Abstract

Light-emitting diode (LED)-based visible light communication (VLC) has become a potential candidate for next-generation ultra-high-speed indoor wireless communication. In this paper, four special-shaped 8-quadrature amplitude modulation (QAM) constellations are investigated in a single-carrier VLC system. It is numerically verified and experimentally demonstrated that circular (7,1) shows obvious superiority in the performance of the dynamic range of signal voltage peak-to-peak (vpp) value and bit error rate (BER). Next best is rectangular, followed by triangular; circular (4,4) has the worst performance. A data rate of 1.515 Gbit/s is successfully achieved by circular (7,1) employing a red chip LED over 0.5 m indoor free space transmission below a BER threshold of 3.8×103. Compared with circular (4,4), the traditional 8-QAM constellation, circular (7,1) provides a wider dynamic range of signal vpp, a higher data rate, and a longer transmission distance. To the best of our knowledge, this is the first investigation into the performance differences of special-shaped 8-QAM constellations in a high-speed, single-carrier VLC system, and the results comprehensively demonstrate that circular (7,1) is the optimal option.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
3.2 Gigabit-per-second Visible Light Communication Link with InGaN/GaN MQW Micro-photodetector

Kang-Ting Ho, Rui Chen, Guangyu Liu, Chao Shen, Jorge Holguin-Lerma, Abeer A. Al-Saggaf, Tien Khee Ng, Mohamed-Slim Alouini, Jr-Hau He, and Boon S. Ooi
Opt. Express 26(3) 3037-3045 (2018)

On the study of the relation between linear/nonlinear PAPR reduction and transmission performance for OFDM-based VLC systems

Huimin Lu, Yang Hong, Lian-Kuan Chen, and Jianping Wang
Opt. Express 26(11) 13891-13901 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21, 1203–1208 (2013).
    [Crossref]
  2. N. Chi, Y. Wang, Y. Wang, X. Huang, and X. Lu, “Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats,” Chin. Opt. Lett. 12, 010605 (2014).
    [Crossref]
  3. D. Wu, W. D. Zhong, Z. Ghassemlooy, and C. Chen, “Short-range visible light ranging and detecting system using illumination light emitting diodes,” IET Optoelectron. 10, 94–99 (2015).
    [Crossref]
  4. P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17, 2047–2077 (2015).
    [Crossref]
  5. C. Thomas, M. Weidner, and S. H. Durrani, “Digital amplitude-phase keying with M-ary alphabets,” IEEE Trans. Commun. 22, 168–180 (1974).
    [Crossref]
  6. G. J. Foschini, R. D. Gitlin, and S. B. Weinstein, “Optimization of two-dimensional signal constellations in the presence of Gaussian noise,” IEEE Trans. Commun. 22, 28–38 (1974).
    [Crossref]
  7. H. Kwok and D. Jones, “PAR reduction via constellation shaping,” in Proceedings of IEEE International Symposium on Information Theory (IEEE, 2000), p. 166.
  8. S. Sezginer and H. Sari, “Peak power reduction in OFDM systems using dynamic constellation shaping,” in 13th European Signal Processing Conference, September2005, pp. 1–4.
  9. A. Mobasher and A. K. Khandani, “Integer-based constellation-shaping method for PAPR reduction in OFDM systems,” IEEE Trans. Commun. 54, 119–127 (2006).
    [Crossref]
  10. N. H. Tran and H. H. Nguyen, “Signal mappings of 8-ary constellations for bit interleaved coded modulation with iterative decoding,” IEEE Trans. Broadcast. 52, 92–99 (2006).
    [Crossref]
  11. G. Hosoya and H. Yashima, “Constellation shaping for non-uniform signals in bit-interleaved coded modulation combined with multi-stage decoding,” in Australian Communications Theory Workshop (AusCTW), (January2016), pp. 181–186.
  12. M. Nölle, F. Frey, R. Elschner, C. Schmidt-Langhorst, A. Napoli, and C. Schubert, “Performance comparison of different 8QAM constellations for the use in flexible optical networks,” in Optical Fiber Communication Conference, (March2014).
  13. E. Agrell and M. Karlsson, “Power-efficient modulation formats in coherent transmission systems,” J. Lightwave Technol. 27, 5115–5126 (2009).
    [Crossref]
  14. P. A. Bello and B. D. Nelin, “The effect of frequency selective fading on the binary error probabilities of incoherent and differentially coherent matched filter receivers,” IEEE Trans. Commun. Syst. 11, 170–186 (1963).
    [Crossref]
  15. K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22, 36–45 (2015).
    [Crossref]
  16. W. Yan, B. Liu, L. Li, Z. Tao, T. Takahara, and J. C. Rasmussen, “Nonlinear distortion and DSP-based compensation in metro and access networks using discrete multi-tone,” in European Conference and Exhibition on Optical Communication, (September2012), pp. Mo-1.
  17. X. Huang, Z. Wang, J. Shi, Y. Wang, and N. Chi, “1.6  Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver,” Opt. Express 23, 22034–22042 (2015).
    [Crossref]

2015 (4)

D. Wu, W. D. Zhong, Z. Ghassemlooy, and C. Chen, “Short-range visible light ranging and detecting system using illumination light emitting diodes,” IET Optoelectron. 10, 94–99 (2015).
[Crossref]

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17, 2047–2077 (2015).
[Crossref]

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22, 36–45 (2015).
[Crossref]

X. Huang, Z. Wang, J. Shi, Y. Wang, and N. Chi, “1.6  Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver,” Opt. Express 23, 22034–22042 (2015).
[Crossref]

2014 (1)

2013 (1)

2009 (1)

2006 (2)

A. Mobasher and A. K. Khandani, “Integer-based constellation-shaping method for PAPR reduction in OFDM systems,” IEEE Trans. Commun. 54, 119–127 (2006).
[Crossref]

N. H. Tran and H. H. Nguyen, “Signal mappings of 8-ary constellations for bit interleaved coded modulation with iterative decoding,” IEEE Trans. Broadcast. 52, 92–99 (2006).
[Crossref]

1974 (2)

C. Thomas, M. Weidner, and S. H. Durrani, “Digital amplitude-phase keying with M-ary alphabets,” IEEE Trans. Commun. 22, 168–180 (1974).
[Crossref]

G. J. Foschini, R. D. Gitlin, and S. B. Weinstein, “Optimization of two-dimensional signal constellations in the presence of Gaussian noise,” IEEE Trans. Commun. 22, 28–38 (1974).
[Crossref]

1963 (1)

P. A. Bello and B. D. Nelin, “The effect of frequency selective fading on the binary error probabilities of incoherent and differentially coherent matched filter receivers,” IEEE Trans. Commun. Syst. 11, 170–186 (1963).
[Crossref]

Agrell, E.

Baxley, R. J.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22, 36–45 (2015).
[Crossref]

Bello, P. A.

P. A. Bello and B. D. Nelin, “The effect of frequency selective fading on the binary error probabilities of incoherent and differentially coherent matched filter receivers,” IEEE Trans. Commun. Syst. 11, 170–186 (1963).
[Crossref]

Chang, G. K.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22, 36–45 (2015).
[Crossref]

Chen, C.

D. Wu, W. D. Zhong, Z. Ghassemlooy, and C. Chen, “Short-range visible light ranging and detecting system using illumination light emitting diodes,” IET Optoelectron. 10, 94–99 (2015).
[Crossref]

Chi, N.

Durrani, S. H.

C. Thomas, M. Weidner, and S. H. Durrani, “Digital amplitude-phase keying with M-ary alphabets,” IEEE Trans. Commun. 22, 168–180 (1974).
[Crossref]

Elschner, R.

M. Nölle, F. Frey, R. Elschner, C. Schmidt-Langhorst, A. Napoli, and C. Schubert, “Performance comparison of different 8QAM constellations for the use in flexible optical networks,” in Optical Fiber Communication Conference, (March2014).

Feng, X.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17, 2047–2077 (2015).
[Crossref]

Foschini, G. J.

G. J. Foschini, R. D. Gitlin, and S. B. Weinstein, “Optimization of two-dimensional signal constellations in the presence of Gaussian noise,” IEEE Trans. Commun. 22, 28–38 (1974).
[Crossref]

Frey, F.

M. Nölle, F. Frey, R. Elschner, C. Schmidt-Langhorst, A. Napoli, and C. Schubert, “Performance comparison of different 8QAM constellations for the use in flexible optical networks,” in Optical Fiber Communication Conference, (March2014).

Ghassemlooy, Z.

D. Wu, W. D. Zhong, Z. Ghassemlooy, and C. Chen, “Short-range visible light ranging and detecting system using illumination light emitting diodes,” IET Optoelectron. 10, 94–99 (2015).
[Crossref]

Gitlin, R. D.

G. J. Foschini, R. D. Gitlin, and S. B. Weinstein, “Optimization of two-dimensional signal constellations in the presence of Gaussian noise,” IEEE Trans. Commun. 22, 28–38 (1974).
[Crossref]

Hosoya, G.

G. Hosoya and H. Yashima, “Constellation shaping for non-uniform signals in bit-interleaved coded modulation combined with multi-stage decoding,” in Australian Communications Theory Workshop (AusCTW), (January2016), pp. 181–186.

Hu, P.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17, 2047–2077 (2015).
[Crossref]

Huang, X.

Jones, D.

H. Kwok and D. Jones, “PAR reduction via constellation shaping,” in Proceedings of IEEE International Symposium on Information Theory (IEEE, 2000), p. 166.

Karlsson, M.

Khandani, A. K.

A. Mobasher and A. K. Khandani, “Integer-based constellation-shaping method for PAPR reduction in OFDM systems,” IEEE Trans. Commun. 54, 119–127 (2006).
[Crossref]

Kwok, H.

H. Kwok and D. Jones, “PAR reduction via constellation shaping,” in Proceedings of IEEE International Symposium on Information Theory (IEEE, 2000), p. 166.

Li, L.

W. Yan, B. Liu, L. Li, Z. Tao, T. Takahara, and J. C. Rasmussen, “Nonlinear distortion and DSP-based compensation in metro and access networks using discrete multi-tone,” in European Conference and Exhibition on Optical Communication, (September2012), pp. Mo-1.

Liu, B.

W. Yan, B. Liu, L. Li, Z. Tao, T. Takahara, and J. C. Rasmussen, “Nonlinear distortion and DSP-based compensation in metro and access networks using discrete multi-tone,” in European Conference and Exhibition on Optical Communication, (September2012), pp. Mo-1.

Lu, X.

Mobasher, A.

A. Mobasher and A. K. Khandani, “Integer-based constellation-shaping method for PAPR reduction in OFDM systems,” IEEE Trans. Commun. 54, 119–127 (2006).
[Crossref]

Mohapatra, P.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17, 2047–2077 (2015).
[Crossref]

Napoli, A.

M. Nölle, F. Frey, R. Elschner, C. Schmidt-Langhorst, A. Napoli, and C. Schubert, “Performance comparison of different 8QAM constellations for the use in flexible optical networks,” in Optical Fiber Communication Conference, (March2014).

Nelin, B. D.

P. A. Bello and B. D. Nelin, “The effect of frequency selective fading on the binary error probabilities of incoherent and differentially coherent matched filter receivers,” IEEE Trans. Commun. Syst. 11, 170–186 (1963).
[Crossref]

Nguyen, H. H.

N. H. Tran and H. H. Nguyen, “Signal mappings of 8-ary constellations for bit interleaved coded modulation with iterative decoding,” IEEE Trans. Broadcast. 52, 92–99 (2006).
[Crossref]

Nölle, M.

M. Nölle, F. Frey, R. Elschner, C. Schmidt-Langhorst, A. Napoli, and C. Schubert, “Performance comparison of different 8QAM constellations for the use in flexible optical networks,” in Optical Fiber Communication Conference, (March2014).

Pathak, P. H.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17, 2047–2077 (2015).
[Crossref]

Qian, H.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22, 36–45 (2015).
[Crossref]

Rasmussen, J. C.

W. Yan, B. Liu, L. Li, Z. Tao, T. Takahara, and J. C. Rasmussen, “Nonlinear distortion and DSP-based compensation in metro and access networks using discrete multi-tone,” in European Conference and Exhibition on Optical Communication, (September2012), pp. Mo-1.

Sari, H.

S. Sezginer and H. Sari, “Peak power reduction in OFDM systems using dynamic constellation shaping,” in 13th European Signal Processing Conference, September2005, pp. 1–4.

Schmidt-Langhorst, C.

M. Nölle, F. Frey, R. Elschner, C. Schmidt-Langhorst, A. Napoli, and C. Schubert, “Performance comparison of different 8QAM constellations for the use in flexible optical networks,” in Optical Fiber Communication Conference, (March2014).

Schubert, C.

M. Nölle, F. Frey, R. Elschner, C. Schmidt-Langhorst, A. Napoli, and C. Schubert, “Performance comparison of different 8QAM constellations for the use in flexible optical networks,” in Optical Fiber Communication Conference, (March2014).

Sezginer, S.

S. Sezginer and H. Sari, “Peak power reduction in OFDM systems using dynamic constellation shaping,” in 13th European Signal Processing Conference, September2005, pp. 1–4.

Shang, H.

Shi, J.

Takahara, T.

W. Yan, B. Liu, L. Li, Z. Tao, T. Takahara, and J. C. Rasmussen, “Nonlinear distortion and DSP-based compensation in metro and access networks using discrete multi-tone,” in European Conference and Exhibition on Optical Communication, (September2012), pp. Mo-1.

Tao, Z.

W. Yan, B. Liu, L. Li, Z. Tao, T. Takahara, and J. C. Rasmussen, “Nonlinear distortion and DSP-based compensation in metro and access networks using discrete multi-tone,” in European Conference and Exhibition on Optical Communication, (September2012), pp. Mo-1.

Thomas, C.

C. Thomas, M. Weidner, and S. H. Durrani, “Digital amplitude-phase keying with M-ary alphabets,” IEEE Trans. Commun. 22, 168–180 (1974).
[Crossref]

Tran, N. H.

N. H. Tran and H. H. Nguyen, “Signal mappings of 8-ary constellations for bit interleaved coded modulation with iterative decoding,” IEEE Trans. Broadcast. 52, 92–99 (2006).
[Crossref]

Wang, Y.

Wang, Z.

Weidner, M.

C. Thomas, M. Weidner, and S. H. Durrani, “Digital amplitude-phase keying with M-ary alphabets,” IEEE Trans. Commun. 22, 168–180 (1974).
[Crossref]

Weinstein, S. B.

G. J. Foschini, R. D. Gitlin, and S. B. Weinstein, “Optimization of two-dimensional signal constellations in the presence of Gaussian noise,” IEEE Trans. Commun. 22, 28–38 (1974).
[Crossref]

Wu, D.

D. Wu, W. D. Zhong, Z. Ghassemlooy, and C. Chen, “Short-range visible light ranging and detecting system using illumination light emitting diodes,” IET Optoelectron. 10, 94–99 (2015).
[Crossref]

Yan, W.

W. Yan, B. Liu, L. Li, Z. Tao, T. Takahara, and J. C. Rasmussen, “Nonlinear distortion and DSP-based compensation in metro and access networks using discrete multi-tone,” in European Conference and Exhibition on Optical Communication, (September2012), pp. Mo-1.

Yashima, H.

G. Hosoya and H. Yashima, “Constellation shaping for non-uniform signals in bit-interleaved coded modulation combined with multi-stage decoding,” in Australian Communications Theory Workshop (AusCTW), (January2016), pp. 181–186.

Ying, K.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22, 36–45 (2015).
[Crossref]

Yu, J.

Yu, Z.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22, 36–45 (2015).
[Crossref]

Zhong, W. D.

D. Wu, W. D. Zhong, Z. Ghassemlooy, and C. Chen, “Short-range visible light ranging and detecting system using illumination light emitting diodes,” IET Optoelectron. 10, 94–99 (2015).
[Crossref]

Zhou, G. T.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22, 36–45 (2015).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Commun. Surv. Tutorials (1)

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Commun. Surv. Tutorials 17, 2047–2077 (2015).
[Crossref]

IEEE Trans. Broadcast. (1)

N. H. Tran and H. H. Nguyen, “Signal mappings of 8-ary constellations for bit interleaved coded modulation with iterative decoding,” IEEE Trans. Broadcast. 52, 92–99 (2006).
[Crossref]

IEEE Trans. Commun. (3)

C. Thomas, M. Weidner, and S. H. Durrani, “Digital amplitude-phase keying with M-ary alphabets,” IEEE Trans. Commun. 22, 168–180 (1974).
[Crossref]

G. J. Foschini, R. D. Gitlin, and S. B. Weinstein, “Optimization of two-dimensional signal constellations in the presence of Gaussian noise,” IEEE Trans. Commun. 22, 28–38 (1974).
[Crossref]

A. Mobasher and A. K. Khandani, “Integer-based constellation-shaping method for PAPR reduction in OFDM systems,” IEEE Trans. Commun. 54, 119–127 (2006).
[Crossref]

IEEE Trans. Commun. Syst. (1)

P. A. Bello and B. D. Nelin, “The effect of frequency selective fading on the binary error probabilities of incoherent and differentially coherent matched filter receivers,” IEEE Trans. Commun. Syst. 11, 170–186 (1963).
[Crossref]

IEEE Wireless Commun. (1)

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22, 36–45 (2015).
[Crossref]

IET Optoelectron. (1)

D. Wu, W. D. Zhong, Z. Ghassemlooy, and C. Chen, “Short-range visible light ranging and detecting system using illumination light emitting diodes,” IET Optoelectron. 10, 94–99 (2015).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (2)

Other (5)

H. Kwok and D. Jones, “PAR reduction via constellation shaping,” in Proceedings of IEEE International Symposium on Information Theory (IEEE, 2000), p. 166.

S. Sezginer and H. Sari, “Peak power reduction in OFDM systems using dynamic constellation shaping,” in 13th European Signal Processing Conference, September2005, pp. 1–4.

W. Yan, B. Liu, L. Li, Z. Tao, T. Takahara, and J. C. Rasmussen, “Nonlinear distortion and DSP-based compensation in metro and access networks using discrete multi-tone,” in European Conference and Exhibition on Optical Communication, (September2012), pp. Mo-1.

G. Hosoya and H. Yashima, “Constellation shaping for non-uniform signals in bit-interleaved coded modulation combined with multi-stage decoding,” in Australian Communications Theory Workshop (AusCTW), (January2016), pp. 181–186.

M. Nölle, F. Frey, R. Elschner, C. Schmidt-Langhorst, A. Napoli, and C. Schubert, “Performance comparison of different 8QAM constellations for the use in flexible optical networks,” in Optical Fiber Communication Conference, (March2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. 8-QAM constellation design.
Fig. 2.
Fig. 2. BER versus average SNR.
Fig. 3.
Fig. 3. Frequency response of a commercial LED.
Fig. 4.
Fig. 4. BER versus baud rate under high-frequency attenuation.
Fig. 5.
Fig. 5. U–I curve of the red chip of a commercial RGB–LED (LZ4-00MA00).
Fig. 6.
Fig. 6. CCDF of PAPRs for single-carrier, special-shaped 8-QAM signals.
Fig. 7.
Fig. 7. Experimental setup of single-carrier, special-shaped 8-QAM VLC system.
Fig. 8.
Fig. 8. BER versus different bias voltage and signal vpp for (a) circular (7,1), (b) circular (4,4), (c) rectangular, and (d) triangular.
Fig. 9.
Fig. 9. BER versus signal vpp (a) at bias voltage=1.8  V, (b) at bias voltage=2.0  V, and (c) at bias voltage=2.3  V.
Fig. 10.
Fig. 10. Q-factor comparison for different 8-QAM constellations.
Fig. 11.
Fig. 11. Baud rate comparison for different 8-QAM constellations.
Fig. 12.
Fig. 12. Highest baud rate versus transmission for different 8-QAM.

Tables (3)

Tables Icon

Table 1. Minimum Euclidean Distances of Special-Shaped 8-QAM Constellations

Tables Icon

Table 2. PAPRs of Different Special-Shaped 8-QAM Constellations

Tables Icon

Table 3. Dynamic Range of Signal VPP Under Different Bias Voltage

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SER1Mk=1Mj=1,jkM12erfc(dkj2N0),

Metrics