Abstract

The time-delay signature (TDS) of chaos output in a 1550 nm vertical-cavity surface-emitting laser (VCSEL) subject to fiber Bragg grating (FBG) feedback is investigated experimentally. Autocorrelation function (ACF) and mutual information (MI) are used for quantitatively identifying the TDS of chaos. For various bias currents, the TDS evolution with the feedback strength is different, as the FBG provides wavelength-selective feedback. Furthermore, based on the TDS map of the FBG feedback VCSEL (FBGF-VCSEL) in the parameter space of feedback strength and bias current, the optimal TDS suppression regions, where the dominant polarization mode of FBGF-VCSEL locates at the edge of the main lobe of FBG reflection spectrum, have been determined. Finally, for comparative purpose, the TDS of chaos in mirror feedback VCSEL (MF-VCSEL) also has been presented, and the results show that an FBGF-VCSEL possesses better TDS suppression performance than an MF-VCSEL.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Time-delay signature of chaos in 1550 nm VCSELs with variable-polarization FBG feedback

Yan Li, Zheng-Mao Wu, Zhu-Qiang Zhong, Xian-Jie Yang, Song Mao, and Guang-Qiong Xia
Opt. Express 22(16) 19610-19620 (2014)

Polarization-resolved time-delay signatures of chaos induced by FBG-feedback in VCSEL

Zhu-Qiang Zhong, Song-Sui Li, Sze-Chun Chan, Guang-Qiong Xia, and Zheng-Mao Wu
Opt. Express 23(12) 15459-15468 (2015)

Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG

Daming Wang, Longsheng Wang, Tong Zhao, Hua Gao, Yuncai Wang, Xianfeng Chen, and Anbang Wang
Opt. Express 25(10) 10911-10924 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. H. Hong, M. W. Lee, J. Paul, P. S. Spencer, and K. A. Shore, “GHz bandwidth message transmission using chaotic vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 27, 5099–5105 (2009).
    [Crossref]
  2. A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17, 1552–1567 (2011).
    [Crossref]
  3. J. Sakaguchi, T. Katayama, and H. Kawaguchi, “All-optical memory operation of 980-nm polarization bistable VCSEL for 20  Gb/s PRBS RZ and 40-Gb/s NRZ data signals,” Opt. Express 18, 12362–12370 (2010).
    [Crossref]
  4. R. Rodes, M. Müeller, B. Li, J. Estaran, J. B. Jensen, T. Gruendl, M. Ortsiefer, C. Neumeyr, J. Rosskopf, K. J. Larsen, M.-C. Amann, and I. T. Monroy, “High-speed 1550  nm VCSEL data transmission link employing 25  GBd 4-PAM modulation and hard decision forward error correction,” J. Lightwave Technol. 31, 689–695 (2013).
    [Crossref]
  5. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24, 4502–4513 (2006).
    [Crossref]
  6. P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240  Gb/s,” IEEE Photon. Technol. Lett. 27, 296-299 (2015).
    [Crossref]
  7. J. Liu, Z. M. Wu, and G. Q. Xia, “Dual-channel chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection,” Opt. Express 17, 12619–12626 (2009).
    [Crossref]
  8. S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Jiang, L. Yang, and H. Zhu, “Conceal time-delay signature of chaotic vertical-cavity surface-emitting lasers by variable-polarization optical feedback,” Opt. Commun. 284, 5758–5765 (2011).
    [Crossref]
  9. S. Priyadarshi, Y. H. Hong, I. Pierce, and K. A. Shore, “Experimental investigations of time-delay signature concealment in chaotic external cavity VCSELs subject to variable optical polarization angle of feedback,” IEEE J. Sel. Top. Quantum Electron. 19, 1700707 (2013).
    [Crossref]
  10. H. Lin, Y. H. Hong, and K. A. Shore, “Experimental study of time-delay signatures in vertical-cavity surface-emitting lasers subject to double-cavity polarization-rotated optical feedback,” J. Lightwave Technol. 32, 1829–1836 (2014).
    [Crossref]
  11. H. Lin, A. Khurram, and Y. H. Hong, “Time-delay signatures in multi-transverse mode VCSELs subject to double-cavity polarization-rotated optical feedback,” Opt. Commun. 377, 128–138 (2016).
    [Crossref]
  12. A. Elsonbaty, S. F. Hegazy, and S. S. A. Obayya, “Simultaneous suppression of time-delay signature in intensity and phase of dual-channel chaos communication,” IEEE J. Quantum Electron. 51, 1–9 (2015).
    [Crossref]
  13. H. Liu, N. Li, and Q. Zhao, “Photonic generation of polarization-resolved wideband chaos with time-delay concealment in three-cascaded vertical-cavity surface-emitting lasers,” Appl. Opt. 54, 4380–4386 (2015).
    [Crossref]
  14. Y. H. Hong, A. Quirce, B. J. Wang, S. K. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52, 1–5 (2016).
    [Crossref]
  15. M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “A tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E 54, R3082–R3085 (1996).
    [Crossref]
  16. R. Hegger, M. J. Bünner, and H. Kantz, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81, 558–561 (1998).
    [Crossref]
  17. M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011).
    [Crossref]
  18. S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photon. J. 4, 1930–1935 (2012).
    [Crossref]
  19. S. S. Li and S. C. Chan, “Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback,” IEEE J. Sel. Top. Quantum Electron. 21, 541–552 (2015).
    [Crossref]
  20. Y. Li, Z. M. Wu, Z. Q. Zhong, X. J. Yang, S. Mao, and G. Q. Xia, “Time-delay signature of chaos in 1550 nm VCSELs with variable-polarization FBG feedback,” Opt. Express 22, 19610–19620 (2014).
    [Crossref]
  21. Z. Q. Zhong, S. S. Li, S. C. Chan, G. Q. Xia, and Z. M. Wu, “Polarization-resolved time-delay signatures of chaos induced by FBG-feedback in VCSEL,” Opt. Express 23, 15459–15468 (2015).
    [Crossref]
  22. D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45, 879–891 (2009).
    [Crossref]
  23. Z. Q. Zhong, Z. M. Wu, J. Song, L. Y. Wang, T. Deng, and G. Q. Xia, “Polarization dynamics of 1550  nm VCSELs subject to polarization-preserved FBG feedback,” IEEE Photon. Technol. Lett. 28, 963–966 (2016).
    [Crossref]

2016 (3)

H. Lin, A. Khurram, and Y. H. Hong, “Time-delay signatures in multi-transverse mode VCSELs subject to double-cavity polarization-rotated optical feedback,” Opt. Commun. 377, 128–138 (2016).
[Crossref]

Y. H. Hong, A. Quirce, B. J. Wang, S. K. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52, 1–5 (2016).
[Crossref]

Z. Q. Zhong, Z. M. Wu, J. Song, L. Y. Wang, T. Deng, and G. Q. Xia, “Polarization dynamics of 1550  nm VCSELs subject to polarization-preserved FBG feedback,” IEEE Photon. Technol. Lett. 28, 963–966 (2016).
[Crossref]

2015 (5)

S. S. Li and S. C. Chan, “Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback,” IEEE J. Sel. Top. Quantum Electron. 21, 541–552 (2015).
[Crossref]

Z. Q. Zhong, S. S. Li, S. C. Chan, G. Q. Xia, and Z. M. Wu, “Polarization-resolved time-delay signatures of chaos induced by FBG-feedback in VCSEL,” Opt. Express 23, 15459–15468 (2015).
[Crossref]

A. Elsonbaty, S. F. Hegazy, and S. S. A. Obayya, “Simultaneous suppression of time-delay signature in intensity and phase of dual-channel chaos communication,” IEEE J. Quantum Electron. 51, 1–9 (2015).
[Crossref]

H. Liu, N. Li, and Q. Zhao, “Photonic generation of polarization-resolved wideband chaos with time-delay concealment in three-cascaded vertical-cavity surface-emitting lasers,” Appl. Opt. 54, 4380–4386 (2015).
[Crossref]

P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240  Gb/s,” IEEE Photon. Technol. Lett. 27, 296-299 (2015).
[Crossref]

2014 (2)

2013 (2)

S. Priyadarshi, Y. H. Hong, I. Pierce, and K. A. Shore, “Experimental investigations of time-delay signature concealment in chaotic external cavity VCSELs subject to variable optical polarization angle of feedback,” IEEE J. Sel. Top. Quantum Electron. 19, 1700707 (2013).
[Crossref]

R. Rodes, M. Müeller, B. Li, J. Estaran, J. B. Jensen, T. Gruendl, M. Ortsiefer, C. Neumeyr, J. Rosskopf, K. J. Larsen, M.-C. Amann, and I. T. Monroy, “High-speed 1550  nm VCSEL data transmission link employing 25  GBd 4-PAM modulation and hard decision forward error correction,” J. Lightwave Technol. 31, 689–695 (2013).
[Crossref]

2012 (1)

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photon. J. 4, 1930–1935 (2012).
[Crossref]

2011 (3)

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17, 1552–1567 (2011).
[Crossref]

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Jiang, L. Yang, and H. Zhu, “Conceal time-delay signature of chaotic vertical-cavity surface-emitting lasers by variable-polarization optical feedback,” Opt. Commun. 284, 5758–5765 (2011).
[Crossref]

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011).
[Crossref]

2010 (1)

2009 (3)

2006 (1)

1998 (1)

R. Hegger, M. J. Bünner, and H. Kantz, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81, 558–561 (1998).
[Crossref]

1996 (1)

M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “A tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E 54, R3082–R3085 (1996).
[Crossref]

Amann, M.-C.

Bünner, M. J.

R. Hegger, M. J. Bünner, and H. Kantz, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81, 558–561 (1998).
[Crossref]

M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “A tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E 54, R3082–R3085 (1996).
[Crossref]

Chan, S. C.

S. S. Li and S. C. Chan, “Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback,” IEEE J. Sel. Top. Quantum Electron. 21, 541–552 (2015).
[Crossref]

Z. Q. Zhong, S. S. Li, S. C. Chan, G. Q. Xia, and Z. M. Wu, “Polarization-resolved time-delay signatures of chaos induced by FBG-feedback in VCSEL,” Opt. Express 23, 15459–15468 (2015).
[Crossref]

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photon. J. 4, 1930–1935 (2012).
[Crossref]

Citrin, D. S.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45, 879–891 (2009).
[Crossref]

Deng, T.

Z. Q. Zhong, Z. M. Wu, J. Song, L. Y. Wang, T. Deng, and G. Q. Xia, “Polarization dynamics of 1550  nm VCSELs subject to polarization-preserved FBG feedback,” IEEE Photon. Technol. Lett. 28, 963–966 (2016).
[Crossref]

Elsonbaty, A.

A. Elsonbaty, S. F. Hegazy, and S. S. A. Obayya, “Simultaneous suppression of time-delay signature in intensity and phase of dual-channel chaos communication,” IEEE J. Quantum Electron. 51, 1–9 (2015).
[Crossref]

Estaran, J.

Fischer, I.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011).
[Crossref]

Gruendl, T.

Gustavsson, J. S.

P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240  Gb/s,” IEEE Photon. Technol. Lett. 27, 296-299 (2015).
[Crossref]

Hegazy, S. F.

A. Elsonbaty, S. F. Hegazy, and S. S. A. Obayya, “Simultaneous suppression of time-delay signature in intensity and phase of dual-channel chaos communication,” IEEE J. Quantum Electron. 51, 1–9 (2015).
[Crossref]

Hegger, R.

R. Hegger, M. J. Bünner, and H. Kantz, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81, 558–561 (1998).
[Crossref]

Hong, Y. H.

Y. H. Hong, A. Quirce, B. J. Wang, S. K. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52, 1–5 (2016).
[Crossref]

H. Lin, A. Khurram, and Y. H. Hong, “Time-delay signatures in multi-transverse mode VCSELs subject to double-cavity polarization-rotated optical feedback,” Opt. Commun. 377, 128–138 (2016).
[Crossref]

H. Lin, Y. H. Hong, and K. A. Shore, “Experimental study of time-delay signatures in vertical-cavity surface-emitting lasers subject to double-cavity polarization-rotated optical feedback,” J. Lightwave Technol. 32, 1829–1836 (2014).
[Crossref]

S. Priyadarshi, Y. H. Hong, I. Pierce, and K. A. Shore, “Experimental investigations of time-delay signature concealment in chaotic external cavity VCSELs subject to variable optical polarization angle of feedback,” IEEE J. Sel. Top. Quantum Electron. 19, 1700707 (2013).
[Crossref]

Y. H. Hong, M. W. Lee, J. Paul, P. S. Spencer, and K. A. Shore, “GHz bandwidth message transmission using chaotic vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 27, 5099–5105 (2009).
[Crossref]

Jensen, J. B.

Ji, S. K.

Y. H. Hong, A. Quirce, B. J. Wang, S. K. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52, 1–5 (2016).
[Crossref]

Jiang, N.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Jiang, L. Yang, and H. Zhu, “Conceal time-delay signature of chaotic vertical-cavity surface-emitting lasers by variable-polarization optical feedback,” Opt. Commun. 284, 5758–5765 (2011).
[Crossref]

Kantz, H.

R. Hegger, M. J. Bünner, and H. Kantz, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81, 558–561 (1998).
[Crossref]

Katayama, T.

Kawaguchi, H.

Khurram, A.

H. Lin, A. Khurram, and Y. H. Hong, “Time-delay signatures in multi-transverse mode VCSELs subject to double-cavity polarization-rotated optical feedback,” Opt. Commun. 377, 128–138 (2016).
[Crossref]

Kittel, A.

M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “A tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E 54, R3082–R3085 (1996).
[Crossref]

Koyama, F.

Larsen, K. J.

Larsson, A.

P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240  Gb/s,” IEEE Photon. Technol. Lett. 27, 296-299 (2015).
[Crossref]

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17, 1552–1567 (2011).
[Crossref]

Lee, M. W.

Li, B.

Li, N.

Li, S. S.

Z. Q. Zhong, S. S. Li, S. C. Chan, G. Q. Xia, and Z. M. Wu, “Polarization-resolved time-delay signatures of chaos induced by FBG-feedback in VCSEL,” Opt. Express 23, 15459–15468 (2015).
[Crossref]

S. S. Li and S. C. Chan, “Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback,” IEEE J. Sel. Top. Quantum Electron. 21, 541–552 (2015).
[Crossref]

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photon. J. 4, 1930–1935 (2012).
[Crossref]

Li, Y.

Lin, H.

H. Lin, A. Khurram, and Y. H. Hong, “Time-delay signatures in multi-transverse mode VCSELs subject to double-cavity polarization-rotated optical feedback,” Opt. Commun. 377, 128–138 (2016).
[Crossref]

H. Lin, Y. H. Hong, and K. A. Shore, “Experimental study of time-delay signatures in vertical-cavity surface-emitting lasers subject to double-cavity polarization-rotated optical feedback,” J. Lightwave Technol. 32, 1829–1836 (2014).
[Crossref]

Liu, H.

Liu, J.

Liu, Q.

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photon. J. 4, 1930–1935 (2012).
[Crossref]

Locquet, A.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45, 879–891 (2009).
[Crossref]

Luo, B.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Jiang, L. Yang, and H. Zhu, “Conceal time-delay signature of chaotic vertical-cavity surface-emitting lasers by variable-polarization optical feedback,” Opt. Commun. 284, 5758–5765 (2011).
[Crossref]

Mao, S.

Meyer, T.

M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “A tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E 54, R3082–R3085 (1996).
[Crossref]

Mirasso, C. R.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011).
[Crossref]

Monroy, I. T.

Müeller, M.

Neumeyr, C.

Obayya, S. S. A.

A. Elsonbaty, S. F. Hegazy, and S. S. A. Obayya, “Simultaneous suppression of time-delay signature in intensity and phase of dual-channel chaos communication,” IEEE J. Quantum Electron. 51, 1–9 (2015).
[Crossref]

Ortin, S.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45, 879–891 (2009).
[Crossref]

Ortsiefer, M.

Pan, W.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Jiang, L. Yang, and H. Zhu, “Conceal time-delay signature of chaotic vertical-cavity surface-emitting lasers by variable-polarization optical feedback,” Opt. Commun. 284, 5758–5765 (2011).
[Crossref]

Panajotov, K.

Y. H. Hong, A. Quirce, B. J. Wang, S. K. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52, 1–5 (2016).
[Crossref]

Parisi, J.

M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “A tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E 54, R3082–R3085 (1996).
[Crossref]

Paul, J.

Pierce, I.

S. Priyadarshi, Y. H. Hong, I. Pierce, and K. A. Shore, “Experimental investigations of time-delay signature concealment in chaotic external cavity VCSELs subject to variable optical polarization angle of feedback,” IEEE J. Sel. Top. Quantum Electron. 19, 1700707 (2013).
[Crossref]

Popp, M.

M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “A tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E 54, R3082–R3085 (1996).
[Crossref]

Priyadarshi, S.

S. Priyadarshi, Y. H. Hong, I. Pierce, and K. A. Shore, “Experimental investigations of time-delay signature concealment in chaotic external cavity VCSELs subject to variable optical polarization angle of feedback,” IEEE J. Sel. Top. Quantum Electron. 19, 1700707 (2013).
[Crossref]

Quirce, A.

Y. H. Hong, A. Quirce, B. J. Wang, S. K. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52, 1–5 (2016).
[Crossref]

Rodes, R.

Rontani, D.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45, 879–891 (2009).
[Crossref]

Rosskopf, J.

Rosso, O. A.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011).
[Crossref]

Sakaguchi, J.

Sciamanna, M.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45, 879–891 (2009).
[Crossref]

Shore, K. A.

Song, J.

Z. Q. Zhong, Z. M. Wu, J. Song, L. Y. Wang, T. Deng, and G. Q. Xia, “Polarization dynamics of 1550  nm VCSELs subject to polarization-preserved FBG feedback,” IEEE Photon. Technol. Lett. 28, 963–966 (2016).
[Crossref]

Soriano, M. C.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011).
[Crossref]

Spencer, P. S.

Y. H. Hong, A. Quirce, B. J. Wang, S. K. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52, 1–5 (2016).
[Crossref]

Y. H. Hong, M. W. Lee, J. Paul, P. S. Spencer, and K. A. Shore, “GHz bandwidth message transmission using chaotic vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 27, 5099–5105 (2009).
[Crossref]

Wang, B. J.

Y. H. Hong, A. Quirce, B. J. Wang, S. K. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52, 1–5 (2016).
[Crossref]

Wang, L. Y.

Z. Q. Zhong, Z. M. Wu, J. Song, L. Y. Wang, T. Deng, and G. Q. Xia, “Polarization dynamics of 1550  nm VCSELs subject to polarization-preserved FBG feedback,” IEEE Photon. Technol. Lett. 28, 963–966 (2016).
[Crossref]

Westbergh, P.

P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240  Gb/s,” IEEE Photon. Technol. Lett. 27, 296-299 (2015).
[Crossref]

Wu, Z. M.

Xia, G. Q.

Xiang, S. Y.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Jiang, L. Yang, and H. Zhu, “Conceal time-delay signature of chaotic vertical-cavity surface-emitting lasers by variable-polarization optical feedback,” Opt. Commun. 284, 5758–5765 (2011).
[Crossref]

Yan, L. S.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Jiang, L. Yang, and H. Zhu, “Conceal time-delay signature of chaotic vertical-cavity surface-emitting lasers by variable-polarization optical feedback,” Opt. Commun. 284, 5758–5765 (2011).
[Crossref]

Yang, L.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Jiang, L. Yang, and H. Zhu, “Conceal time-delay signature of chaotic vertical-cavity surface-emitting lasers by variable-polarization optical feedback,” Opt. Commun. 284, 5758–5765 (2011).
[Crossref]

Yang, X. J.

Zhao, Q.

Zhong, Z. Q.

Zhu, H.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Jiang, L. Yang, and H. Zhu, “Conceal time-delay signature of chaotic vertical-cavity surface-emitting lasers by variable-polarization optical feedback,” Opt. Commun. 284, 5758–5765 (2011).
[Crossref]

Zou, X. H.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Jiang, L. Yang, and H. Zhu, “Conceal time-delay signature of chaotic vertical-cavity surface-emitting lasers by variable-polarization optical feedback,” Opt. Commun. 284, 5758–5765 (2011).
[Crossref]

Zunino, L.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Electron. (4)

Y. H. Hong, A. Quirce, B. J. Wang, S. K. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52, 1–5 (2016).
[Crossref]

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011).
[Crossref]

A. Elsonbaty, S. F. Hegazy, and S. S. A. Obayya, “Simultaneous suppression of time-delay signature in intensity and phase of dual-channel chaos communication,” IEEE J. Quantum Electron. 51, 1–9 (2015).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45, 879–891 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

S. S. Li and S. C. Chan, “Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback,” IEEE J. Sel. Top. Quantum Electron. 21, 541–552 (2015).
[Crossref]

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17, 1552–1567 (2011).
[Crossref]

S. Priyadarshi, Y. H. Hong, I. Pierce, and K. A. Shore, “Experimental investigations of time-delay signature concealment in chaotic external cavity VCSELs subject to variable optical polarization angle of feedback,” IEEE J. Sel. Top. Quantum Electron. 19, 1700707 (2013).
[Crossref]

IEEE Photon. J. (1)

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photon. J. 4, 1930–1935 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (2)

P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240  Gb/s,” IEEE Photon. Technol. Lett. 27, 296-299 (2015).
[Crossref]

Z. Q. Zhong, Z. M. Wu, J. Song, L. Y. Wang, T. Deng, and G. Q. Xia, “Polarization dynamics of 1550  nm VCSELs subject to polarization-preserved FBG feedback,” IEEE Photon. Technol. Lett. 28, 963–966 (2016).
[Crossref]

J. Lightwave Technol. (4)

Opt. Commun. (2)

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Jiang, L. Yang, and H. Zhu, “Conceal time-delay signature of chaotic vertical-cavity surface-emitting lasers by variable-polarization optical feedback,” Opt. Commun. 284, 5758–5765 (2011).
[Crossref]

H. Lin, A. Khurram, and Y. H. Hong, “Time-delay signatures in multi-transverse mode VCSELs subject to double-cavity polarization-rotated optical feedback,” Opt. Commun. 377, 128–138 (2016).
[Crossref]

Opt. Express (4)

Phys. Rev. E (1)

M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “A tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E 54, R3082–R3085 (1996).
[Crossref]

Phys. Rev. Lett. (1)

R. Hegger, M. J. Bünner, and H. Kantz, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81, 558–561 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup. Solid line: optical path; dashed line: electronic path.
Fig. 2.
Fig. 2. (a) Light-current characteristic of solitary 1550 nm VCSEL. (b) Optical spectrum of the VCSEL output when the bias current of the laser is 3.5 mA.
Fig. 3.
Fig. 3. (a) Time series, (b) power spectrum, and (c) optical spectrum for total output intensity of the VCSEL when I = 4.0    mA , where the feedback strength ξ f is 0 (row 1), 0.01 (row 2), and 0.1 (row 3), respectively. Gray lines in power spectra denote the noise floor.
Fig. 4.
Fig. 4. (a) Time series, (b) power spectrum in 10 GHz span with inset zoomed to 20 MHz span, (c) ACF, and (d) MI for the FBGF-VCSEL output under I = 4.0    mA , where the feedback strength is ξ f = 0.06 (row 1), 0.22 (row 2), and 0.50 (row 3), respectively. Gray lines in power spectra denote the noise floor.
Fig. 5.
Fig. 5. (a) Optical spectrum (red line) and FBG reflection spectrum (black line) and (b) TDS of chaotic output as a function of feedback strength under different bias currents, where I = 3.0    mA (row 1), I = 3.5    mA (row 2), and I = 4.0    mA (row 3). Solid squares represent the TDS evolution of the FBGF-VCSEL. Hollow squares present comparison results when the FBG is replaced by a mirror.
Fig. 6.
Fig. 6. Mappings of the TDS of the chaotic output from the VCSEL subject to (a) FBG feedback and (b) mirror feedback in the parameter space of feedback strength and bias current. Dashed line represents the boundary of the polarization mode switching, and the region above (below) the dashed line is for YP (XP) mode plays the dominant role.

Metrics