Abstract

We investigate in this paper the influence of slow light on the balance between the Kerr and two-photon absorption (TPA) processes in silicon slotted hybrid nonlinear waveguides. Three typical silicon photonic waveguide geometries are studied to estimate the influence of the light slow-down factor on the mode field overlap with the silicon region, as well as on the complex effective nonlinear susceptibility. It is found that slotted photonic crystal modes tend to focalize in their hollow core with increasing group index (nG) values. Considering a hybrid integration of nonlinear polymers in such slotted waveguides, a relative decrease of the TPA process by more factor of 2 is predicted from nG=10 to nG=50. As a whole, this work shows that the relative influence of TPA decreases for slotted waveguides operating in the slow light regime, making them a suitable platform for third-order nonlinear optics.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides

Tao Chen, Junqiang Sun, and Linsen Li
Opt. Express 20(18) 20043-20058 (2012)

High efficiency asymmetric directional coupler for slow light slot photonic crystal waveguides

Yameng Xu, Charles Caer, Dingshan Gao, Eric Cassan, and Xinliang Zhang
Opt. Express 22(9) 11021-11028 (2014)

Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide

Alexandre Baron, Aleksandr Ryasnyanskiy, Nicolas Dubreuil, Philippe Delaye, Quynh Vy Tran, Sylvain Combrié, Alfredo de Rossi, Robert Frey, and Gerald Roosen
Opt. Express 17(2) 552-557 (2009)

References

  • View by:
  • |
  • |
  • |

  1. L. Vivien and L. Pavesi, Handbook of Silicon Photonics (CRC, 2013).
  2. I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007).
  3. R. Osgood, N. Panoiu, J. Dadap, X. Liu, X. Chen, J. Hsieh, and Y. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1, 162–235 (2009).
    [Crossref]
  4. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
    [Crossref]
  5. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
    [Crossref]
  6. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
    [Crossref]
  7. W. Zhang, S. Serna, N. Dubreuil, and E. Cassan, “Nonlinear optimization of slot Si waveguides: TPA minimization with FOMTPA up to 4.25,” Opt. Lett. 40, 1212–1215 (2015).
    [Crossref]
  8. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostruct. 6, 38–41 (2008).
    [Crossref]
  9. C. Caer, X. Le Roux, S. Serna, W. Zhang, L. Vivien, and E. Cassan, “Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics,” Front. Optoelectron. 7, 376–384 (2014).
    [Crossref]
  10. C. Caer, X. Le Roux, and E. Cassan, “Enhanced localization of light in slow wave slot photonic crystal waveguides,” Opt. Lett. 37, 3660–3662 (2012).
    [Crossref]
  11. T. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
    [Crossref]
  12. J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18, 15484–15497 (2010).
    [Crossref]
  13. C. A. Barrios, “High-performance all-optical silicon microswitch,” Electron. Lett. 40, 862–863 (2004).
    [Crossref]
  14. M. Asobe, I. Yokohama, T. Kaino, S. Tomaru, and T. Kurihara, “Nonlinear absorption and refraction in an organic dye functionalized main chain polymer waveguide in the 1.5  μm wavelength region,” Appl. Phys. Lett. 67, 891–893 (1995).
    [Crossref]
  15. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
    [Crossref]
  16. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref]
  17. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
    [Crossref]
  18. N. C. Panoiu, J. F. McMillan, and C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 257–266 (2010).
    [Crossref]
  19. S. Lavdas and N. C. Panoiu, “Theory of pulsed four-wave mixing in one-dimensional silicon photonic crystal slab waveguides,” Phys. Rev. B 93, 115435 (2016).
    [Crossref]

2016 (1)

S. Lavdas and N. C. Panoiu, “Theory of pulsed four-wave mixing in one-dimensional silicon photonic crystal slab waveguides,” Phys. Rev. B 93, 115435 (2016).
[Crossref]

2015 (1)

2014 (1)

C. Caer, X. Le Roux, S. Serna, W. Zhang, L. Vivien, and E. Cassan, “Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics,” Front. Optoelectron. 7, 376–384 (2014).
[Crossref]

2012 (1)

2011 (1)

2010 (3)

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18, 15484–15497 (2010).
[Crossref]

N. C. Panoiu, J. F. McMillan, and C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 257–266 (2010).
[Crossref]

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

2009 (2)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

R. Osgood, N. Panoiu, J. Dadap, X. Liu, X. Chen, J. Hsieh, and Y. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1, 162–235 (2009).
[Crossref]

2008 (1)

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostruct. 6, 38–41 (2008).
[Crossref]

2007 (3)

2005 (1)

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref]

2004 (1)

C. A. Barrios, “High-performance all-optical silicon microswitch,” Electron. Lett. 40, 862–863 (2004).
[Crossref]

2001 (1)

1995 (1)

M. Asobe, I. Yokohama, T. Kaino, S. Tomaru, and T. Kurihara, “Nonlinear absorption and refraction in an organic dye functionalized main chain polymer waveguide in the 1.5  μm wavelength region,” Appl. Phys. Lett. 67, 891–893 (1995).
[Crossref]

Agrawal, G. P.

Asobe, M.

M. Asobe, I. Yokohama, T. Kaino, S. Tomaru, and T. Kurihara, “Nonlinear absorption and refraction in an organic dye functionalized main chain polymer waveguide in the 1.5  μm wavelength region,” Appl. Phys. Lett. 67, 891–893 (1995).
[Crossref]

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Barrios, C. A.

C. A. Barrios, “High-performance all-optical silicon microswitch,” Electron. Lett. 40, 862–863 (2004).
[Crossref]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Caer, C.

C. Caer, X. Le Roux, S. Serna, W. Zhang, L. Vivien, and E. Cassan, “Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics,” Front. Optoelectron. 7, 376–384 (2014).
[Crossref]

C. Caer, X. Le Roux, and E. Cassan, “Enhanced localization of light in slow wave slot photonic crystal waveguides,” Opt. Lett. 37, 3660–3662 (2012).
[Crossref]

Cassan, E.

Chen, X.

Chou, C.-Y.

Corcoran, B.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Dadap, J.

Dadap, J. I.

Di Falco, A.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostruct. 6, 38–41 (2008).
[Crossref]

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Dubreuil, N.

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Ebnali-Heidari, M.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Gaeta, A. L.

Green, W. M.

Grillet, C.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Hsieh, I.-W.

Hsieh, J.

Hughes, S.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref]

Joannopoulos, J. D.

Johnson, S. G.

Kaino, T.

M. Asobe, I. Yokohama, T. Kaino, S. Tomaru, and T. Kurihara, “Nonlinear absorption and refraction in an organic dye functionalized main chain polymer waveguide in the 1.5  μm wavelength region,” Appl. Phys. Lett. 67, 891–893 (1995).
[Crossref]

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Krauss, T.

T. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[Crossref]

Krauss, T. F.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostruct. 6, 38–41 (2008).
[Crossref]

Kurihara, T.

M. Asobe, I. Yokohama, T. Kaino, S. Tomaru, and T. Kurihara, “Nonlinear absorption and refraction in an organic dye functionalized main chain polymer waveguide in the 1.5  μm wavelength region,” Appl. Phys. Lett. 67, 891–893 (1995).
[Crossref]

Kwong, D.-L.

Lavdas, S.

S. Lavdas and N. C. Panoiu, “Theory of pulsed four-wave mixing in one-dimensional silicon photonic crystal slab waveguides,” Phys. Rev. B 93, 115435 (2016).
[Crossref]

Le Roux, X.

C. Caer, X. Le Roux, S. Serna, W. Zhang, L. Vivien, and E. Cassan, “Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics,” Front. Optoelectron. 7, 376–384 (2014).
[Crossref]

C. Caer, X. Le Roux, and E. Cassan, “Enhanced localization of light in slow wave slot photonic crystal waveguides,” Opt. Lett. 37, 3660–3662 (2012).
[Crossref]

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Levy, J. S.

Lin, Q.

Lipson, M.

Liu, X.

McMillan, J. F.

N. C. Panoiu, J. F. McMillan, and C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 257–266 (2010).
[Crossref]

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18, 15484–15497 (2010).
[Crossref]

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Monat, C.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

O’Faolain, L.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostruct. 6, 38–41 (2008).
[Crossref]

Okawachi, Y.

Osgood, R.

Osgood, R. M.

Painter, O. J.

Panoiu, N.

Panoiu, N. C.

S. Lavdas and N. C. Panoiu, “Theory of pulsed four-wave mixing in one-dimensional silicon photonic crystal slab waveguides,” Phys. Rev. B 93, 115435 (2016).
[Crossref]

N. C. Panoiu, J. F. McMillan, and C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 257–266 (2010).
[Crossref]

I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007).

Pavesi, L.

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (CRC, 2013).

Pelusi, M. D.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Pudo, D.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Ramunno, L.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref]

Saha, K.

Serna, S.

W. Zhang, S. Serna, N. Dubreuil, and E. Cassan, “Nonlinear optimization of slot Si waveguides: TPA minimization with FOMTPA up to 4.25,” Opt. Lett. 40, 1212–1215 (2015).
[Crossref]

C. Caer, X. Le Roux, S. Serna, W. Zhang, L. Vivien, and E. Cassan, “Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics,” Front. Optoelectron. 7, 376–384 (2014).
[Crossref]

Sipe, J. E.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref]

Tomaru, S.

M. Asobe, I. Yokohama, T. Kaino, S. Tomaru, and T. Kurihara, “Nonlinear absorption and refraction in an organic dye functionalized main chain polymer waveguide in the 1.5  μm wavelength region,” Appl. Phys. Lett. 67, 891–893 (1995).
[Crossref]

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Vivien, L.

C. Caer, X. Le Roux, S. Serna, W. Zhang, L. Vivien, and E. Cassan, “Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics,” Front. Optoelectron. 7, 376–384 (2014).
[Crossref]

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (CRC, 2013).

Vlasov, Y.

Vlasov, Y. A.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Wen, Y. H.

Wong, C. W.

J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18, 15484–15497 (2010).
[Crossref]

N. C. Panoiu, J. F. McMillan, and C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 257–266 (2010).
[Crossref]

Xia, F.

Yokohama, I.

M. Asobe, I. Yokohama, T. Kaino, S. Tomaru, and T. Kurihara, “Nonlinear absorption and refraction in an organic dye functionalized main chain polymer waveguide in the 1.5  μm wavelength region,” Appl. Phys. Lett. 67, 891–893 (1995).
[Crossref]

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref]

Yu, M.

Zhang, W.

W. Zhang, S. Serna, N. Dubreuil, and E. Cassan, “Nonlinear optimization of slot Si waveguides: TPA minimization with FOMTPA up to 4.25,” Opt. Lett. 40, 1212–1215 (2015).
[Crossref]

C. Caer, X. Le Roux, S. Serna, W. Zhang, L. Vivien, and E. Cassan, “Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics,” Front. Optoelectron. 7, 376–384 (2014).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

M. Asobe, I. Yokohama, T. Kaino, S. Tomaru, and T. Kurihara, “Nonlinear absorption and refraction in an organic dye functionalized main chain polymer waveguide in the 1.5  μm wavelength region,” Appl. Phys. Lett. 67, 891–893 (1995).
[Crossref]

Electron. Lett. (1)

C. A. Barrios, “High-performance all-optical silicon microswitch,” Electron. Lett. 40, 862–863 (2004).
[Crossref]

Front. Optoelectron. (1)

C. Caer, X. Le Roux, S. Serna, W. Zhang, L. Vivien, and E. Cassan, “Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics,” Front. Optoelectron. 7, 376–384 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

N. C. Panoiu, J. F. McMillan, and C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 257–266 (2010).
[Crossref]

J. Phys. D (1)

T. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[Crossref]

Nat. Photonics (1)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Photon. Nanostruct. (1)

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostruct. 6, 38–41 (2008).
[Crossref]

Phys. Rev. B (1)

S. Lavdas and N. C. Panoiu, “Theory of pulsed four-wave mixing in one-dimensional silicon photonic crystal slab waveguides,” Phys. Rev. B 93, 115435 (2016).
[Crossref]

Phys. Rev. Lett. (1)

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref]

Other (1)

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (CRC, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic views of the investigated PCW geometries (W1-PCW, NS-PCW and WS-PCW). a=400  nm, h=260  nm. Other parameters are specified in the text.
Fig. 2.
Fig. 2. Dispersion curves of the three PCWs described in Fig. 1: (a) W1-PCW, (b) NS-PCW, and (c) WS-PCW.
Fig. 3.
Fig. 3. Waveguide mode group index (nG) and dispersion coefficient (β2) of the three investigated PCWs (see Fig. 1): (a) W1-PCW, (b) NS-PCW, and (c) WS-PCW.
Fig. 4.
Fig. 4. Nonlinear properties parameters versus group indices: (a) mode field/silicon overlap factor, (b) effective nonlinear susceptibility in terms of real and imaginary parts, (c) nonlinear waveguide parameter (real and imaginary parts).
Fig. 5.
Fig. 5. FOMTPA in the three investigated structures. Black, red, and blue curves represent the parameters in W1-PCW, NS-PCW, and WS-PCW, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

κ(z)=anSi2Ssi|e(r)|2dSVcellω(ωnc2)|e(r)|2dV,
κ(z)=1a0aκ(ξ)dξ,
Γ(z)=a4Snle(r)*·χ(3)(r)e(r)e(r)e*(r)dS(Vcellω(ωnc2)|e(r)|2dV)2,
Γz=1a0aΓ(ξ)dξ,
ωcn2+i2βTPA=3ω4ϵ0c2n2χeff(3).

Metrics