322–324 (1999).
    [Crossref]
  3. Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14, 054009 (2009).
    [Crossref]
  4. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7  μm for enhanced imaging depth,” Opt. Express 16, 19712–19723 (2008).
    [Crossref]
  5. H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Development of a high power supercontinuum source in the 1.7  μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 5, 932–943 (2014).
    [Crossref]
  6. C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2  μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 1992–2001 (2015).
    [Crossref]
  7. R. Wu, V. T. Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21, 6045–6052 (2013).
    [Crossref]
  8. C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16, 2520–2527 (2008).
    [Crossref]
  9. A. Sihvola, Electromagnetic Mixing Formulas and Applications (Institution of Electrical Engeneers, 1999).
  10. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000  Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [Crossref]
  11. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  12. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800  nm,” Opt. Lett. 25, 25–27 (2000).
    [Crossref]
  13. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
    [Crossref]
  14. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
    [Crossref]
  15. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000  nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
    [Crossref]
  16. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
    [Crossref]
  17. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  18. G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in softglass photonic crystal fibers pumped at 1560  nm,” Opt. Mat. Express 4, 7–15 (2014).
    [Crossref]
  19. M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
    [Crossref]
  20. M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560  nm,” Opt. Lett. 38, 4679–4682 (2013).
    [Crossref]
  21. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  22. T. Godin, Y. Combes, R. Ahmad, M. Rochette, T. Sylvestre, and J. M. Dudley, “Far-detuned mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide microwires,” Opt. Lett. 39, 1885–1888 (2014).
    [Crossref]
  23. U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
    [Crossref]
  24. S. R. Domingue and R. A. Bartels, “Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation,” Opt. Express 21, 13305–13321 (2013).
    [Crossref]
  25. Y. Liu, Y. Zhao, J. Lyngsø, S. You, W. L. Wilson, H. Tu, and S. A. Boppart, “Suppressing short-term polarization noise and related spectral decoherence in all-normal dispersion fiber supercontinuum generation,” J. Lightwave Technol. 33, 1814–1820 (2015).
    [Crossref]
  26. S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “The role of phase coherence in seeded supercontinuum generation,” Opt. Express 20, 22886–22894 (2012).
    [Crossref]
  27. D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J.-M. Merolla, L. Larger, G. Genty, F. Dias, and J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38, 5338–5341 (2013).
    [Crossref]
  28. Z. Ren, Y. Xu, Y. Qiu, K. K. Y. Wong, and K. Tsia, “Spectrally-resolved statistical characterization of seeded supercontinuum suppression using optical time-stretch,” Opt. Express 22, 11849–11860 (2014).
    [Crossref]
  29. P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005).
    [Crossref]
  30. F. Li, Q. Li, J. Yuan, and P. K. A. Wai, “Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression,” Opt. Express 22, 27339–27354 (2014).
    [Crossref]
  31. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19, 4902–4907 (2011).
    [Crossref]
  32. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3787 (2011).
    [Crossref]
  33. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24, 1786–1792 (2007).
    [Crossref]
  34. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat supercontinuum generation based on normal dispersion nonlinear photonic crystal fiber,” Electron. Lett. 42, 989–990 (2006).
    [Crossref]
  35. M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2  μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
    [Crossref]
  36. K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Soboń, and W. Urbańczyk, “Coherent supercontinuum generation up to 2.2  μm in an all-normal dispersion microstructured silica fiber,” Opt. Express 24, 30523–30536 (2016).
    [Crossref]
  37. S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40, 2668–2671 (2015).
    [Crossref]
  38. X. Li, W. Chen, T. Xue, J. Gao, W. Gao, L. Hu, and M. Liao, “Low threshold mid-infrared supercontinuum generation in short fluoride-chalcogenide multimaterial fibers,” Opt. Express 22, 24179–24191 (2014).
    [Crossref]
  39. L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
    [Crossref]
  40. A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120 (2015).
    [Crossref]
  41. R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2  μm,” Opt. Express 23, 30592–30602 (2015).
    [Crossref]
  42. A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19, 13873–13879 (2011).
    [Crossref]
  43. S. Demmler, J. Rothhardt, A. M. Heidt, A. Hartung, E. G. Rohwer, H. Bartelt, J. Limpert, and A. Tünnermann, “Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19, 20151–20158 (2011).
    [Crossref]
  44. J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22  W of average power at 1  MHz repetition rate,” Opt. Express 20, 10870–10878 (2012).
    [Crossref]
  45. M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. St. J. Russell, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25, 7637–7644 (2017).
    [Crossref]
  46. S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2-2.4  μm range,” Opt. Express 23, 8281–8289 (2015).
    [Crossref]
  47. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11, 2225–2230 (2003).
    [Crossref]
  48. R. Buczyński, J. Pniewski, D. Pysz, R. Stępień, R. Kasztelanic, I. Kujawa, A. Filipkowski, A. J. Waddie, and M. R. Taghizadeh, “Dispersion management in soft glass all-solid photonic crystal fibres,” Optoelectron. Rev. 20, 207–215 (2012).
    [Crossref]
  49. D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
    [Crossref]
  50. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
    [Crossref]
  51. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27, 550–559 (2010).
    [Crossref]
  52. A. M. Heidt, A. Hartung, and H. Bartelt, “Generation of ultrashort and coherent supercontinuum light pulses in all-normal dispersion fibers,” in The Supercontinuum Laser Source, R. Alfano, ed. (Springer, 2016), pp. 247–280.
  53. G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
    [Crossref]
  54. M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3  μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
    [Crossref]
  55. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
    [Crossref]
  56. O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As-S and an As-free Ge-S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
    [Crossref]
  57. T. Cheng, W. Gao, M. Liao, Z. Duan, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Tunable third-harmonic generation in a chalcogenide-tellurite hybrid optical fiber with high refractive index difference,” Opt. Lett. 39, 1005–1007 (2014).
    [Crossref]
  58. M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, T. Suzuki, and Y. Ohishi, “Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber,” Opt. Express 20, B574–B580 (2012).
    [Crossref]
  59. J. Picot-Clemente, C. Strutynski, F. Amrani, F. Désévédavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
    [Crossref]
  60. C. Strutynski, P. Froidevaux, F. Désévédavy, J.-C. Jules, G. Gadret, A. Bendahmane, K. Tarnowski, B. Kibler, and F. Smektala, “Tailoring supercontinuum generation beyond 2  μm in step-index tellurite fibers,” Opt. Lett. 42, 247–250 (2017).
    [Crossref]
  61. S. Kedenburg, C. Strutynski, B. Kibler, P. Froidevaux, F. Désévédavy, G. Gadret, J.-C. Jules, T. Steinle, F. Morz, A. Steinmann, H. Giessen, and F. Smektala, “High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3  μm in robust step-index tellurite fibers,” J. Opt. Soc. Am. B 34, 601–607 (2017).
    [Crossref]
  62. T. H. Tuan, T. Cheng, K. Asano, Z. Duan, W. Gao, D. Deng, T. Suzuki, and Y. Ohishi, “Optical parametric gain and bandwidth in highly nonlinear tellurite hybrid microstructured optical fiber with four zero-dispersion wavelengths,” Opt. Express 21, 20303–20312 (2013).
    [Crossref]
  63. C. Strutynski, F. Desevedavy, A. Lemière, J.-C. Jules, G. Gadret, T. Cardinal, F. Smektala, and S. Danto, “Tellurite-based core-clad dual-electrodes composite fibers,” Opt. Mater. Express 7, 1503–1508 (2017).
    [Crossref]
  64. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Maze, “Mid-infrared supercontinuum generation to 4.5  μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
    [Crossref]
  65. A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2  μm,” Opt. Express 21, 24281–24287 (2013).
    [Crossref]
  66. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
    [Crossref]
  67. NKT Photonics, http://www.nktphotonics.com ; LEUKOS, http://www.leukos-systems.com , Le Verre Fluoré, http://leverrefluore.com/ , Thorlabs, http://www.thorlabs.com .
  68. A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express 19, 12275–12283 (2011).
    [Crossref]
  69. H. Sotobayashi and K. Kitayama, “325  nm bandwidth supercontinuum generation at 10  Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998).
    [Crossref]
  70. I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, E. Silvestre, and M. V. Andres, “Design of all-normal dispersion microstructured optical fiber on silica platform for generation of pulse-preserving supercontinuum under excitation at 1550  nm,” J. Lightwave Technol. 35, 3772–3779 (2017).
    [Crossref]
  71. C. C. Wang, M. H. Wang, and J. Wu, “Heavily germanium-doped silica fiber with a fat normal dispersion profile,” IEEE Photon. J. 7, 7101110 (2015).
  72. K. Tarnowski and W. Urbanczyk, “All-normal dispersion hole-assisted silica fibers for generation of supercontinuum reaching midinfrared,” IEEE Photon. J. 8, 7100311 (2016).
    [Crossref]
  73. A. M. Heidt, Z. Li, and D. J. Richardson, “High power diode-seeded fiber amplifiers at 2  μm—from architectures to applications,” IEEE J. Sel. Top. Quantum Electron. 20, 3100612 (2014).
    [Crossref]
  74. J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
    [Crossref]
  75. H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express 20, 1113–1128 (2012).
    [Crossref]
  76. T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39, 2342–2345 (2014).
    [Crossref]
  77. M. Klimczak, G. Soboń, K. M. Abramski, and R. Buczyński, “Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump,” Opt. Express 22, 31635–31645 (2014).
    [Crossref]
  78. M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
    [Crossref]
  79. J. Sotor, M. Pawliszewska, G. Sobon, P. Kaczmarek, A. Przewolka, I. Pasternak, J. Cajzl, P. Peterka, P. Honzátko, I. Kašík, W. Strupinski, and K. M. Abramski, “All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber,” Opt. Lett. 41, 2592–2595 (2016).
    [Crossref]
  80. Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm-Ho-codoped fiber laser at 2.06  μm,” IEEE Photon. Technol. Lett. 23, 682–684 (2011).
    [Crossref]
  81. B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18, 065102 (2016).
    [Crossref]
  82. A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34, 764–775 (2017).
    [Crossref]
  83. J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge, 2010).
  84. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
    [Crossref]
  85. G. Sobon, “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators,” Photon. Res. 3, A56–A63 (2015).
    [Crossref]
  86. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
    [Crossref]
  87. B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
    [Crossref]
  88. T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
    [Crossref]
  89. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25, 1645–1654 (2008).
    [Crossref]
  90. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
    [Crossref]
  91. R. Khakimov, I. Shavrin, S. Novotny, M. Kaivola, and H. Ludvigsen, “Numerical solver for supercontinuum generation in multimode optical fibers,” Opt. Express 21, 14388–14398 (2013).
    [Crossref]
  92. A. Aalto, G. Genty, and J. Toivonen, “Extreme-value statistics in supercontinuum generation by cascaded stimulated Raman scattering,” Opt. Express 18, 1234–1239 (2010).
    [Crossref]
  93. R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23, 25588–25596 (2015).
    [Crossref]
  94. K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
    [Crossref]
  95. C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
    [Crossref]

2017 (7)

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

C. Strutynski, P. Froidevaux, F. Désévédavy, J.-C. Jules, G. Gadret, A. Bendahmane, K. Tarnowski, B. Kibler, and F. Smektala, “Tailoring supercontinuum generation beyond 2  μm in step-index tellurite fibers,” Opt. Lett. 42, 247–250 (2017).
[Crossref]

S. Kedenburg, C. Strutynski, B. Kibler, P. Froidevaux, F. Désévédavy, G. Gadret, J.-C. Jules, T. Steinle, F. Morz, A. Steinmann, H. Giessen, and F. Smektala, “High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3  μm in robust step-index tellurite fibers,” J. Opt. Soc. Am. B 34, 601–607 (2017).
[Crossref]

A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34, 764–775 (2017).
[Crossref]

M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. St. J. Russell, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25, 7637–7644 (2017).
[Crossref]

C. Strutynski, F. Desevedavy, A. Lemière, J.-C. Jules, G. Gadret, T. Cardinal, F. Smektala, and S. Danto, “Tellurite-based core-clad dual-electrodes composite fibers,” Opt. Mater. Express 7, 1503–1508 (2017).
[Crossref]

I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, E. Silvestre, and M. V. Andres, “Design of all-normal dispersion microstructured optical fiber on silica platform for generation of pulse-preserving supercontinuum under excitation at 1550  nm,” J. Lightwave Technol. 35, 3772–3779 (2017).
[Crossref]

2016 (9)

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
[Crossref]

J. Sotor, M. Pawliszewska, G. Sobon, P. Kaczmarek, A. Przewolka, I. Pasternak, J. Cajzl, P. Peterka, P. Honzátko, I. Kašík, W. Strupinski, and K. M. Abramski, “All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber,” Opt. Lett. 41, 2592–2595 (2016).
[Crossref]

M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2  μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
[Crossref]

K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Soboń, and W. Urbańczyk, “Coherent supercontinuum generation up to 2.2  μm in an all-normal dispersion microstructured silica fiber,” Opt. Express 24, 30523–30536 (2016).
[Crossref]

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18, 065102 (2016).
[Crossref]

K. Tarnowski and W. Urbanczyk, “All-normal dispersion hole-assisted silica fibers for generation of supercontinuum reaching midinfrared,” IEEE Photon. J. 8, 7100311 (2016).
[Crossref]

2015 (13)

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As-S and an As-free Ge-S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Désévédavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

C. C. Wang, M. H. Wang, and J. Wu, “Heavily germanium-doped silica fiber with a fat normal dispersion profile,” IEEE Photon. J. 7, 7101110 (2015).

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2  μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 1992–2001 (2015).
[Crossref]

Y. Liu, Y. Zhao, J. Lyngsø, S. You, W. L. Wilson, H. Tu, and S. A. Boppart, “Suppressing short-term polarization noise and related spectral decoherence in all-normal dispersion fiber supercontinuum generation,” J. Lightwave Technol. 33, 1814–1820 (2015).
[Crossref]

S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2-2.4  μm range,” Opt. Express 23, 8281–8289 (2015).
[Crossref]

G. Sobon, “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators,” Photon. Res. 3, A56–A63 (2015).
[Crossref]

S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40, 2668–2671 (2015).
[Crossref]

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23, 25588–25596 (2015).
[Crossref]

A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120 (2015).
[Crossref]

R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2  μm,” Opt. Express 23, 30592–30602 (2015).
[Crossref]

2014 (14)

T. Cheng, W. Gao, M. Liao, Z. Duan, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Tunable third-harmonic generation in a chalcogenide-tellurite hybrid optical fiber with high refractive index difference,” Opt. Lett. 39, 1005–1007 (2014).
[Crossref]

H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Development of a high power supercontinuum source in the 1.7  μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 5, 932–943 (2014).
[Crossref]

T. Godin, Y. Combes, R. Ahmad, M. Rochette, T. Sylvestre, and J. M. Dudley, “Far-detuned mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide microwires,” Opt. Lett. 39, 1885–1888 (2014).
[Crossref]

T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39, 2342–2345 (2014).
[Crossref]

Z. Ren, Y. Xu, Y. Qiu, K. K. Y. Wong, and K. Tsia, “Spectrally-resolved statistical characterization of seeded supercontinuum suppression using optical time-stretch,” Opt. Express 22, 11849–11860 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3  μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
[Crossref]

X. Li, W. Chen, T. Xue, J. Gao, W. Gao, L. Hu, and M. Liao, “Low threshold mid-infrared supercontinuum generation in short fluoride-chalcogenide multimaterial fibers,” Opt. Express 22, 24179–24191 (2014).
[Crossref]

F. Li, Q. Li, J. Yuan, and P. K. A. Wai, “Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression,” Opt. Express 22, 27339–27354 (2014).
[Crossref]

M. Klimczak, G. Soboń, K. M. Abramski, and R. Buczyński, “Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump,” Opt. Express 22, 31635–31645 (2014).
[Crossref]

A. M. Heidt, Z. Li, and D. J. Richardson, “High power diode-seeded fiber amplifiers at 2  μm—from architectures to applications,” IEEE J. Sel. Top. Quantum Electron. 20, 3100612 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in softglass photonic crystal fibers pumped at 1560  nm,” Opt. Mat. Express 4, 7–15 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

2013 (10)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
[Crossref]

R. Wu, V. T. Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21, 6045–6052 (2013).
[Crossref]

S. R. Domingue and R. A. Bartels, “Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation,” Opt. Express 21, 13305–13321 (2013).
[Crossref]

R. Khakimov, I. Shavrin, S. Novotny, M. Kaivola, and H. Ludvigsen, “Numerical solver for supercontinuum generation in multimode optical fibers,” Opt. Express 21, 14388–14398 (2013).
[Crossref]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

T. H. Tuan, T. Cheng, K. Asano, Z. Duan, W. Gao, D. Deng, T. Suzuki, and Y. Ohishi, “Optical parametric gain and bandwidth in highly nonlinear tellurite hybrid microstructured optical fiber with four zero-dispersion wavelengths,” Opt. Express 21, 20303–20312 (2013).
[Crossref]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2  μm,” Opt. Express 21, 24281–24287 (2013).
[Crossref]

M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560  nm,” Opt. Lett. 38, 4679–4682 (2013).
[Crossref]

D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J.-M. Merolla, L. Larger, G. Genty, F. Dias, and J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38, 5338–5341 (2013).
[Crossref]

2012 (8)

R. Buczyński, J. Pniewski, D. Pysz, R. Stępień, R. Kasztelanic, I. Kujawa, A. Filipkowski, A. J. Waddie, and M. R. Taghizadeh, “Dispersion management in soft glass all-solid photonic crystal fibres,” Optoelectron. Rev. 20, 207–215 (2012).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express 20, 1113–1128 (2012).
[Crossref]

S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700  nm wavelength region,” Biomed. Opt. Express 3, 282–294 (2012).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[Crossref]

J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22  W of average power at 1  MHz repetition rate,” Opt. Express 20, 10870–10878 (2012).
[Crossref]

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “The role of phase coherence in seeded supercontinuum generation,” Opt. Express 20, 22886–22894 (2012).
[Crossref]

M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, T. Suzuki, and Y. Ohishi, “Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber,” Opt. Express 20, B574–B580 (2012).
[Crossref]

2011 (6)

2010 (2)

2009 (2)

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
[Crossref]

Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14, 054009 (2009).
[Crossref]

2008 (5)

2007 (2)

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
[Crossref]

N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24, 1786–1792 (2007).
[Crossref]

2006 (3)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat supercontinuum generation based on normal dispersion nonlinear photonic crystal fiber,” Electron. Lett. 42, 989–990 (2006).
[Crossref]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Maze, “Mid-infrared supercontinuum generation to 4.5  μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
[Crossref]

2005 (1)

2003 (1)

2002 (2)

2000 (1)

1999 (1)

Y. Takushima and K. Kikuchi, “10-GHz over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322–324 (1999).
[Crossref]

1998 (1)

H. Sotobayashi and K. Kitayama, “325  nm bandwidth supercontinuum generation at 10  Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998).
[Crossref]

1989 (1)

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000  Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Aalto, A.

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Abramski, K. M.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

J. Sotor, M. Pawliszewska, G. Sobon, P. Kaczmarek, A. Przewolka, I. Pasternak, J. Cajzl, P. Peterka, P. Honzátko, I. Kašík, W. Strupinski, and K. M. Abramski, “All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber,” Opt. Lett. 41, 2592–2595 (2016).
[Crossref]

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
[Crossref]

M. Klimczak, G. Soboń, K. M. Abramski, and R. Buczyński, “Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump,” Opt. Express 22, 31635–31645 (2014).
[Crossref]

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in softglass photonic crystal fibers pumped at 1560  nm,” Opt. Mat. Express 4, 7–15 (2014).
[Crossref]

Agger, C.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Ahmad, R.

Alam, S. U.

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000  Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Amrani, F.

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Désévédavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Andres, M. V.

Aramaki, M.

Aranyosiova, M.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

Asano, K.

Babic, F.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Bache, M.

Bang, O.

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2  μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[Crossref]

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “The role of phase coherence in seeded supercontinuum generation,” Opt. Express 20, 22886–22894 (2012).
[Crossref]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005).
[Crossref]

Bartels, R. A.

Bartelt, H.

Barthélémy, A.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

Baskiotis, C.

Béjot, P.

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As-S and an As-free Ge-S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Ben Salem, A.

Bendahmane, A.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Billard, F.

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As-S and an As-free Ge-S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Bjarklev, A.

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat supercontinuum generation based on normal dispersion nonlinear photonic crystal fiber,” Electron. Lett. 42, 989–990 (2006).
[Crossref]

Booker, C. F.

Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14, 054009 (2009).
[Crossref]

Bookey, H.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560  nm,” Opt. Lett. 38, 4679–4682 (2013).
[Crossref]

Boppart, S. A.

Bosman, G. W.

Buczynski, R.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18, 065102 (2016).
[Crossref]

M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2  μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23, 25588–25596 (2015).
[Crossref]

M. Klimczak, G. Soboń, K. M. Abramski, and R. Buczyński, “Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump,” Opt. Express 22, 31635–31645 (2014).
[Crossref]

T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39, 2342–2345 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3  μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
[Crossref]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in softglass photonic crystal fibers pumped at 1560  nm,” Opt. Mat. Express 4, 7–15 (2014).
[Crossref]

M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560  nm,” Opt. Lett. 38, 4679–4682 (2013).
[Crossref]

R. Buczyński, J. Pniewski, D. Pysz, R. Stępień, R. Kasztelanic, I. Kujawa, A. Filipkowski, A. J. Waddie, and M. R. Taghizadeh, “Dispersion management in soft glass all-solid photonic crystal fibres,” Optoelectron. Rev. 20, 207–215 (2012).
[Crossref]

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

Bugar, I.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

Cable, A.

Cajzl, J.

Cardinal, T.

Cassataro, M.

Chang, E. W.

Chau, A. H. L.

Chen, W.

Cheng, T.

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
[Crossref]

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Désévédavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

T. Cheng, W. Gao, M. Liao, Z. Duan, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Tunable third-harmonic generation in a chalcogenide-tellurite hybrid optical fiber with high refractive index difference,” Opt. Lett. 39, 1005–1007 (2014).
[Crossref]

T. H. Tuan, T. Cheng, K. Asano, Z. Duan, W. Gao, D. Deng, T. Suzuki, and Y. Ohishi, “Optical parametric gain and bandwidth in highly nonlinear tellurite hybrid microstructured optical fiber with four zero-dispersion wavelengths,” Opt. Express 21, 20303–20312 (2013).
[Crossref]

M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, T. Suzuki, and Y. Ohishi, “Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber,” Opt. Express 20, B574–B580 (2012).
[Crossref]

Cheung, C. S.

Chow, K.

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat supercontinuum generation based on normal dispersion nonlinear photonic crystal fiber,” Electron. Lett. 42, 989–990 (2006).
[Crossref]

Cimek, J.

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18, 065102 (2016).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23, 25588–25596 (2015).
[Crossref]

Clarkson, W. A.

Coen, S.

Combes, Y.

Company, V. T.

Cordeiro, C. M. B.

Couderc, V.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

Cronin-Golomb, M.

Daniel, J. M. O.

Danto, S.

Davidson, M.

Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14, 054009 (2009).
[Crossref]

Day, R. N.

Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14, 054009 (2009).
[Crossref]

Demmler, S.

Deng, D.

Desevedavy, F.

Désévédavy, F.

S. Kedenburg, C. Strutynski, B. Kibler, P. Froidevaux, F. Désévédavy, G. Gadret, J.-C. Jules, T. Steinle, F. Morz, A. Steinmann, H. Giessen, and F. Smektala, “High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3  μm in robust step-index tellurite fibers,” J. Opt. Soc. Am. B 34, 601–607 (2017).
[Crossref]

C. Strutynski, P. Froidevaux, F. Désévédavy, J.-C. Jules, G. Gadret, A. Bendahmane, K. Tarnowski, B. Kibler, and F. Smektala, “Tailoring supercontinuum generation beyond 2  μm in step-index tellurite fibers,” Opt. Lett. 42, 247–250 (2017).
[Crossref]

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As-S and an As-free Ge-S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Désévédavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Dias, F.

Domachuk, P.

Domingue, S. R.

Duan, Z.

Dudley, J. M.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[Crossref]

Edavalath, N. N.

Fabert, M.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

Falk, P.

Faucher, O.

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As-S and an As-free Ge-S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Feehan, J. S.

Fendel, P.

Feng, X.

Feurer, T.

Filipkowski, A.

R. Buczyński, J. Pniewski, D. Pysz, R. Stępień, R. Kasztelanic, I. Kujawa, A. Filipkowski, A. J. Waddie, and M. R. Taghizadeh, “Dispersion management in soft glass all-solid photonic crystal fibres,” Optoelectron. Rev. 20, 207–215 (2012).
[Crossref]

Finazzi, V.

Finger, M. A.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Foy, P.

Freeman, M. J.

Froidevaux, P.

Frosz, M. H.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gadret, G.

Gaeta, A. L.

Gao, J.

Gao, W.

Gardner, D.

Geng, J.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm-Ho-codoped fiber laser at 2.06  μm,” IEEE Photon. Technol. Lett. 23, 682–684 (2011).
[Crossref]

Genty, G.

George, A. K.

Giessen, H.

Gissibl, T.

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

Godin, T.

Gordon, J. P.

Günendi, M. C.

Hädrich, S.

Hartung, A.

Harvey, J. D.

Haus, H. A.

Heidt, A.

Heidt, A. M.

A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34, 764–775 (2017).
[Crossref]

A. M. Heidt, Z. Li, and D. J. Richardson, “High power diode-seeded fiber amplifiers at 2  μm—from architectures to applications,” IEEE J. Sel. Top. Quantum Electron. 20, 3100612 (2014).
[Crossref]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2  μm,” Opt. Express 21, 24281–24287 (2013).
[Crossref]

A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19, 13873–13879 (2011).
[Crossref]

S. Demmler, J. Rothhardt, A. M. Heidt, A. Hartung, E. G. Rohwer, H. Bartelt, J. Limpert, and A. Tünnermann, “Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19, 20151–20158 (2011).
[Crossref]

A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express 19, 12275–12283 (2011).
[Crossref]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3787 (2011).
[Crossref]

A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27, 550–559 (2010).
[Crossref]

A. M. Heidt, A. Hartung, and H. Bartelt, “Generation of ultrashort and coherent supercontinuum light pulses in all-normal dispersion fibers,” in The Supercontinuum Laser Source, R. Alfano, ed. (Springer, 2016), pp. 247–280.

Hewak, D.

Honzátko, P.

Hooper, L. E.

Horak, P.

Hu, L.

Huang, C.-B.

Iakushev, S. O.

Ishida, S.

Islam, M. N.

Jalali, B.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

Jenkins, D.

Jiang, S.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm-Ho-codoped fiber laser at 2.06  μm,” IEEE Photon. Technol. Lett. 23, 682–684 (2011).
[Crossref]

Jiang, X.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Jiang, Z.

Johnson, A. R.

Joly, N. Y.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Joshi, C.

Jules, J.-C.

Kaczmarek, P.

Kaivola, M.

Kalashnikov, V. L.

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
[Crossref]

Kar, A.

Kar, A. K.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Kašík, I.

Kasztelanic, R.

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18, 065102 (2016).
[Crossref]

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23, 25588–25596 (2015).
[Crossref]

R. Buczyński, J. Pniewski, D. Pysz, R. Stępień, R. Kasztelanic, I. Kujawa, A. Filipkowski, A. J. Waddie, and M. R. Taghizadeh, “Dispersion management in soft glass all-solid photonic crystal fibres,” Optoelectron. Rev. 20, 207–215 (2012).
[Crossref]

Kataura, H.

Kawagoe, H.

Kedenburg, S.

Keiding, S. R.

Keller, U.

Khakimov, R.

Kibler, B.

S. Kedenburg, C. Strutynski, B. Kibler, P. Froidevaux, F. Désévédavy, G. Gadret, J.-C. Jules, T. Steinle, F. Morz, A. Steinmann, H. Giessen, and F. Smektala, “High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3  μm in robust step-index tellurite fibers,” J. Opt. Soc. Am. B 34, 601–607 (2017).
[Crossref]

C. Strutynski, P. Froidevaux, F. Désévédavy, J.-C. Jules, G. Gadret, A. Bendahmane, K. Tarnowski, B. Kibler, and F. Smektala, “Tailoring supercontinuum generation beyond 2  μm in step-index tellurite fibers,” Opt. Lett. 42, 247–250 (2017).
[Crossref]

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As-S and an As-free Ge-S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Désévédavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Kikuchi, K.

Y. Takushima and K. Kikuchi, “10-GHz over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322–324 (1999).
[Crossref]

Kitayama, K.

H. Sotobayashi and K. Kitayama, “325  nm bandwidth supercontinuum generation at 10  Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998).
[Crossref]

Klenner, A.

Klimczak, M.

M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2  μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
[Crossref]

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18, 065102 (2016).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23, 25588–25596 (2015).
[Crossref]

M. Klimczak, G. Soboń, K. M. Abramski, and R. Buczyński, “Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump,” Opt. Express 22, 31635–31645 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3  μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
[Crossref]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in softglass photonic crystal fibers pumped at 1560  nm,” Opt. Mat. Express 4, 7–15 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560  nm,” Opt. Lett. 38, 4679–4682 (2013).
[Crossref]

Knight, J. C.

Kowalczyk, M.

Krok, P.

Krupa, K.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

Krzempek, K.

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in softglass photonic crystal fibers pumped at 1560  nm,” Opt. Mat. Express 4, 7–15 (2014).
[Crossref]

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Kudlinski, A.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Kujawa, I.

R. Buczyński, J. Pniewski, D. Pysz, R. Stępień, R. Kasztelanic, I. Kujawa, A. Filipkowski, A. J. Waddie, and M. R. Taghizadeh, “Dispersion management in soft glass all-solid photonic crystal fibres,” Optoelectron. Rev. 20, 207–215 (2012).
[Crossref]

Kulkarni, O. P.

Kumar, M.

Kumari, S.

Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14, 054009 (2009).
[Crossref]

Lacourt, P. A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Lægsgaard, J.

Lamb, E. S.

Lamont, M. R. E.

Larger, L.

Larsen, C.

Leaird, D. E.

Lemière, A.

Leonhardt, R.

Li, F.

Li, Q.

Li, X.

Li, Z.

A. M. Heidt, Z. Li, and D. J. Richardson, “High power diode-seeded fiber amplifiers at 2  μm—from architectures to applications,” IEEE J. Sel. Top. Quantum Electron. 20, 3100612 (2014).
[Crossref]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2  μm,” Opt. Express 21, 24281–24287 (2013).
[Crossref]

Liang, H.

Liao, M.

Limpert, J.

Lin, C.

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat supercontinuum generation based on normal dispersion nonlinear photonic crystal fiber,” Electron. Lett. 42, 989–990 (2006).
[Crossref]

Lipson, M.

Liu, D.

Liu, L.

Liu, X.

Liu, Y.

Lorenc, D.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

Ludvigsen, H.

Luke, K.

Luo, T.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm-Ho-codoped fiber laser at 2.06  μm,” IEEE Photon. Technol. Lett. 23, 682–684 (2011).
[Crossref]

Lyngsø, J.

Lyngsø, J. K.

Macherzynski, W.

Martynkien, T.

Mathey, P.

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As-S and an As-free Ge-S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Matsumoto, M.

Mayer, A. S.

Maze, G.

Mergo, P.

Merolla, J. M.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Merolla, J.-M.

Millot, G.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

Misumi, T.

Møller, U.

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
[Crossref]

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “The role of phase coherence in seeded supercontinuum generation,” Opt. Express 20, 22886–22894 (2012).
[Crossref]

Monro, T. M.

Morz, F.

Mörz, F.

Moselund, P. M.

Mosley, P. J.

Mouawad, O.

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As-S and an As-free Ge-S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Muir, A. C.

Mussot, A.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Nagasaka, K.

Nguyen, D. M.

Nishizawa, N.

Novoa, D.

Novotny, S.

Ohishi, Y.

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
[Crossref]

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Désévédavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

T. Cheng, W. Gao, M. Liao, Z. Duan, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Tunable third-harmonic generation in a chalcogenide-tellurite hybrid optical fiber with high refractive index difference,” Opt. Lett. 39, 1005–1007 (2014).
[Crossref]

T. H. Tuan, T. Cheng, K. Asano, Z. Duan, W. Gao, D. Deng, T. Suzuki, and Y. Ohishi, “Optical parametric gain and bandwidth in highly nonlinear tellurite hybrid microstructured optical fiber with four zero-dispersion wavelengths,” Opt. Express 21, 20303–20312 (2013).
[Crossref]

M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, T. Suzuki, and Y. Ohishi, “Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber,” Opt. Express 20, B574–B580 (2012).
[Crossref]

Okawachi, Y.

Omenetto, F. G.

Omoda, E.

Pafchek, R.

Paletko, P.

Park, S.-G.

Pasternak, I.

Pawliszewska, M.

Periasamy, A.

Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14, 054009 (2009).
[Crossref]

Peterka, P.

Petersen, C.

Petersen, C. R.

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Petropoulos, P.

Picot-Clemente, J.

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Désévédavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Pniewski, J.

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

R. Buczyński, J. Pniewski, D. Pysz, R. Stępień, R. Kasztelanic, I. Kujawa, A. Filipkowski, A. J. Waddie, and M. R. Taghizadeh, “Dispersion management in soft glass all-solid photonic crystal fibres,” Optoelectron. Rev. 20, 207–215 (2012).
[Crossref]

Poletti, F.

Poturaj, K.

Poulain, M.

Price, J. H. V.

Przewolka, A.

Pysz, D.

M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2  μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
[Crossref]

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18, 065102 (2016).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23, 25588–25596 (2015).
[Crossref]

T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39, 2342–2345 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3  μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
[Crossref]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in softglass photonic crystal fibers pumped at 1560  nm,” Opt. Mat. Express 4, 7–15 (2014).
[Crossref]

M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560  nm,” Opt. Lett. 38, 4679–4682 (2013).
[Crossref]

R. Buczyński, J. Pniewski, D. Pysz, R. Stępień, R. Kasztelanic, I. Kujawa, A. Filipkowski, A. J. Waddie, and M. R. Taghizadeh, “Dispersion management in soft glass all-solid photonic crystal fibres,” Optoelectron. Rev. 20, 207–215 (2012).
[Crossref]

Qin, G.

Qiu, Y.

Radzewicz, C.

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3  μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Ranka, J. K.

Ren, Z.

Richardson, D. J.

A. M. Heidt, Z. Li, and D. J. Richardson, “High power diode-seeded fiber amplifiers at 2  μm—from architectures to applications,” IEEE J. Sel. Top. Quantum Electron. 20, 3100612 (2014).
[Crossref]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2  μm,” Opt. Express 21, 24281–24287 (2013).
[Crossref]

Rochette, M.

Rohwer, E. G.

Rothhardt, J.

Russell, P. St. J.

Saad, M.

Sakakibara, Y.

Salem, R.

Schwoerer, H.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Shalaby, B. M.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000  Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Sharma, U.

Shavrin, I.

Shu, C.

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat supercontinuum generation based on normal dispersion nonlinear photonic crystal fiber,” Electron. Lett. 42, 989–990 (2006).
[Crossref]

Shulika, O. V.

Sihvola, A.

A. Sihvola, Electromagnetic Mixing Formulas and Applications (Institution of Electrical Engeneers, 1999).

Silvestre, E.

Siwicki, B.

M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2  μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
[Crossref]

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18, 065102 (2016).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23, 25588–25596 (2015).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3  μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
[Crossref]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

Skibinski, P.

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3  μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
[Crossref]

Smektala, F.

Sobon, G.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Soboń, and W. Urbańczyk, “Coherent supercontinuum generation up to 2.2  μm in an all-normal dispersion microstructured silica fiber,” Opt. Express 24, 30523–30536 (2016).
[Crossref]

J. Sotor, M. Pawliszewska, G. Sobon, P. Kaczmarek, A. Przewolka, I. Pasternak, J. Cajzl, P. Peterka, P. Honzátko, I. Kašík, W. Strupinski, and K. M. Abramski, “All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber,” Opt. Lett. 41, 2592–2595 (2016).
[Crossref]

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
[Crossref]

G. Sobon, “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators,” Photon. Res. 3, A56–A63 (2015).
[Crossref]

M. Klimczak, G. Soboń, K. M. Abramski, and R. Buczyński, “Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump,” Opt. Express 22, 31635–31645 (2014).
[Crossref]

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in softglass photonic crystal fibers pumped at 1560  nm,” Opt. Mat. Express 4, 7–15 (2014).
[Crossref]

Sørensen, S. T.

Sorokin, E.

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
[Crossref]

Sorokina, I. T.

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
[Crossref]

Sotobayashi, H.

H. Sotobayashi and K. Kitayama, “325  nm bandwidth supercontinuum generation at 10  Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998).
[Crossref]

Sotor, J.

Stefani, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Stefaniuk, T.

Steffensen, H.

Steinle, T.

Steinmann, A.

Stentz, A. J.

Stepien, R.

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18, 065102 (2016).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23, 25588–25596 (2015).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3  μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
[Crossref]

T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39, 2342–2345 (2014).
[Crossref]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in softglass photonic crystal fibers pumped at 1560  nm,” Opt. Mat. Express 4, 7–15 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560  nm,” Opt. Lett. 38, 4679–4682 (2013).
[Crossref]

R. Buczyński, J. Pniewski, D. Pysz, R. Stępień, R. Kasztelanic, I. Kujawa, A. Filipkowski, A. J. Waddie, and M. R. Taghizadeh, “Dispersion management in soft glass all-solid photonic crystal fibres,” Optoelectron. Rev. 20, 207–215 (2012).
[Crossref]

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

Stepniewski, G.

Stolen, R. H.

Strupinski, W.

Strutynski, C.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Sukhoivanov, I. A.

Sun, Y.

Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14, 054009 (2009).
[Crossref]

Suzuki, T.

Sylvestre, T.

Szolno, A.

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560  nm,” Opt. Lett. 38, 4679–4682 (2013).
[Crossref]

Taghizadeh, M. R.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560  nm,” Opt. Lett. 38, 4679–4682 (2013).
[Crossref]

R. Buczyński, J. Pniewski, D. Pysz, R. Stępień, R. Kasztelanic, I. Kujawa, A. Filipkowski, A. J. Waddie, and M. R. Taghizadeh, “Dispersion management in soft glass all-solid photonic crystal fibres,” Optoelectron. Rev. 20, 207–215 (2012).
[Crossref]

Takayanagi, J.

Takushima, Y.

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat supercontinuum generation based on normal dispersion nonlinear photonic crystal fiber,” Electron. Lett. 42, 989–990 (2006).
[Crossref]

Y. Takushima and K. Kikuchi, “10-GHz over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322–324 (1999).
[Crossref]

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Tarnowski, K.

Terry, F. L.

Tezuka, H.

Thøgersen, J.

Thomsen, C. L.

Toenger, S.

Toivonen, J.

Tokurakawa, M.

Tomlinson, W. J.

Tonello, A.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

Tong, H.

Travers, J. C.

M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. St. J. Russell, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25, 7637–7644 (2017).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Tsia, K.

Tu, H.

Tuan, T. H.

Tünnermann, A.

Turchinovich, D.

Urbanczyk, W.

K. Tarnowski and W. Urbanczyk, “All-normal dispersion hole-assisted silica fibers for generation of supercontinuum reaching midinfrared,” IEEE Photon. J. 8, 7100311 (2016).
[Crossref]

K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Soboń, and W. Urbańczyk, “Coherent supercontinuum generation up to 2.2  μm in an all-normal dispersion microstructured silica fiber,” Opt. Express 24, 30523–30536 (2016).
[Crossref]

Velic, D.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

Vincze, A.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

Wabnitz, S.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

Waddie, A.

Waddie, A. J.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

R. Buczyński, J. Pniewski, D. Pysz, R. Stępień, R. Kasztelanic, I. Kujawa, A. Filipkowski, A. J. Waddie, and M. R. Taghizadeh, “Dispersion management in soft glass all-solid photonic crystal fibres,” Optoelectron. Rev. 20, 207–215 (2012).
[Crossref]

Wadsworth, W. J.

Wai, P. K. A.

Wang, A.

Wang, C. C.

C. C. Wang, M. H. Wang, and J. Wu, “Heavily germanium-doped silica fiber with a fat normal dispersion profile,” IEEE Photon. J. 7, 7101110 (2015).

Wang, M. H.

C. C. Wang, M. H. Wang, and J. Wu, “Heavily germanium-doped silica fiber with a fat normal dispersion profile,” IEEE Photon. J. 7, 7101110 (2015).

Wang, Q.

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm-Ho-codoped fiber laser at 2.06  μm,” IEEE Photon. Technol. Lett. 23, 682–684 (2011).
[Crossref]

Weiner, A. M.

Wetzel, B.

Wilson, W. L.

Windeler, R. S.

Wise, F. W.

Wolchover, N. A.

Wong, G. K. L.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Wong, K. K. Y.

Wu, J.

C. C. Wang, M. H. Wang, and J. Wu, “Heavily germanium-doped silica fiber with a fat normal dispersion profile,” IEEE Photon. J. 7, 7101110 (2015).

Wu, R.

Xia, C.

Xu, Y.

Xue, T.

Xue, X.

You, S.

Yuan, J.

Yun, S. H.

Zghal, M.

Zhao, Y.

Zhou, B.

M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2  μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Appl. Phys. B (3)

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
[Crossref]

O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As-S and an As-free Ge-S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433–438 (2015).
[Crossref]

Biomed. Opt. Express (2)

Electron. Lett. (3)

U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
[Crossref]

K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat supercontinuum generation based on normal dispersion nonlinear photonic crystal fiber,” Electron. Lett. 42, 989–990 (2006).
[Crossref]

H. Sotobayashi and K. Kitayama, “325  nm bandwidth supercontinuum generation at 10  Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. M. Heidt, Z. Li, and D. J. Richardson, “High power diode-seeded fiber amplifiers at 2  μm—from architectures to applications,” IEEE J. Sel. Top. Quantum Electron. 20, 3100612 (2014).
[Crossref]

IEEE Photon. J. (2)

C. C. Wang, M. H. Wang, and J. Wu, “Heavily germanium-doped silica fiber with a fat normal dispersion profile,” IEEE Photon. J. 7, 7101110 (2015).

K. Tarnowski and W. Urbanczyk, “All-normal dispersion hole-assisted silica fibers for generation of supercontinuum reaching midinfrared,” IEEE Photon. J. 8, 7100311 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm-Ho-codoped fiber laser at 2.06  μm,” IEEE Photon. Technol. Lett. 23, 682–684 (2011).
[Crossref]

Y. Takushima and K. Kikuchi, “10-GHz over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322–324 (1999).
[Crossref]

J. Biomed. Opt. (1)

Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14, 054009 (2009).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18, 065102 (2016).
[Crossref]

J. Opt. Soc. Am. B (8)

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
[Crossref]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
[Crossref]

N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24, 1786–1792 (2007).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[Crossref]

F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25, 1645–1654 (2008).
[Crossref]

A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27, 550–559 (2010).
[Crossref]

S. Kedenburg, C. Strutynski, B. Kibler, P. Froidevaux, F. Désévédavy, G. Gadret, J.-C. Jules, T. Steinle, F. Morz, A. Steinmann, H. Giessen, and F. Smektala, “High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3  μm in robust step-index tellurite fibers,” J. Opt. Soc. Am. B 34, 601–607 (2017).
[Crossref]

A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34, 764–775 (2017).
[Crossref]

Laser Phys. Lett. (1)

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Nat. Photonics (4)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11, 237–241 (2017).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Opt. Commun. (1)

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Désévédavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Opt. Express (35)

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11, 2225–2230 (2003).
[Crossref]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005).
[Crossref]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3787 (2011).
[Crossref]

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19, 4902–4907 (2011).
[Crossref]

A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express 19, 12275–12283 (2011).
[Crossref]

A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19, 13873–13879 (2011).
[Crossref]

S. Demmler, J. Rothhardt, A. M. Heidt, A. Hartung, E. G. Rohwer, H. Bartelt, J. Limpert, and A. Tünnermann, “Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19, 20151–20158 (2011).
[Crossref]

H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express 20, 1113–1128 (2012).
[Crossref]

U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7  μm for enhanced imaging depth,” Opt. Express 16, 19712–19723 (2008).
[Crossref]

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
[Crossref]

A. Aalto, G. Genty, and J. Toivonen, “Extreme-value statistics in supercontinuum generation by cascaded stimulated Raman scattering,” Opt. Express 18, 1234–1239 (2010).
[Crossref]

J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22  W of average power at 1  MHz repetition rate,” Opt. Express 20, 10870–10878 (2012).
[Crossref]

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “The role of phase coherence in seeded supercontinuum generation,” Opt. Express 20, 22886–22894 (2012).
[Crossref]

M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, T. Suzuki, and Y. Ohishi, “Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber,” Opt. Express 20, B574–B580 (2012).
[Crossref]

R. Wu, V. T. Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21, 6045–6052 (2013).
[Crossref]

S. R. Domingue and R. A. Bartels, “Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation,” Opt. Express 21, 13305–13321 (2013).
[Crossref]

R. Khakimov, I. Shavrin, S. Novotny, M. Kaivola, and H. Ludvigsen, “Numerical solver for supercontinuum generation in multimode optical fibers,” Opt. Express 21, 14388–14398 (2013).
[Crossref]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

T. H. Tuan, T. Cheng, K. Asano, Z. Duan, W. Gao, D. Deng, T. Suzuki, and Y. Ohishi, “Optical parametric gain and bandwidth in highly nonlinear tellurite hybrid microstructured optical fiber with four zero-dispersion wavelengths,” Opt. Express 21, 20303–20312 (2013).
[Crossref]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2  μm,” Opt. Express 21, 24281–24287 (2013).
[Crossref]

C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16, 2520–2527 (2008).
[Crossref]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000  nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
[Crossref]

Z. Ren, Y. Xu, Y. Qiu, K. K. Y. Wong, and K. Tsia, “Spectrally-resolved statistical characterization of seeded supercontinuum suppression using optical time-stretch,” Opt. Express 22, 11849–11860 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3  μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
[Crossref]

X. Li, W. Chen, T. Xue, J. Gao, W. Gao, L. Hu, and M. Liao, “Low threshold mid-infrared supercontinuum generation in short fluoride-chalcogenide multimaterial fibers,” Opt. Express 22, 24179–24191 (2014).
[Crossref]

F. Li, Q. Li, J. Yuan, and P. K. A. Wai, “Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression,” Opt. Express 22, 27339–27354 (2014).
[Crossref]

M. Klimczak, G. Soboń, K. M. Abramski, and R. Buczyński, “Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump,” Opt. Express 22, 31635–31645 (2014).
[Crossref]

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2  μm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 1992–2001 (2015).
[Crossref]

S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2-2.4  μm range,” Opt. Express 23, 8281–8289 (2015).
[Crossref]

R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2  μm,” Opt. Express 23, 30592–30602 (2015).
[Crossref]

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. St. J. Russell, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25, 7637–7644 (2017).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23, 25588–25596 (2015).
[Crossref]

M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2  μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
[Crossref]

K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Soboń, and W. Urbańczyk, “Coherent supercontinuum generation up to 2.2  μm in an all-normal dispersion microstructured silica fiber,” Opt. Express 24, 30523–30536 (2016).
[Crossref]

Opt. Lett. (15)

C. Strutynski, P. Froidevaux, F. Désévédavy, J.-C. Jules, G. Gadret, A. Bendahmane, K. Tarnowski, B. Kibler, and F. Smektala, “Tailoring supercontinuum generation beyond 2  μm in step-index tellurite fibers,” Opt. Lett. 42, 247–250 (2017).
[Crossref]

A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120 (2015).
[Crossref]

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
[Crossref]

J. Sotor, M. Pawliszewska, G. Sobon, P. Kaczmarek, A. Przewolka, I. Pasternak, J. Cajzl, P. Peterka, P. Honzátko, I. Kašík, W. Strupinski, and K. M. Abramski, “All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber,” Opt. Lett. 41, 2592–2595 (2016).
[Crossref]

S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40, 2668–2671 (2015).
[Crossref]

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
[Crossref]

T. Godin, Y. Combes, R. Ahmad, M. Rochette, T. Sylvestre, and J. M. Dudley, “Far-detuned mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide microwires,” Opt. Lett. 39, 1885–1888 (2014).
[Crossref]

T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39, 2342–2345 (2014).
[Crossref]

M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560  nm,” Opt. Lett. 38, 4679–4682 (2013).
[Crossref]

D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J.-M. Merolla, L. Larger, G. Genty, F. Dias, and J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38, 5338–5341 (2013).
[Crossref]

T. Cheng, W. Gao, M. Liao, Z. Duan, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Tunable third-harmonic generation in a chalcogenide-tellurite hybrid optical fiber with high refractive index difference,” Opt. Lett. 39, 1005–1007 (2014).
[Crossref]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Maze, “Mid-infrared supercontinuum generation to 4.5  μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[Crossref]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800  nm,” Opt. Lett. 25, 25–27 (2000).
[Crossref]

Opt. Mat. Express (1)

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in softglass photonic crystal fibers pumped at 1560  nm,” Opt. Mat. Express 4, 7–15 (2014).
[Crossref]

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

Optoelectron. Rev. (1)

R. Buczyński, J. Pniewski, D. Pysz, R. Stępień, R. Kasztelanic, I. Kujawa, A. Filipkowski, A. J. Waddie, and M. R. Taghizadeh, “Dispersion management in soft glass all-solid photonic crystal fibres,” Optoelectron. Rev. 20, 207–215 (2012).
[Crossref]

Photon. Res. (1)

Phys. Rev. Lett. (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000  Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Sci. Rep. (2)

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

Other (5)

J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge, 2010).

A. Sihvola, Electromagnetic Mixing Formulas and Applications (Institution of Electrical Engeneers, 1999).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

A. M. Heidt, A. Hartung, and H. Bartelt, “Generation of ultrashort and coherent supercontinuum light pulses in all-normal dispersion fibers,” in The Supercontinuum Laser Source, R. Alfano, ed. (Springer, 2016), pp. 247–280.

NKT Photonics, http://www.nktphotonics.com ; LEUKOS, http://www.leukos-systems.com , Le Verre Fluoré, http://leverrefluore.com/ , Thorlabs, http://www.thorlabs.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

SEM images of all-solid soft glass ANDi PCFs. (a) NL21 series: core and hexagonal lattice (light color) made of F2 glass, lattice inclusions and lattice surrounding made of NC21A glass. (b) NL38 series: SF6 in the core and lattice, F2 in the inclusions and the surrounding tube.

Fig. 2.
Fig. 2.

Dispersion profiles and effective mode areas obtained in numerical simulations for the all-solid glass ANDi PCFs: (a), (b) NL21 series; (c), (d) NL38 series; (e), (f) UV710+PBG08 fibers.

Fig. 3.
Fig. 3.

Sequence of physical processes broadening the ultra-short laser pulse in an ANDi fiber. (a) Evolution of the spectrum along the entire nonlinear fiber length. (b)–(d) Numerical spectrograms.

Fig. 4.
Fig. 4.

(a) Measured chromatic dispersion profiles of the fabricated fibers, (b) dispersion profile (measured and theoretical) and the wavelength dependence of the effective mode area of the B1 fiber, and (c) SEM images of this particular fiber.

Fig. 5.
Fig. 5.

(a) SC spectra recorded for the ANDi fibers listed in Table 3, measured under pumping with 70 fs centered at 1550 nm, and (b) broadest recorded spectrum in the NL21B1 fiber, its numerical reconstruction with a GNLSE model and measured pump laser spectrum [54].

Fig. 6.
Fig. 6.

SC spectra measured in the all-solid soft glass ANDi PCFs under 2160 nm femtosecond pumping. (a) NL21C2, (b) NL21C4, (c) NL38A2, and (d) NL38A4 [35].

Fig. 7.
Fig. 7.

(a) Calculated effective mode area of the PCFs. (b) Theoretical (solid traces) and measured (dotted traces) dispersion profiles of the PCFs [35].

Fig. 8.
Fig. 8.

Reconstruction of experimental results with numerical simulations: (a) NL21C2 fiber, (b) NL38A2 [35].

Fig. 9.
Fig. 9.

Results of interference measurements of SC spectra and profiles of spectral degree of coherence: (a) anomalous dispersion-pumped PCF, coupled pump pulse energy Ein=2  nJ; (b) anomalous dispersion-pumped PCF, Ein=5  nJ; (c) ANDi PCF, Ein=2  nJ; and (d) ADNi PCF, Ein=5  nJ [78].

Fig. 10.
Fig. 10.

SNR and the ensembles of DFT single-shot spectra with the averaged spectrum from an OSA before the stretching fiber for the investigated soft glass fibers: (a) NL21 fiber (ANDi) and (b) NL24 fiber (anomalous dispersion) [78].

Fig. 11.
Fig. 11.

Spectral correlation maps obtained from DFT measurement data. (a) Typical features of SPM, SF, and calculated location of the dispersive wave (DSW) are indicated for the soliton-based SC. (b), (d) ANDi SC correlation is shown indicating formation of pump-seeded Raman components, first at Stokes-shifted wavelengths (350 mW of average pump power), followed by (c), (e) anti-Stokes-shifted wavelengths (390 mW of average pump power). SRS, stimulated Raman scattering. (f) Spectral correlation of the pump laser is shown in the bottom right [78].

Fig. 12.
Fig. 12.

Numerically obtained mode field distributions. (a) Fundamental mode in the core. (b)–(d) Typical higher order modes in the photonic cladding of the NL21 type ANDi fiber [77,78].

Fig. 13.
Fig. 13.

SC spectra obtained from numerical simulations using modeling (a) scalar GNLSE and (b) two coupled modes (vector) GNLSE. 500-shot realization with one photon per mode noise shown at each plot. In-coupled pump pulse energies shown in each plot [78].

Fig. 14.
Fig. 14.

Spectral correlation maps calculated for the ANDi SC using (a) scalar GNLSE and (b) vector (two coupled modes) GNLSE [78].

Fig. 15.
Fig. 15.

(a) Design of the core nanostructure, (b) theoretical distribution of the refractive index in the core, (c) stacked preform of fiber core, and (d) core preform drawn at a fiber drawing tower. Typical SEM images of (e) final nanostructured core fiber-core area and (f) detail of the core nanostructure [93].

Fig. 16.
Fig. 16.

(a) Chromatic dispersion estimated from the design of the nanostructured core fibers based on numerical simulations. (b) Measured dispersion profiles of the fabricated fibers. (c) Spatial and spectral profile of the effective refractive index in the nanostructured core (dependence on the normalized diameter). (d) Chromatic dispersion profiles calculated for the fibers with different core diameters for an optimized material dispersion at the core nanostructure level [93].

Tables (6)

Tables Icon

Table 1. Overview of Lattice Parameters of All-Solid Soft Glass PCFs with Engineered Normal Dispersion Profiles

Tables Icon

Table 2. Coherent, Pulse-Preserving SC Generation in ANDi Fibersa

Tables Icon

Table 3. Geometrical Parameters of the Series of All-Solid Glass PCFs with ANDi, as used in Ref. [54]

Tables Icon

Table 4. Geometrical Parameters of NL21 and NL38 Series Fibers used in Experiments with Femtosecond Pumping at a Wavelength >2.0  μm

Tables Icon

Table 5. Nonlinear Optical Parameters of the NL21 and NL38 Type ANDi Fibers at Wavelengths Compatible with Erbium- and Thulium-Doped Laser Systems

Tables Icon

Table 6. Geometrical Parameters of the Fabricated Nanostructured Core Fibers [93]

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Lfiss=LD/LNL,LMI16LNL,LD=t02/|β2|,N=LD/LNLandLNL=1/(γP0),
|g12(1)(λ,t1t2=0)|=|E1*(λ,t1)E2(λ,t2)[|E1(λ,t1)|2|E2(λ,t2)|2]1/2|.
T(ω)=m=1βm+1·zm!·(ωω0)m.
ρ(λ1,λ2)=|I(λ1)I(λ2)I(λ1)I(λ2)(I2(λ1)I(λ1)2)(I2(λ2)I(λ2)2)|.
Ap(z,T)z=[i(β0(p)β0)Ap(z,T)(β1(p)β1)Ap(z,T)T+in21n!βn(p)innAp(z,T)Tn]+{in2ω0cl,m,n[(1+iτplmn(1)T)Qplmn(1)2Al(z,T)R(T)Am(z,TT)An*(z,TT)dT+(1+iτplmn(2)T)Qplmn(2)2Al*(z,T)R(T)Am(z,TT)An(z,TT)e2iω0TdT]},Qplmn(1)(ω)=ϵ02n02c212[Ep*(ω)·El(ω)][Em(ω)·En*(ω)]dSNp(ω)Nl(ω)Nm(ω)Nn(ω),Qplmn(2)(ω)=ϵ02n02c212[Ep*(ω)·El*(ω)][Em(ω)·En(ω)]dSNp(ω)Nl(ω)Nm(ω)Nn(ω),

Metrics