Abstract

Silicon photonic integrated circuits for telecommunication and data centers have been well studied in the past decade, and now most related efforts have been progressing toward commercialization. Scaling up the silicon-on-insulator (SOI)-based device dimensions in order to extend the operation wavelength to the short mid-infrared (MIR) range (2–4 μm) is attracting research interest, owing to the host of potential applications in lab-on-chip sensors, free space communications, and much more. Other material systems and technology platforms, including silicon-on-silicon nitride, germanium-on-silicon, germanium-on-SOI, germanium-on-silicon nitride, sapphire-on-silicon, SiGe alloy-on-silicon, and aluminum nitride-on-insulator are explored as well in order to realize low-loss waveguide devices for different MIR wavelengths. In this paper, we will comprehensively review silicon photonics for MIR applications, with regard to the state-of-the-art achievements from various device demonstrations in different material platforms by various groups. We will then introduce in detail of our institute’s research and development efforts on the MIR photonic platforms as one case study. Meanwhile, we will discuss the integration schemes along with remaining challenges in devices (e.g., light source) and integration. A few application-oriented examples will be examined to illustrate the issues needing a critical solution toward the final production path (e.g., gas sensors). Finally, we will provide our assessment of the outlook of potential future research topics and engineering challenges along with opportunities.

© 2017 Chinese Laser Press

Full Article  |  PDF Article

Corrections

24 August 2017: A typographical correction was made to the title.


OSA Recommended Articles
Silicon photonic devices and platforms for the mid-infrared

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich
Opt. Mater. Express 3(9) 1205-1214 (2013)

Investigation of germanium Raman lasers for the mid-infrared

Francesco De Leonardis, Benedetto Troia, Richard A. Soref, and Vittorio M. N. Passaro
Opt. Express 23(13) 17237-17254 (2015)

Low loss silicon waveguides for the mid-infrared

Goran Z. Mashanovich, Milan M. Milošević, Milos Nedeljkovic, Nathan Owens, Boqian Xiong, Ee Jin Teo, and Youfang Hu
Opt. Express 19(8) 7112-7119 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
    [Crossref]
  2. R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
    [Crossref]
  3. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 1.
  4. V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 8200612 (2017).
    [Crossref]
  5. N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
    [Crossref]
  6. M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
    [Crossref]
  7. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011).
    [Crossref]
  8. M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
    [Crossref]
  9. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
    [Crossref]
  10. M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
    [Crossref]
  11. J. S. Penadés, A. Z. Khokhar, M. Nedeljkovic, and G. Z. Mashanovich, “Low-loss mid-infrared SOI slot waveguides,” IEEE Photon. Technol. Lett. 27, 1197–1199 (2015).
    [Crossref]
  12. S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
    [Crossref]
  13. B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).
  14. Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, and Q. Xu, “Suspended Si ring resonator for mid-IR application,” Opt. Lett. 38, 1122–1124 (2013).
    [Crossref]
  15. L. Qin, L. Wang, M. Li, and J. He, “Optical sensor based on Vernier-cascade of a ring resonator and an echelle diffraction grating,” IEEE Photon. Technol. Lett. 24, 954–956 (2012).
    [Crossref]
  16. X. Jiang, Y. Chen, F. Yu, L. Tang, M. Li, and J. He, “High-sensitivity optical biosensor based on cascaded Mach-Zehnder interferometer and ring resonator using Vernier effect,” Opt. Lett. 39, 6363–6366 (2014).
    [Crossref]
  17. B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. N. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22, 23990–24003 (2014).
    [Crossref]
  18. B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41, 610–613 (2016).
    [Crossref]
  19. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19, 21595–21604 (2011).
    [Crossref]
  20. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
    [Crossref]
  21. D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39, 941–944 (2014).
    [Crossref]
  22. A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39, 4575–4578 (2014).
    [Crossref]
  23. C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42, 21–24 (2017).
    [Crossref]
  24. M. Pfennigbauer and A. Ullrich, “Multi-wavelength airborne laser scanning,” in Proceedings of the International Lidar Mapping Forum, ILMF, New Orleans, Louisiana, 2011.
  25. B. Jalali, “Silicon photonics: nonlinear optics in the mid-infrared,” Nat. Photonics 4, 506–508 (2010).
    [Crossref]
  26. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherje, and S. Ra, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
    [Crossref]
  27. B. Kuyken, P. Verheyen, P. Tannouri, X. Liu, J. Van Campenhout, R. Baets, W. M. J. Green, and G. Roelkens, “Generation of 3.6  μm radiation and telecom-band amplification by four-wave mixing in a silicon waveguide with normal group velocity dispersion,” Opt. Lett. 39, 1349–1352 (2014).
    [Crossref]
  28. B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “50  dB parametric on-chip gain in silicon photonic wires,” Opt. Lett. 36, 4401–4403 (2011).
    [Crossref]
  29. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express 21, 5931–5940 (2013).
    [Crossref]
  30. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
    [Crossref]
  31. A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
    [Crossref]
  32. Y. Chang, V. Paeder, L. Hvozdara, J. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37, 2883–2885 (2012).
    [Crossref]
  33. M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovíc, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
    [Crossref]
  34. U. Younis, S. K. Vanga, A. E. Lim, P. G. Lo, A. A. Bettiol, and K. Ang, “Germanium-on-SOI waveguides for mid-infrared wavelengths,” Opt. Express 24, 11987–11993 (2016).
    [Crossref]
  35. U. Younis, A. E. Lim, P. G. Lo, A. A. Bettiol, and K. Ang, “Propagation loss improvement in Ge-on-SOI mid-infrared waveguides using rapid thermal annealing,” IEEE Photon. Technol. Lett. 28, 2447–2450 (2016).
    [Crossref]
  36. J. Kang, M. Takenaka, and S. Takagi, “Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits,” Opt. Express 24, 11855–11864 (2016).
    [Crossref]
  37. W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
    [Crossref]
  38. S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
    [Crossref]
  39. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. L. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
    [Crossref]
  40. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011).
    [Crossref]
  41. M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22, 508–518 (2014).
    [Crossref]
  42. P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
    [Crossref]
  43. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37, 5181–5183 (2012).
    [Crossref]
  44. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
    [Crossref]
  45. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
    [Crossref]
  46. C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penades, C. G. Littlejohns, A. Z. Khokhar, D. Perez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41, 4324–4327 (2016).
    [Crossref]
  47. Y. Wei, G. Li, Y. Hao, Y. Li, J. Yang, M. Wang, and X. Jiang, “Long-wave infrared 1 × 2 MMI based on air-gap beneath silicon rib waveguides,” Opt. Express 19, 15803–15809 (2011).
    [Crossref]
  48. M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, G. T. Reed, and G. Z. Mashanovich, “Submicron silicon waveguides and optical splitters for mid-infrared applications,” in 9th International Conference on Group IV Photonics (GFP) (2012), paper WA5.
  49. M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
    [Crossref]
  50. A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in IEEE Photonics Conference (IPC) (2013), paper MF1.4.
  51. A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  μm,” Appl. Phys. Lett. 97, 213501 (2010).
    [Crossref]
  52. C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
    [Crossref]
  53. R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
    [Crossref]
  54. R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19, 5579–5586 (2011).
    [Crossref]
  55. C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of polycrystalline silicon based photonic crystal membrane for mid-infrared applications,” IEEE J. Sel. Top. Quantum Electron. 20, 4900107 (2014).
    [Crossref]
  56. Y. Zou, S. Chakravarty, and R. T. Chen, “Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 081109 (2015).
    [Crossref]
  57. A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
    [Crossref]
  58. A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
    [Crossref]
  59. P. Barritault, M. Brun, P. Labeye, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Design, fabrication and characterization of an AWG at 4.5  μm,” Opt. Express 23, 26168–26181 (2015).
    [Crossref]
  60. J. S. Penades, Y. Hu, M. Nedeljkovic, C. G. Littlejohns, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, G. Roelkens, F. Y. Gardes, and G. Z. Mashanovich, “Angled MMI CWDM structure on germanium on silicon,” in European Conference on Lasers and Electro-Optics (2015), paper CK_7_2.
  61. T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
    [Crossref]
  62. T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photon. J. 8, 4802209 (2016).
    [Crossref]
  63. M. A. V. Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, and W. M. J. Green, “Demonstration of electrooptic modulation at 2165  nm using a silicon Mach-Zehnder interferometer,” Opt. Express 20, 28009–28016 (2012).
    [Crossref]
  64. D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, “Optical detection and modulation at 2  μm-2.5  μm in silicon,” Opt. Express 22, 10825–10830 (2014).
    [Crossref]
  65. L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40, 268–271 (2015).
    [Crossref]
  66. J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, and M. Yu, “Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator,” Opt. Express 20, 7081–7087 (2012).
    [Crossref]
  67. J. Ding, R. Ji, L. Zhang, and L. Yang, “Electro-optical response analysis of a 40  Gb/s silicon Mach-Zehnder optical modulator,” J. Lightwave Technol. 31, 2434–2440 (2013).
    [Crossref]
  68. J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
    [Crossref]
  69. S. Liu, K. Xu, Q. Song, Z. Cheng, and H. K. Tsang, “Design of mid-infrared electro-optic modulators based on aluminum nitride waveguides,” J. Lightwave Technol. 34, 3837–3842 (2016).
    [Crossref]
  70. S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in mid-wavelength infrared using porous Si membranes,” Sci. Rep. 6, 30211 (2016).
    [Crossref]
  71. M. Nedeljkovic, S. Stankovíc, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SOI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
    [Crossref]
  72. C. Lin, M. Grau, O. Dier, and M.-C. Amann, “Low threshold room-temperature continuous-wave operation of 2.24–3.04  μm GaInAsSb/AlGaAsSb quantum-well lasers,” Appl. Phys. Lett. 84, 5088–5090 (2004).
    [Crossref]
  73. L. Shterengasa, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36  μm at 12°C,” Appl. Phys. Lett. 93, 011103 (2008).
    [Crossref]
  74. S. Belahsene, L. Naehle, M. Fischer, J. Koeth, G. Boissier, P. Grech, G. Narcy, A. Vicet, and Y. Rouillard, “Laser diodes for gas sensing emitting at 3.06  μm at room temperature,” IEEE Photon. Technol. Lett. 22, 1084–1086 (2010).
    [Crossref]
  75. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
    [Crossref]
  76. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
    [Crossref]
  77. M. S. Vitiello, G. Scalari, B. Williams, and P. D. Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23, 5167–5182 (2015).
    [Crossref]
  78. G. Maisons, C. Gilles, L. Orbe, G. Carpintero, J. Abautret, and M. Carras, “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis (2016), paper LTh3E.7.
  79. A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
    [Crossref]
  80. S. Latkowski, A. Hänsel, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. J. A. Thijs, H. P. M. M. Ambrosius, M. K. Smit, and K. A. Williams, “Monolithically integrated widely tunable laser source operating at 2  μm,” Optica 3, 1412–1417 (2016).
    [Crossref]
  81. A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20, 27297–27303 (2012).
    [Crossref]
  82. H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 1–6 (2016).
    [Crossref]
  83. J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. C. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18, 12890–12896 (2010).
    [Crossref]
  84. J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100, 211106 (2012).
    [Crossref]
  85. J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
    [Crossref]
  86. X. Luo, Y. Cheng, J. Song, T.-Y. Liow, Q. J. Wang, and M. Yu, “Wafer-scale dies-transfer bonding technology for hybrid III/V-on-silicon photonic integrated circuit application,” IEEE J. Sel. Top. Quantum Electron. 22, 443–454 (2016).
    [Crossref]
  87. H. Jane and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2012).
  88. Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
    [Crossref]
  89. C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, and M. G. Allen, “Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators,” Opt. Express 23, 5491–5499 (2015).
    [Crossref]
  90. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
    [Crossref]
  91. J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Electrical tracing-assisted dual-microring label-free optical bio/chemical sensors,” Opt. Express 20, 4189–4197 (2012).
    [Crossref]
  92. A. Glière, J. Rouxel, M. Brun, B. Parvitte, V. Zéninari, and S. Nicoletti, “Challenges in the design and fabrication of a lab-on-a-chip photoacoustic gas sensor,” Sensors 14, 957–974 (2014).
    [Crossref]

2017 (4)

V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 8200612 (2017).
[Crossref]

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42, 21–24 (2017).
[Crossref]

2016 (17)

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41, 610–613 (2016).
[Crossref]

U. Younis, S. K. Vanga, A. E. Lim, P. G. Lo, A. A. Bettiol, and K. Ang, “Germanium-on-SOI waveguides for mid-infrared wavelengths,” Opt. Express 24, 11987–11993 (2016).
[Crossref]

U. Younis, A. E. Lim, P. G. Lo, A. A. Bettiol, and K. Ang, “Propagation loss improvement in Ge-on-SOI mid-infrared waveguides using rapid thermal annealing,” IEEE Photon. Technol. Lett. 28, 2447–2450 (2016).
[Crossref]

J. Kang, M. Takenaka, and S. Takagi, “Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits,” Opt. Express 24, 11855–11864 (2016).
[Crossref]

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penades, C. G. Littlejohns, A. Z. Khokhar, D. Perez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41, 4324–4327 (2016).
[Crossref]

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photon. J. 8, 4802209 (2016).
[Crossref]

S. Liu, K. Xu, Q. Song, Z. Cheng, and H. K. Tsang, “Design of mid-infrared electro-optic modulators based on aluminum nitride waveguides,” J. Lightwave Technol. 34, 3837–3842 (2016).
[Crossref]

S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in mid-wavelength infrared using porous Si membranes,” Sci. Rep. 6, 30211 (2016).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

S. Latkowski, A. Hänsel, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. J. A. Thijs, H. P. M. M. Ambrosius, M. K. Smit, and K. A. Williams, “Monolithically integrated widely tunable laser source operating at 2  μm,” Optica 3, 1412–1417 (2016).
[Crossref]

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 1–6 (2016).
[Crossref]

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

X. Luo, Y. Cheng, J. Song, T.-Y. Liow, Q. J. Wang, and M. Yu, “Wafer-scale dies-transfer bonding technology for hybrid III/V-on-silicon photonic integrated circuit application,” IEEE J. Sel. Top. Quantum Electron. 22, 443–454 (2016).
[Crossref]

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

2015 (9)

C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, and M. G. Allen, “Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators,” Opt. Express 23, 5491–5499 (2015).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

M. S. Vitiello, G. Scalari, B. Williams, and P. D. Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23, 5167–5182 (2015).
[Crossref]

P. Barritault, M. Brun, P. Labeye, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Design, fabrication and characterization of an AWG at 4.5  μm,” Opt. Express 23, 26168–26181 (2015).
[Crossref]

L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40, 268–271 (2015).
[Crossref]

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovíc, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

Y. Zou, S. Chakravarty, and R. T. Chen, “Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 081109 (2015).
[Crossref]

J. S. Penadés, A. Z. Khokhar, M. Nedeljkovic, and G. Z. Mashanovich, “Low-loss mid-infrared SOI slot waveguides,” IEEE Photon. Technol. Lett. 27, 1197–1199 (2015).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

2014 (13)

D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39, 941–944 (2014).
[Crossref]

A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39, 4575–4578 (2014).
[Crossref]

B. Kuyken, P. Verheyen, P. Tannouri, X. Liu, J. Van Campenhout, R. Baets, W. M. J. Green, and G. Roelkens, “Generation of 3.6  μm radiation and telecom-band amplification by four-wave mixing in a silicon waveguide with normal group velocity dispersion,” Opt. Lett. 39, 1349–1352 (2014).
[Crossref]

X. Jiang, Y. Chen, F. Yu, L. Tang, M. Li, and J. He, “High-sensitivity optical biosensor based on cascaded Mach-Zehnder interferometer and ring resonator using Vernier effect,” Opt. Lett. 39, 6363–6366 (2014).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. N. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22, 23990–24003 (2014).
[Crossref]

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
[Crossref]

M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22, 508–518 (2014).
[Crossref]

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
[Crossref]

D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, “Optical detection and modulation at 2  μm-2.5  μm in silicon,” Opt. Express 22, 10825–10830 (2014).
[Crossref]

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of polycrystalline silicon based photonic crystal membrane for mid-infrared applications,” IEEE J. Sel. Top. Quantum Electron. 20, 4900107 (2014).
[Crossref]

M. Nedeljkovic, S. Stankovíc, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SOI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

A. Glière, J. Rouxel, M. Brun, B. Parvitte, V. Zéninari, and S. Nicoletti, “Challenges in the design and fabrication of a lab-on-a-chip photoacoustic gas sensor,” Sensors 14, 957–974 (2014).
[Crossref]

2013 (10)

J. Ding, R. Ji, L. Zhang, and L. Yang, “Electro-optical response analysis of a 40  Gb/s silicon Mach-Zehnder optical modulator,” J. Lightwave Technol. 31, 2434–2440 (2013).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, and Q. Xu, “Suspended Si ring resonator for mid-IR application,” Opt. Lett. 38, 1122–1124 (2013).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express 21, 5931–5940 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

2012 (16)

Y. Chang, V. Paeder, L. Hvozdara, J. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37, 2883–2885 (2012).
[Crossref]

L. Qin, L. Wang, M. Li, and J. He, “Optical sensor based on Vernier-cascade of a ring resonator and an echelle diffraction grating,” IEEE Photon. Technol. Lett. 24, 954–956 (2012).
[Crossref]

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37, 5181–5183 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, and M. Yu, “Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator,” Opt. Express 20, 7081–7087 (2012).
[Crossref]

M. A. V. Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, and W. M. J. Green, “Demonstration of electrooptic modulation at 2165  nm using a silicon Mach-Zehnder interferometer,” Opt. Express 20, 28009–28016 (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100, 211106 (2012).
[Crossref]

J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Electrical tracing-assisted dual-microring label-free optical bio/chemical sensors,” Opt. Express 20, 4189–4197 (2012).
[Crossref]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20, 27297–27303 (2012).
[Crossref]

H. Jane and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2012).

2011 (6)

2010 (8)

B. Jalali, “Silicon photonics: nonlinear optics in the mid-infrared,” Nat. Photonics 4, 506–508 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherje, and S. Ra, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. L. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  μm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

S. Belahsene, L. Naehle, M. Fischer, J. Koeth, G. Boissier, P. Grech, G. Narcy, A. Vicet, and Y. Rouillard, “Laser diodes for gas sensing emitting at 3.06  μm at room temperature,” IEEE Photon. Technol. Lett. 22, 1084–1086 (2010).
[Crossref]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. C. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18, 12890–12896 (2010).
[Crossref]

2008 (1)

L. Shterengasa, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36  μm at 12°C,” Appl. Phys. Lett. 93, 011103 (2008).
[Crossref]

2004 (1)

C. Lin, M. Grau, O. Dier, and M.-C. Amann, “Low threshold room-temperature continuous-wave operation of 2.24–3.04  μm GaInAsSb/AlGaAsSb quantum-well lasers,” Appl. Phys. Lett. 84, 5088–5090 (2004).
[Crossref]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Abautret, J.

G. Maisons, C. Gilles, L. Orbe, G. Carpintero, J. Abautret, and M. Carras, “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis (2016), paper LTh3E.7.

Ackert, J. J.

Agarwal, A.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
[Crossref]

Agarwal, A. M.

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100, 211106 (2012).
[Crossref]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. C. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18, 12890–12896 (2010).
[Crossref]

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherje, and S. Ra, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Allen, M. G.

Alonso-Ramos, C.

Amann, M.-C.

C. Lin, M. Grau, O. Dier, and M.-C. Amann, “Low threshold room-temperature continuous-wave operation of 2.24–3.04  μm GaInAsSb/AlGaAsSb quantum-well lasers,” Appl. Phys. Lett. 84, 5088–5090 (2004).
[Crossref]

Ambrosius, H. P. M. M.

Anantha, P.

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

Ang, K.

U. Younis, A. E. Lim, P. G. Lo, A. A. Bettiol, and K. Ang, “Propagation loss improvement in Ge-on-SOI mid-infrared waveguides using rapid thermal annealing,” IEEE Photon. Technol. Lett. 28, 2447–2450 (2016).
[Crossref]

U. Younis, S. K. Vanga, A. E. Lim, P. G. Lo, A. A. Bettiol, and K. Ang, “Germanium-on-SOI waveguides for mid-infrared wavelengths,” Opt. Express 24, 11987–11993 (2016).
[Crossref]

Ashanovich, G. Z.

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Asher, W.

Assefa, S.

Atanackovic, P.

Baehr-Jones, T.

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. L. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  μm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

Baets, R.

Bai, Y.

Bandyopadhyay, N.

Bao, S.

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

Barritault, P.

Barwicz, T.

Becla, P.

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100, 211106 (2012).
[Crossref]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. C. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18, 12890–12896 (2010).
[Crossref]

Belahsene, S.

S. Belahsene, L. Naehle, M. Fischer, J. Koeth, G. Boissier, P. Grech, G. Narcy, A. Vicet, and Y. Rouillard, “Laser diodes for gas sensing emitting at 3.06  μm at room temperature,” IEEE Photon. Technol. Lett. 22, 1084–1086 (2010).
[Crossref]

Belenky, G.

L. Shterengasa, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36  μm at 12°C,” Appl. Phys. Lett. 93, 011103 (2008).
[Crossref]

Benamara, M.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Benedikovic, D.

Bettiol, A. A.

U. Younis, S. K. Vanga, A. E. Lim, P. G. Lo, A. A. Bettiol, and K. Ang, “Germanium-on-SOI waveguides for mid-infrared wavelengths,” Opt. Express 24, 11987–11993 (2016).
[Crossref]

U. Younis, A. E. Lim, P. G. Lo, A. A. Bettiol, and K. Ang, “Propagation loss improvement in Ge-on-SOI mid-infrared waveguides using rapid thermal annealing,” IEEE Photon. Technol. Lett. 28, 2447–2450 (2016).
[Crossref]

Bewley, W. W.

Bhattacharya, N.

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherje, and S. Ra, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Boissier, G.

S. Belahsene, L. Naehle, M. Fischer, J. Koeth, G. Boissier, P. Grech, G. Narcy, A. Vicet, and Y. Rouillard, “Laser diodes for gas sensing emitting at 3.06  μm at room temperature,” IEEE Photon. Technol. Lett. 22, 1084–1086 (2010).
[Crossref]

Botez, D.

Boulila, F.

Bovington, J. T.

Bowers, J. E.

Brun, M.

Bucio, T. D.

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovíc, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

Bulu, I.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19, 5579–5586 (2011).
[Crossref]

Byrd, M. J.

Camp, M. A. V.

Campenhout, J. V.

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in IEEE Photonics Conference (IPC) (2013), paper MF1.4.

Canham, L. T.

S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in mid-wavelength infrared using porous Si membranes,” Sci. Rep. 6, 30211 (2016).
[Crossref]

Cardenas, J.

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Carpintero, G.

G. Maisons, C. Gilles, L. Orbe, G. Carpintero, J. Abautret, and M. Carras, “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis (2016), paper LTh3E.7.

Carras, M.

P. Barritault, M. Brun, P. Labeye, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Design, fabrication and characterization of an AWG at 4.5  μm,” Opt. Express 23, 26168–26181 (2015).
[Crossref]

M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22, 508–518 (2014).
[Crossref]

G. Maisons, C. Gilles, L. Orbe, G. Carpintero, J. Abautret, and M. Carras, “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis (2016), paper LTh3E.7.

Chakravarty, S.

Y. Zou, S. Chakravarty, and R. T. Chen, “Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 081109 (2015).
[Crossref]

Chang, Y.

Cheben, P.

Chekulaev, D.

S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in mid-wavelength infrared using porous Si membranes,” Sci. Rep. 6, 30211 (2016).
[Crossref]

Chen, H.

Chen, R. T.

Y. Zou, S. Chakravarty, and R. T. Chen, “Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 081109 (2015).
[Crossref]

D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39, 941–944 (2014).
[Crossref]

Chen, S.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Chen, X.

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37, 5181–5183 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

Chen, Y.

Chen, Y. M.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Cheng, B.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 1–6 (2016).
[Crossref]

Cheng, Y.

X. Luo, Y. Cheng, J. Song, T.-Y. Liow, Q. J. Wang, and M. Yu, “Wafer-scale dies-transfer bonding technology for hybrid III/V-on-silicon photonic integrated circuit application,” IEEE J. Sel. Top. Quantum Electron. 22, 443–454 (2016).
[Crossref]

Cheng, Z.

S. Liu, K. Xu, Q. Song, Z. Cheng, and H. K. Tsang, “Design of mid-infrared electro-optic modulators based on aluminum nitride waveguides,” J. Lightwave Technol. 34, 3837–3842 (2016).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37, 5181–5183 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

Chiles, J.

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

Chong, H. M. H.

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, G. T. Reed, and G. Z. Mashanovich, “Submicron silicon waveguides and optical splitters for mid-infrared applications,” in 9th International Conference on Group IV Photonics (GFP) (2012), paper WA5.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Coldren, L. A.

Cong, H.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 1–6 (2016).
[Crossref]

Coolbaugh, D.

Covey, J.

D’Agostino, D.

Davenport, M. L.

Dier, O.

C. Lin, M. Grau, O. Dier, and M.-C. Amann, “Low threshold room-temperature continuous-wave operation of 2.24–3.04  μm GaInAsSb/AlGaAsSb quantum-well lasers,” Appl. Phys. Lett. 84, 5088–5090 (2004).
[Crossref]

Ding, J.

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherje, and S. Ra, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Docter, B.

Dong, B.

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

Doylend, J. K.

Duvall, S. G.

Eggleton, B. J.

Emerson, N. G.

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Fain, R.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Fathpour, S.

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

Fischer, M.

S. Belahsene, L. Naehle, M. Fischer, J. Koeth, G. Boissier, P. Grech, G. Narcy, A. Vicet, and Y. Rouillard, “Laser diodes for gas sensing emitting at 3.06  μm at room temperature,” IEEE Photon. Technol. Lett. 22, 1084–1086 (2010).
[Crossref]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Frish, M. B.

Fung, C. K. Y.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

Gaeta, A. L.

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Gao, W.

Gardes, F. Y.

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovíc, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovíc, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SOI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

J. S. Penades, Y. Hu, M. Nedeljkovic, C. G. Littlejohns, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, G. Roelkens, F. Y. Gardes, and G. Z. Mashanovich, “Angled MMI CWDM structure on germanium on silicon,” in European Conference on Lasers and Electro-Optics (2015), paper CK_7_2.

Gassenq, A.

Gencarelli, F.

Gill, D. M.

Gilles, C.

G. Maisons, C. Gilles, L. Orbe, G. Carpintero, J. Abautret, and M. Carras, “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis (2016), paper LTh3E.7.

Glière, A.

A. Glière, J. Rouxel, M. Brun, B. Parvitte, V. Zéninari, and S. Nicoletti, “Challenges in the design and fabrication of a lab-on-a-chip photoacoustic gas sensor,” Sensors 14, 957–974 (2014).
[Crossref]

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Grand, G.

Grau, M.

C. Lin, M. Grau, O. Dier, and M.-C. Amann, “Low threshold room-temperature continuous-wave operation of 2.24–3.04  μm GaInAsSb/AlGaAsSb quantum-well lasers,” Appl. Phys. Lett. 84, 5088–5090 (2004).
[Crossref]

Grech, P.

S. Belahsene, L. Naehle, M. Fischer, J. Koeth, G. Boissier, P. Grech, G. Narcy, A. Vicet, and Y. Rouillard, “Laser diodes for gas sensing emitting at 3.06  μm at room temperature,” IEEE Photon. Technol. Lett. 22, 1084–1086 (2010).
[Crossref]

Green, W. M. J.

Griffith, A. G.

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Grillet, C.

Gu, Y.

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of polycrystalline silicon based photonic crystal membrane for mid-infrared applications,” IEEE J. Sel. Top. Quantum Electron. 20, 4900107 (2014).
[Crossref]

Guo, X.

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photon. J. 8, 4802209 (2016).
[Crossref]

Han, Z.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Hänsel, A.

Hao, Y.

Haodong, Q.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

Hartmann, J.

Hartmann, J.-M.

Hattasan, N.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

He, J.

X. Jiang, Y. Chen, F. Yu, L. Tang, M. Li, and J. He, “High-sensitivity optical biosensor based on cascaded Mach-Zehnder interferometer and ring resonator using Vernier effect,” Opt. Lett. 39, 6363–6366 (2014).
[Crossref]

L. Qin, L. Wang, M. Li, and J. He, “Optical sensor based on Vernier-cascade of a ring resonator and an echelle diffraction grating,” IEEE Photon. Technol. Lett. 24, 954–956 (2012).
[Crossref]

Healy, N.

Heck, M. J. R.

Herzig, H. P.

Heydari, D.

Ho, C. P.

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of polycrystalline silicon based photonic crystal membrane for mid-infrared applications,” IEEE J. Sel. Top. Quantum Electron. 20, 4900107 (2014).
[Crossref]

Hochberg, M.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  μm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

Hochberg, M. L.

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Hosoda, T.

L. Shterengasa, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36  μm at 12°C,” Appl. Phys. Lett. 93, 011103 (2008).
[Crossref]

Hosseini, A.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Hu, J.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100, 211106 (2012).
[Crossref]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. C. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18, 12890–12896 (2010).
[Crossref]

Hu, T.

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photon. J. 8, 4802209 (2016).
[Crossref]

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

Hu, Y.

Huante-Ceron, E.

Hudson, D.

Hvozdara, L.

Ilic, R.

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. L. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  μm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

Jaberansary, E.

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, G. T. Reed, and G. Z. Mashanovich, “Submicron silicon waveguides and optical splitters for mid-infrared applications,” in 9th International Conference on Group IV Photonics (GFP) (2012), paper WA5.

Jackson, S. D.

Jakoby, B.

V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 8200612 (2017).
[Crossref]

Jalali, B.

B. Jalali, “Silicon photonics: nonlinear optics in the mid-infrared,” Nat. Photonics 4, 506–508 (2010).
[Crossref]

Jane, H.

H. Jane and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2012).

Ji, R.

Ji, X.

Jiang, Q.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Jiang, X.

Jung, H.

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
[Crossref]

Kang, J.

Kaplan, A.

S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in mid-wavelength infrared using porous Si membranes,” Sci. Rep. 6, 30211 (2016).
[Crossref]

Kee, J. S.

Khan, S.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

Khokhar, A. Z.

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penades, C. G. Littlejohns, A. Z. Khokhar, D. Perez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41, 4324–4327 (2016).
[Crossref]

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41, 610–613 (2016).
[Crossref]

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovíc, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

J. S. Penadés, A. Z. Khokhar, M. Nedeljkovic, and G. Z. Mashanovich, “Low-loss mid-infrared SOI slot waveguides,” IEEE Photon. Technol. Lett. 27, 1197–1199 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovíc, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SOI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. N. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22, 23990–24003 (2014).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

J. S. Penades, Y. Hu, M. Nedeljkovic, C. G. Littlejohns, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, G. Roelkens, F. Y. Gardes, and G. Z. Mashanovich, “Angled MMI CWDM structure on germanium on silicon,” in European Conference on Lasers and Electro-Optics (2015), paper CK_7_2.

Kim, C. S.

Kimerling, L.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Kimerling, L. C.

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
[Crossref]

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100, 211106 (2012).
[Crossref]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. C. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18, 12890–12896 (2010).
[Crossref]

Kipshidze, G.

L. Shterengasa, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36  μm at 12°C,” Appl. Phys. Lett. 93, 011103 (2008).
[Crossref]

Kirch, J.

Knights, A. P.

Koeth, J.

S. Belahsene, L. Naehle, M. Fischer, J. Koeth, G. Boissier, P. Grech, G. Narcy, A. Vicet, and Y. Rouillard, “Laser diodes for gas sensing emitting at 3.06  μm at room temperature,” IEEE Photon. Technol. Lett. 22, 1084–1086 (2010).
[Crossref]

Kropelnicki, P.

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of polycrystalline silicon based photonic crystal membrane for mid-infrared applications,” IEEE J. Sel. Top. Quantum Electron. 20, 4900107 (2014).
[Crossref]

Kuyken, B.

Kwong, D.

Kwong, D.-L.

Labeye, P.

Laderer, M.

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Latkowski, S.

Lau, R. K. W.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Lavchiev, V. M.

V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 8200612 (2017).
[Crossref]

Leake, G.

Lee, C.

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of polycrystalline silicon based photonic crystal membrane for mid-infrared applications,” IEEE J. Sel. Top. Quantum Electron. 20, 4900107 (2014).
[Crossref]

Lee, K. H.

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

Lee, Y. H. D.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Leijssen, R.

Leo, F.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

Lepage, G.

Li, B.

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

Li, F.

Li, G.

Li, M.

X. Jiang, Y. Chen, F. Yu, L. Tang, M. Li, and J. He, “High-sensitivity optical biosensor based on cascaded Mach-Zehnder interferometer and ring resonator using Vernier effect,” Opt. Lett. 39, 6363–6366 (2014).
[Crossref]

L. Qin, L. Wang, M. Li, and J. He, “Optical sensor based on Vernier-cascade of a ring resonator and an echelle diffraction grating,” IEEE Photon. Technol. Lett. 24, 954–956 (2012).
[Crossref]

Li, N.

Li, W.

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

Li, Y.

Lim, A. E.

U. Younis, S. K. Vanga, A. E. Lim, P. G. Lo, A. A. Bettiol, and K. Ang, “Germanium-on-SOI waveguides for mid-infrared wavelengths,” Opt. Express 24, 11987–11993 (2016).
[Crossref]

U. Younis, A. E. Lim, P. G. Lo, A. A. Bettiol, and K. Ang, “Propagation loss improvement in Ge-on-SOI mid-infrared waveguides using rapid thermal annealing,” IEEE Photon. Technol. Lett. 28, 2447–2450 (2016).
[Crossref]

Lin, C.

C. Lin, M. Grau, O. Dier, and M.-C. Amann, “Low threshold room-temperature continuous-wave operation of 2.24–3.04  μm GaInAsSb/AlGaAsSb quantum-well lasers,” Appl. Phys. Lett. 84, 5088–5090 (2004).
[Crossref]

Lin, P.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Lin, P. T.

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
[Crossref]

Liow, T.-Y.

X. Luo, Y. Cheng, J. Song, T.-Y. Liow, Q. J. Wang, and M. Yu, “Wafer-scale dies-transfer bonding technology for hybrid III/V-on-silicon photonic integrated circuit application,” IEEE J. Sel. Top. Quantum Electron. 22, 443–454 (2016).
[Crossref]

Lipson, M.

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Littlejohns, C. G.

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photon. J. 8, 4802209 (2016).
[Crossref]

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penades, C. G. Littlejohns, A. Z. Khokhar, D. Perez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41, 4324–4327 (2016).
[Crossref]

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovíc, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovíc, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SOI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

J. S. Penades, Y. Hu, M. Nedeljkovic, C. G. Littlejohns, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, G. Roelkens, F. Y. Gardes, and G. Z. Mashanovich, “Angled MMI CWDM structure on germanium on silicon,” in European Conference on Lasers and Electro-Optics (2015), paper CK_7_2.

Liu, C.

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photon. J. 8, 4802209 (2016).
[Crossref]

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

Liu, H.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Liu, S.

Liu, X.

Liu, Y.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  μm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

Liu, Z.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 1–6 (2016).
[Crossref]

Lo, G.-Q.

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Electrical tracing-assisted dual-microring label-free optical bio/chemical sensors,” Opt. Express 20, 4189–4197 (2012).
[Crossref]

Lo, P. G.

U. Younis, S. K. Vanga, A. E. Lim, P. G. Lo, A. A. Bettiol, and K. Ang, “Germanium-on-SOI waveguides for mid-infrared wavelengths,” Opt. Express 24, 11987–11993 (2016).
[Crossref]

U. Younis, A. E. Lim, P. G. Lo, A. A. Bettiol, and K. Ang, “Propagation loss improvement in Ge-on-SOI mid-infrared waveguides using rapid thermal annealing,” IEEE Photon. Technol. Lett. 28, 2447–2450 (2016).
[Crossref]

Loncar, M.

C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, and M. G. Allen, “Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators,” Opt. Express 23, 5491–5499 (2015).
[Crossref]

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
[Crossref]

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19, 5579–5586 (2011).
[Crossref]

Loo, R.

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20, 27297–27303 (2012).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in IEEE Photonics Conference (IPC) (2013), paper MF1.4.

Lu, Q. Y.

Lu, Y.

Luo, X.

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

X. Luo, Y. Cheng, J. Song, T.-Y. Liow, Q. J. Wang, and M. Yu, “Wafer-scale dies-transfer bonding technology for hybrid III/V-on-silicon photonic integrated circuit application,” IEEE J. Sel. Top. Quantum Electron. 22, 443–454 (2016).
[Crossref]

J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Electrical tracing-assisted dual-microring label-free optical bio/chemical sensors,” Opt. Express 20, 4189–4197 (2012).
[Crossref]

Ma, J.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

Madden, S. J.

Magi, E.

Maidaniuk, Y.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Maisons, G.

G. Maisons, C. Gilles, L. Orbe, G. Carpintero, J. Abautret, and M. Carras, “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis (2016), paper LTh3E.7.

Malik, A.

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in IEEE Photonics Conference (IPC) (2013), paper MF1.4.

Masaud, T. M. B.

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, G. T. Reed, and G. Z. Mashanovich, “Submicron silicon waveguides and optical splitters for mid-infrared applications,” in 9th International Conference on Group IV Photonics (GFP) (2012), paper WA5.

Mashanovich, G. Z.

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41, 610–613 (2016).
[Crossref]

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penades, C. G. Littlejohns, A. Z. Khokhar, D. Perez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41, 4324–4327 (2016).
[Crossref]

L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40, 268–271 (2015).
[Crossref]

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovíc, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

J. S. Penadés, A. Z. Khokhar, M. Nedeljkovic, and G. Z. Mashanovich, “Low-loss mid-infrared SOI slot waveguides,” IEEE Photon. Technol. Lett. 27, 1197–1199 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovíc, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SOI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. N. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22, 23990–24003 (2014).
[Crossref]

D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, “Optical detection and modulation at 2  μm-2.5  μm in silicon,” Opt. Express 22, 10825–10830 (2014).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011).
[Crossref]

J. S. Penades, Y. Hu, M. Nedeljkovic, C. G. Littlejohns, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, G. Roelkens, F. Y. Gardes, and G. Z. Mashanovich, “Angled MMI CWDM structure on germanium on silicon,” in European Conference on Lasers and Electro-Optics (2015), paper CK_7_2.

M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, G. T. Reed, and G. Z. Mashanovich, “Submicron silicon waveguides and optical splitters for mid-infrared applications,” in 9th International Conference on Group IV Photonics (GFP) (2012), paper WA5.

Masselink, W. T.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Mawst, L. J.

Mazur, Y. I.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Merritt, C. D.

Meyer, J. R.

Miller, S. A.

Milosevic, M. M.

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Miloševic, M. M.

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011).
[Crossref]

M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, G. T. Reed, and G. Z. Mashanovich, “Submicron silicon waveguides and optical splitters for mid-infrared applications,” in 9th International Conference on Group IV Photonics (GFP) (2012), paper WA5.

Min, R.

Mitchell, C. J.

L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40, 268–271 (2015).
[Crossref]

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovíc, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovíc, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SOI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

J. S. Penades, Y. Hu, M. Nedeljkovic, C. G. Littlejohns, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, G. Roelkens, F. Y. Gardes, and G. Z. Mashanovich, “Angled MMI CWDM structure on germanium on silicon,” in European Conference on Lasers and Electro-Optics (2015), paper CK_7_2.

Moghe, Y.

Mohanty, A.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Mookherje, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherje, and S. Ra, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Moresco, M.

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherje, and S. Ra, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Moss, D. J.

Muneeb, M.

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in IEEE Photonics Conference (IPC) (2013), paper MF1.4.

Naehle, L.

S. Belahsene, L. Naehle, M. Fischer, J. Koeth, G. Boissier, P. Grech, G. Narcy, A. Vicet, and Y. Rouillard, “Laser diodes for gas sensing emitting at 3.06  μm at room temperature,” IEEE Photon. Technol. Lett. 22, 1084–1086 (2010).
[Crossref]

Narcy, G.

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20, 27297–27303 (2012).
[Crossref]

S. Belahsene, L. Naehle, M. Fischer, J. Koeth, G. Boissier, P. Grech, G. Narcy, A. Vicet, and Y. Rouillard, “Laser diodes for gas sensing emitting at 3.06  μm at room temperature,” IEEE Photon. Technol. Lett. 22, 1084–1086 (2010).
[Crossref]

Natale, P. D.

Nedeljkovic, M.

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41, 610–613 (2016).
[Crossref]

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penades, C. G. Littlejohns, A. Z. Khokhar, D. Perez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41, 4324–4327 (2016).
[Crossref]

L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40, 268–271 (2015).
[Crossref]

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovíc, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

J. S. Penadés, A. Z. Khokhar, M. Nedeljkovic, and G. Z. Mashanovich, “Low-loss mid-infrared SOI slot waveguides,” IEEE Photon. Technol. Lett. 27, 1197–1199 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovíc, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SOI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. N. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22, 23990–24003 (2014).
[Crossref]

D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, “Optical detection and modulation at 2  μm-2.5  μm in silicon,” Opt. Express 22, 10825–10830 (2014).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011).
[Crossref]

M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, G. T. Reed, and G. Z. Mashanovich, “Submicron silicon waveguides and optical splitters for mid-infrared applications,” in 9th International Conference on Group IV Photonics (GFP) (2012), paper WA5.

J. S. Penades, Y. Hu, M. Nedeljkovic, C. G. Littlejohns, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, G. Roelkens, F. Y. Gardes, and G. Z. Mashanovich, “Angled MMI CWDM structure on germanium on silicon,” in European Conference on Lasers and Electro-Optics (2015), paper CK_7_2.

Nicoletti, S.

O’Brien, C.

Okawachi, Y.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Orbe, L.

G. Maisons, C. Gilles, L. Orbe, G. Carpintero, J. Abautret, and M. Carras, “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis (2016), paper LTh3E.7.

Osgood, R. M.

Owens, N.

Paeder, V.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 1.

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherje, and S. Ra, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Park, M. K.

Park, S. J.

S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in mid-wavelength infrared using porous Si membranes,” Sci. Rep. 6, 30211 (2016).
[Crossref]

Parvitte, B.

A. Glière, J. Rouxel, M. Brun, B. Parvitte, V. Zéninari, and S. Nicoletti, “Challenges in the design and fabrication of a lab-on-a-chip photoacoustic gas sensor,” Sensors 14, 957–974 (2014).
[Crossref]

Passaro, V. M. N.

Pathak, S.

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

Peacock, A. C.

Penades, J. S.

Penadés, J. S.

J. S. Penadés, A. Z. Khokhar, M. Nedeljkovic, and G. Z. Mashanovich, “Low-loss mid-infrared SOI slot waveguides,” IEEE Photon. Technol. Lett. 27, 1197–1199 (2015).
[Crossref]

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovíc, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

Penkov, B.

Perez-Galacho, D.

Peters, J.

Peters, J. D.

Pfennigbauer, M.

M. Pfennigbauer and A. Ullrich, “Multi-wavelength airborne laser scanning,” in Proceedings of the International Lidar Mapping Forum, ILMF, New Orleans, Louisiana, 2011.

Phare, C. T.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Pitchappa, P.

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of polycrystalline silicon based photonic crystal membrane for mid-infrared applications,” IEEE J. Sel. Top. Quantum Electron. 20, 4900107 (2014).
[Crossref]

Poitras, C. B.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Poulton, C. V.

Qin, L.

L. Qin, L. Wang, M. Li, and J. He, “Optical sensor based on Vernier-cascade of a ring resonator and an echelle diffraction grating,” IEEE Photon. Technol. Lett. 24, 954–956 (2012).
[Crossref]

Qiu, C.

Qiu, H.

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photon. J. 8, 4802209 (2016).
[Crossref]

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

Ra, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherje, and S. Ra, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Rabbani-Haghighi, H.

Raval, M.

Razeghi, M.

Read, A.

Reed, G. T.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photon. J. 8, 4802209 (2016).
[Crossref]

M. Nedeljkovic, S. Stankovíc, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SOI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, G. T. Reed, and G. Z. Mashanovich, “Submicron silicon waveguides and optical splitters for mid-infrared applications,” in 9th International Conference on Group IV Photonics (GFP) (2012), paper WA5.

Reynolds, S. A.

M. Nedeljkovic, S. Stankovíc, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SOI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Rice, P. M.

Richardson, K.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Roelkens, G.

B. Kuyken, P. Verheyen, P. Tannouri, X. Liu, J. Van Campenhout, R. Baets, W. M. J. Green, and G. Roelkens, “Generation of 3.6  μm radiation and telecom-band amplification by four-wave mixing in a silicon waveguide with normal group velocity dispersion,” Opt. Lett. 39, 1349–1352 (2014).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express 21, 5931–5940 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20, 27297–27303 (2012).
[Crossref]

B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “50  dB parametric on-chip gain in silicon photonic wires,” Opt. Lett. 36, 4401–4403 (2011).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in IEEE Photonics Conference (IPC) (2013), paper MF1.4.

J. S. Penades, Y. Hu, M. Nedeljkovic, C. G. Littlejohns, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, G. Roelkens, F. Y. Gardes, and G. Z. Mashanovich, “Angled MMI CWDM structure on germanium on silicon,” in European Conference on Lasers and Electro-Optics (2015), paper CK_7_2.

Rouifed, M. S.

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photon. J. 8, 4802209 (2016).
[Crossref]

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

Rouifed, M.-S.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

Rouillard, Y.

S. Belahsene, L. Naehle, M. Fischer, J. Koeth, G. Boissier, P. Grech, G. Narcy, A. Vicet, and Y. Rouillard, “Laser diodes for gas sensing emitting at 3.06  μm at room temperature,” IEEE Photon. Technol. Lett. 22, 1084–1086 (2010).
[Crossref]

Rouxel, J.

A. Glière, J. Rouxel, M. Brun, B. Parvitte, V. Zéninari, and S. Nicoletti, “Challenges in the design and fabrication of a lab-on-a-chip photoacoustic gas sensor,” Sensors 14, 957–974 (2014).
[Crossref]

Ryckeboer, E.

Ryckeboer, E. M. P.

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

Sablon, K. A.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Salamo, G. J.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Scalari, G.

Semtsiv, M. P.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Shank, S. M.

Shankar, R.

C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, and M. G. Allen, “Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators,” Opt. Express 23, 5491–5499 (2015).
[Crossref]

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
[Crossref]

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19, 5579–5586 (2011).
[Crossref]

Shen, L.

Shimura, Y.

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20, 27297–27303 (2012).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in IEEE Photonics Conference (IPC) (2013), paper MF1.4.

Shterengasa, L.

L. Shterengasa, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36  μm at 12°C,” Appl. Phys. Lett. 93, 011103 (2008).
[Crossref]

Shu, J.

Singh, V.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Slivken, S.

Smit, M. K.

Smith, C. J.

Soler Penades, J.

Song, J.

X. Luo, Y. Cheng, J. Song, T.-Y. Liow, Q. J. Wang, and M. Yu, “Wafer-scale dies-transfer bonding technology for hybrid III/V-on-silicon photonic integrated circuit application,” IEEE J. Sel. Top. Quantum Electron. 22, 443–454 (2016).
[Crossref]

J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Electrical tracing-assisted dual-microring label-free optical bio/chemical sensors,” Opt. Express 20, 4189–4197 (2012).
[Crossref]

Song, Q.

Soref, R.

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Spott, A.

Stankovic, S.

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3, 1205–1214 (2013).
[Crossref]

J. S. Penades, Y. Hu, M. Nedeljkovic, C. G. Littlejohns, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, G. Roelkens, F. Y. Gardes, and G. Z. Mashanovich, “Angled MMI CWDM structure on germanium on silicon,” in European Conference on Lasers and Electro-Optics (2015), paper CK_7_2.

Stankovíc, S.

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovíc, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovíc, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SOI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Stanton, E. J.

Su, Z.

Subbaraman, H.

Suchalkin, S.

L. Shterengasa, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36  μm at 12°C,” Appl. Phys. Lett. 93, 011103 (2008).
[Crossref]

Sun, J.

A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39, 4575–4578 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Takagi, S.

Takenaka, M.

Tan, C. S.

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

Tan, D. T. H.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Tang, H. X.

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
[Crossref]

Tang, L.

Tang, M.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Tannouri, P.

Tatam, R. P.

H. Jane and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2012).

Teo, E. J.

Thijs, P. J. A.

Thomson, D. J.

Tian, Y.

Timurdogan, E.

Tina, G. X.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

Topuria, T.

Troia, B.

Tsang, H. K.

S. Liu, K. Xu, Q. Song, Z. Cheng, and H. K. Tsang, “Design of mid-infrared electro-optic modulators based on aluminum nitride waveguides,” J. Lightwave Technol. 34, 3837–3842 (2016).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37, 5181–5183 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Tu, X.

Ullrich, A.

M. Pfennigbauer and A. Ullrich, “Multi-wavelength airborne laser scanning,” in Proceedings of the International Lidar Mapping Forum, ILMF, New Orleans, Louisiana, 2011.

Van Campenhout, J.

van Veldhoven, P. J.

Vanga, S. K.

Verheyen, P.

Vermeulen, D.

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42, 21–24 (2017).
[Crossref]

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

Vicet, A.

S. Belahsene, L. Naehle, M. Fischer, J. Koeth, G. Boissier, P. Grech, G. Narcy, A. Vicet, and Y. Rouillard, “Laser diodes for gas sensing emitting at 3.06  μm at room temperature,” IEEE Photon. Technol. Lett. 22, 1084–1086 (2010).
[Crossref]

Vincent, B.

Vitiello, M. S.

Vivien, L.

Vlasov, Y. A.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

Vurgaftman, I.

Wang, H.

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photon. J. 8, 4802209 (2016).
[Crossref]

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

Wang, J.

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of polycrystalline silicon based photonic crystal membrane for mid-infrared applications,” IEEE J. Sel. Top. Quantum Electron. 20, 4900107 (2014).
[Crossref]

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100, 211106 (2012).
[Crossref]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. C. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18, 12890–12896 (2010).
[Crossref]

Wang, L.

L. Qin, L. Wang, M. Li, and J. He, “Optical sensor based on Vernier-cascade of a ring resonator and an echelle diffraction grating,” IEEE Photon. Technol. Lett. 24, 954–956 (2012).
[Crossref]

Wang, M.

Wang, Q.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 1–6 (2016).
[Crossref]

Wang, Q. J.

X. Luo, Y. Cheng, J. Song, T.-Y. Liow, Q. J. Wang, and M. Yu, “Wafer-scale dies-transfer bonding technology for hybrid III/V-on-silicon photonic integrated circuit application,” IEEE J. Sel. Top. Quantum Electron. 22, 443–454 (2016).
[Crossref]

Watts, M. R.

Wei, Y.

Williams, B.

Williams, K. A.

Wong, C. Y.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37, 5181–5183 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Wu, J.

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Xia, Y.

Xiong, B.

Xu, K.

S. Liu, K. Xu, Q. Song, Z. Cheng, and H. K. Tsang, “Design of mid-infrared electro-optic modulators based on aluminum nitride waveguides,” J. Lightwave Technol. 34, 3837–3842 (2016).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37, 5181–5183 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

Xu, Q.

Xu, X.

Xue, C.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 1–6 (2016).
[Crossref]

Yaacobi, A.

A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39, 4575–4578 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Yang, F.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 1–6 (2016).
[Crossref]

Yang, J.

Yang, L.

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Younis, U.

U. Younis, A. E. Lim, P. G. Lo, A. A. Bettiol, and K. Ang, “Propagation loss improvement in Ge-on-SOI mid-infrared waveguides using rapid thermal annealing,” IEEE Photon. Technol. Lett. 28, 2447–2450 (2016).
[Crossref]

U. Younis, S. K. Vanga, A. E. Lim, P. G. Lo, A. A. Bettiol, and K. Ang, “Germanium-on-SOI waveguides for mid-infrared wavelengths,” Opt. Express 24, 11987–11993 (2016).
[Crossref]

Yu, F.

Yu, K.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 1–6 (2016).
[Crossref]

Yu, M.

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

X. Luo, Y. Cheng, J. Song, T.-Y. Liow, Q. J. Wang, and M. Yu, “Wafer-scale dies-transfer bonding technology for hybrid III/V-on-silicon photonic integrated circuit application,” IEEE J. Sel. Top. Quantum Electron. 22, 443–454 (2016).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Electrical tracing-assisted dual-microring label-free optical bio/chemical sensors,” Opt. Express 20, 4189–4197 (2012).
[Crossref]

J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, and M. Yu, “Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator,” Opt. Express 20, 7081–7087 (2012).
[Crossref]

Zakar, A.

S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in mid-wavelength infrared using porous Si membranes,” Sci. Rep. 6, 30211 (2016).
[Crossref]

Zéninari, V.

A. Glière, J. Rouxel, M. Brun, B. Parvitte, V. Zéninari, and S. Nicoletti, “Challenges in the design and fabrication of a lab-on-a-chip photoacoustic gas sensor,” Sensors 14, 957–974 (2014).
[Crossref]

Zens, T.

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100, 211106 (2012).
[Crossref]

Zerova, V. L.

S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in mid-wavelength infrared using porous Si membranes,” Sci. Rep. 6, 30211 (2016).
[Crossref]

Zhang, H.

Zhang, L.

Zhang, X.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 1–6 (2016).
[Crossref]

Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, and Q. Xu, “Suspended Si ring resonator for mid-IR application,” Opt. Lett. 38, 1122–1124 (2013).
[Crossref]

Zhang, Y.

Zhang, Z.

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photon. J. 8, 4802209 (2016).
[Crossref]

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

Zheng, J.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 1–6 (2016).
[Crossref]

Zhou, P.

Zhou, W.

Zhu, W.

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherje, and S. Ra, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Zou, Y.

Y. Zou, S. Chakravarty, and R. T. Chen, “Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 081109 (2015).
[Crossref]

ACS Photon. (1)

J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on Si substrates,” ACS Photon. 3, 749–753 (2016).
[Crossref]

Appl. Phys. Lett. (11)

C. Lin, M. Grau, O. Dier, and M.-C. Amann, “Low threshold room-temperature continuous-wave operation of 2.24–3.04  μm GaInAsSb/AlGaAsSb quantum-well lasers,” Appl. Phys. Lett. 84, 5088–5090 (2004).
[Crossref]

L. Shterengasa, G. Belenky, T. Hosoda, G. Kipshidze, and S. Suchalkin, “Continuous wave operation of diode lasers at 3.36  μm at 12°C,” Appl. Phys. Lett. 93, 011103 (2008).
[Crossref]

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100, 211106 (2012).
[Crossref]

M. M. Milosević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Ashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

W. Li, P. Anantha, S. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5  μm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Y. Zou, S. Chakravarty, and R. T. Chen, “Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities,” Appl. Phys. Lett. 107, 081109 (2015).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103, 161119 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of polycrystalline silicon based photonic crystal membrane for mid-infrared applications,” IEEE J. Sel. Top. Quantum Electron. 20, 4900107 (2014).
[Crossref]

V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 8200612 (2017).
[Crossref]

X. Luo, Y. Cheng, J. Song, T.-Y. Liow, Q. J. Wang, and M. Yu, “Wafer-scale dies-transfer bonding technology for hybrid III/V-on-silicon photonic integrated circuit application,” IEEE J. Sel. Top. Quantum Electron. 22, 443–454 (2016).
[Crossref]

IEEE Photon. J. (6)

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” IEEE Photon. J. 8, 1–6 (2016).
[Crossref]

B. Dong, X. Guo, C. P. Ho, B. Li, H. Wang, C. Lee, X. Luo, and G.-Q. Lo, “Silicon-on-insulator waveguide devices for broadband mid-infrared photonics,” IEEE Photon. J. 9, 4501410 (2017).

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photon. J. 4, 1510–1519 (2012).
[Crossref]

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4, 1095–1102 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-infrared grating couplers for silicon-on-sapphire waveguides,” IEEE Photon. J. 4, 104–113 (2012).
[Crossref]

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photon. J. 8, 4802209 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (10)

M. Nedeljkovic, J. S. Penadés, C. J. Mitchell, A. Z. Khokhar, S. Stankovíc, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

T. Hu, M. S. Rouifed, H. Qiu, X. Guo, C. G. Littlejohns, C. Liu, and H. Wang, “A polarization splitter and rotator based on a partially etched grating-assisted coupler,” IEEE Photon. Technol. Lett. 28, 911–914 (2016).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).
[Crossref]

J. S. Penadés, A. Z. Khokhar, M. Nedeljkovic, and G. Z. Mashanovich, “Low-loss mid-infrared SOI slot waveguides,” IEEE Photon. Technol. Lett. 27, 1197–1199 (2015).
[Crossref]

U. Younis, A. E. Lim, P. G. Lo, A. A. Bettiol, and K. Ang, “Propagation loss improvement in Ge-on-SOI mid-infrared waveguides using rapid thermal annealing,” IEEE Photon. Technol. Lett. 28, 2447–2450 (2016).
[Crossref]

L. Qin, L. Wang, M. Li, and J. He, “Optical sensor based on Vernier-cascade of a ring resonator and an echelle diffraction grating,” IEEE Photon. Technol. Lett. 24, 954–956 (2012).
[Crossref]

N. Hattasan, B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24, 1536–1538 (2012).
[Crossref]

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2  μm,” IEEE Photon. Technol. Lett. 28, 2827–2829 (2016).
[Crossref]

M. Nedeljkovic, S. Stankovíc, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SOI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

S. Belahsene, L. Naehle, M. Fischer, J. Koeth, G. Boissier, P. Grech, G. Narcy, A. Vicet, and Y. Rouillard, “Laser diodes for gas sensing emitting at 3.06  μm at room temperature,” IEEE Photon. Technol. Lett. 22, 1084–1086 (2010).
[Crossref]

J. Lightwave Technol. (3)

Laser Photon. Rev. (1)

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
[Crossref]

Meas. Sci. Technol. (1)

H. Jane and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2012).

Nanophotonics (1)

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
[Crossref]

Nat. Commun. (1)

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Nat. Photonics (5)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

B. Jalali, “Silicon photonics: nonlinear optics in the mid-infrared,” Nat. Photonics 4, 506–508 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherje, and S. Ra, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Opt. Express (22)

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. L. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18, 12127–12135 (2010).
[Crossref]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. C. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18, 12890–12896 (2010).
[Crossref]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19, 5579–5586 (2011).
[Crossref]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011).
[Crossref]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011).
[Crossref]

Y. Wei, G. Li, Y. Hao, Y. Li, J. Yang, M. Wang, and X. Jiang, “Long-wave infrared 1 × 2 MMI based on air-gap beneath silicon rib waveguides,” Opt. Express 19, 15803–15809 (2011).
[Crossref]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19, 21595–21604 (2011).
[Crossref]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20, 27297–27303 (2012).
[Crossref]

M. A. V. Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, and W. M. J. Green, “Demonstration of electrooptic modulation at 2165  nm using a silicon Mach-Zehnder interferometer,” Opt. Express 20, 28009–28016 (2012).
[Crossref]

J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Electrical tracing-assisted dual-microring label-free optical bio/chemical sensors,” Opt. Express 20, 4189–4197 (2012).
[Crossref]

J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, and M. Yu, “Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator,” Opt. Express 20, 7081–7087 (2012).
[Crossref]

M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides for mid-IR applications,” Opt. Express 22, 508–518 (2014).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8  μm,” Opt. Express 21, 11659–11669 (2013).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express 21, 5931–5940 (2013).
[Crossref]

J. Kang, M. Takenaka, and S. Takagi, “Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits,” Opt. Express 24, 11855–11864 (2016).
[Crossref]

U. Younis, S. K. Vanga, A. E. Lim, P. G. Lo, A. A. Bettiol, and K. Ang, “Germanium-on-SOI waveguides for mid-infrared wavelengths,” Opt. Express 24, 11987–11993 (2016).
[Crossref]

D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, “Optical detection and modulation at 2  μm-2.5  μm in silicon,” Opt. Express 22, 10825–10830 (2014).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. N. Passaro, and G. Z. Mashanovich, “Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,” Opt. Express 22, 23990–24003 (2014).
[Crossref]

M. S. Vitiello, G. Scalari, B. Williams, and P. D. Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23, 5167–5182 (2015).
[Crossref]

C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, and M. G. Allen, “Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators,” Opt. Express 23, 5491–5499 (2015).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

P. Barritault, M. Brun, P. Labeye, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Design, fabrication and characterization of an AWG at 4.5  μm,” Opt. Express 23, 26168–26181 (2015).
[Crossref]

Opt. Lett. (13)

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41, 610–613 (2016).
[Crossref]

X. Jiang, Y. Chen, F. Yu, L. Tang, M. Li, and J. He, “High-sensitivity optical biosensor based on cascaded Mach-Zehnder interferometer and ring resonator using Vernier effect,” Opt. Lett. 39, 6363–6366 (2014).
[Crossref]

A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39, 4575–4578 (2014).
[Crossref]

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penades, C. G. Littlejohns, A. Z. Khokhar, D. Perez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41, 4324–4327 (2016).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42, 21–24 (2017).
[Crossref]

L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40, 268–271 (2015).
[Crossref]

Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, and Q. Xu, “Suspended Si ring resonator for mid-IR application,” Opt. Lett. 38, 1122–1124 (2013).
[Crossref]

D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39, 941–944 (2014).
[Crossref]

B. Kuyken, P. Verheyen, P. Tannouri, X. Liu, J. Van Campenhout, R. Baets, W. M. J. Green, and G. Roelkens, “Generation of 3.6  μm radiation and telecom-band amplification by four-wave mixing in a silicon waveguide with normal group velocity dispersion,” Opt. Lett. 39, 1349–1352 (2014).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37, 1217–1219 (2012).
[Crossref]

Y. Chang, V. Paeder, L. Hvozdara, J. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37, 2883–2885 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37, 5181–5183 (2012).
[Crossref]

B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “50  dB parametric on-chip gain in silicon photonic wires,” Opt. Lett. 36, 4401–4403 (2011).
[Crossref]

Opt. Mater. Express (1)

Optica (4)

Sci. Rep. (1)

S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in mid-wavelength infrared using porous Si membranes,” Sci. Rep. 6, 30211 (2016).
[Crossref]

Sensors (1)

A. Glière, J. Rouxel, M. Brun, B. Parvitte, V. Zéninari, and S. Nicoletti, “Challenges in the design and fabrication of a lab-on-a-chip photoacoustic gas sensor,” Sensors 14, 957–974 (2014).
[Crossref]

Other (6)

M. M. Milošević, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, G. T. Reed, and G. Z. Mashanovich, “Submicron silicon waveguides and optical splitters for mid-infrared applications,” in 9th International Conference on Group IV Photonics (GFP) (2012), paper WA5.

G. Maisons, C. Gilles, L. Orbe, G. Carpintero, J. Abautret, and M. Carras, “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis (2016), paper LTh3E.7.

J. S. Penades, Y. Hu, M. Nedeljkovic, C. G. Littlejohns, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, G. Roelkens, F. Y. Gardes, and G. Z. Mashanovich, “Angled MMI CWDM structure on germanium on silicon,” in European Conference on Lasers and Electro-Optics (2015), paper CK_7_2.

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” in IEEE Photonics Conference (IPC) (2013), paper MF1.4.

M. Pfennigbauer and A. Ullrich, “Multi-wavelength airborne laser scanning,” in Proceedings of the International Lidar Mapping Forum, ILMF, New Orleans, Louisiana, 2011.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Material absorption characteristic in the MIR range [1,3]. Gray region represents the optical transparency; black area denotes the high loss. Absorption peaks of some detected gases and the fingerprint region are marked.

Fig. 2.
Fig. 2.

(a) Fabricated 8-in. silicon wafer with MIR devices after wafer dicing for characterization. (b) SOI strip ring resonators and rib DCs. (c) SOI strip DCs, bends, waveguides, and rib waveguides. (d)–(k) SEM images of the fabricated devices. (d) SOI waveguide taper tip. (e) SOI strip waveguide. (f) SOI rib waveguide. (g) SOI rib DC. (h) SOI strip to rib converter. (i) SOI strip DC array. (j) SNOI DC. (k) SNOI add–drop ring resonator.

Fig. 3.
Fig. 3.

Loss characterization of SOI waveguide. (a) Propagation loss of SOI strip waveguide. (b) Bending loss of SOI strip waveguide. (c) Propagation loss of SOI rib waveguide. Insets in (a) and (c) show the corresponding mode field simulated by the commercial software Lumerical FDTD.

Fig. 4.
Fig. 4.

Characterization of SOI strip and rib DCs. (a) and (c) Self-normalized transmitted and coupled power of (a) strip and (c) rib DCs. Solid lines show sine squared fitting of the data with adjusted R-square of 0.997. (b) and (d) Power coupling coefficient K of (b) strip and (d) rib DCs. Insets show the linear fitting of Y with respect to L c with the extracted parameters L π and Ø 0 .

Fig. 5.
Fig. 5.

Characterization of SOI strip racetrack resonators. Red dots present measurement data, while the blue solid lines show fitting results. (a) and (c) Transmission spectra of the racetrack resonator with (a)  r = 5    μm , g = 500    nm , and L c = 50    μm , (c)  r = 5    μm , g = 550    nm , and L c = 10    μm . (b) and (d) Zoom-in of a particular resonating wavelength at 3687    nm in (a) and 3824    nm in (c) as indicated by the navy blue square box.

Fig. 6.
Fig. 6.

Loss characterization of SNOI waveguide. (a) Propagation loss of SNOI strip waveguide. (b) Bending loss of SNOI strip waveguide. Inset in (a) shows the mode field simulated by Lumerical.

Fig. 7.
Fig. 7.

Characterization of the SNOI strip ring resonator with radius of 20 μm and coupling gap of 550 nm. Transmission spectrum of the ring resonator (a) from 1960 to 2045 nm with scanning step of 0.54 nm (b) around the resonance of 1988 nm with scanning step of 0.011 nm.

Fig. 8.
Fig. 8.

CO 2 gas sensors based on MIR photonics. Sensor configuration with the (a) spiral waveguide and (c) MRR. (b) Detected optical power variation versus CO 2 concentration of the sensor shown in (a). (d)  Q -factor variation and effective gas interaction length varying with CO 2 concentration of the sensor shown in (b).

Tables (2)

Tables Icon

Table 1. Demonstrated MIR Waveguides with Various Platforms

Tables Icon

Table 2. Demonstrated MIR MRRs with Various Platforms

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T I = t 2 = cos 2 ( π 2 L c L π + Ø 0 ) ,
X I = K 2 = sin 2 ( π 2 L c L π + Ø 0 ) ,
Y = arctan ( X / T ) = ( π 2 L π ) L c + Ø 0 .
T = exp ( α g C Γ L ) ,
1 Q = 1 Q i + 1 Q c + 1 Q g = 1 Q cav + 1 Q g ,
Q g = ω τ p = 2 π λ Γ C α g ,
L eff = c τ p = c Q ω = λ Q 2 π ,

Metrics