Abstract

We review the state of the art and our perspectives on silicon and hybrid silicon photonic devices for optical interconnects in datacenters. After a brief discussion of the key requirements for intra-datacenter optical interconnects, we propose a wavelength-division-multiplexing (WDM)-based optical interconnect for intra-datacenter applications. Following our proposed interconnects configuration, the bulk of the review emphasizes recent developments concerning on-chip hybrid silicon microlasers and WDM transmitters, and silicon photonic switch fabrics for intra-datacenters. For hybrid silicon microlasers and WDM transmitters, we outline the remaining challenges and key issues toward realizing low power consumption, direct modulation, and integration of multiwavelength microlaser arrays. For silicon photonic switch fabrics, we review various topologies and configurations of high-port-count N-by-N switch fabrics using Mach–Zehnder interferometers and microring resonators as switch elements, and discuss their prospects toward practical implementations with active reconfiguration. For the microring-based switch fabrics, we review recent developments of active stabilization schemes at the subsystem level. Last, we outline several large challenges and problems for silicon and hybrid silicon photonics to meet for intra-datacenter applications and propose potential solutions.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Photonic switching in high performance datacenters [Invited]

Qixiang Cheng, Sébastien Rumley, Meisam Bahadori, and Keren Bergman
Opt. Express 26(12) 16022-16043 (2018)

Scaling silicon photonic switch fabrics for data center interconnection networks

Dessislava Nikolova, Sébastien Rumley, David Calhoun, Qi Li, Robert Hendry, Payman Samadi, and Keren Bergman
Opt. Express 23(2) 1159-1175 (2015)

Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited]

Vladimir Stojanović, Rajeev J. Ram, Milos Popović, Sen Lin, Sajjad Moazeni, Mark Wade, Chen Sun, Luca Alloatti, Amir Atabaki, Fabio Pavanello, Nandish Mehta, and Pavan Bhargava
Opt. Express 26(10) 13106-13121 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Ghiasi, “Large data centers interconnect bottlenecks,” Opt. Express 23, 2085–2090 (2015).
    [Crossref]
  2. D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23, 1159–1175 (2015).
    [Crossref]
  3. Finisar, http://www.finisar.com/products/active-cables .
  4. Fujitsu, http://www.fujitsu.com/us/news/pr/fcai_20140304-01.html .
  5. A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.-Z. Lo, J. Basak, B. Koch, H.-F. Liu, and H. Rong, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper PDIWI5.
  6. G. A. Fish and D. K. Sparacin, “Enabling flexible datacenter interconnect networks with WDM silicon photonics,” in 2014 IEEE Proceedings of the Custom Integrated Circuits Conference (CICC), San Jose, CA (IEEE, 2014).
  7. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  8. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004).
  9. Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
    [Crossref]
  10. Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, “Ultra-compact 32-channel drop filter with 100  GHz spacing,” Opt. Express 22, 4692–4698 (2014).
    [Crossref]
  11. D. Tan, A. Grieco, and Y. Fainman, “Towards 100 channel dense wavelength division multiplexing with 100  GHz spacing on silicon,” Opt. Express 22, 10408–10415 (2014).
    [Crossref]
  12. G. T. Reed, D. J. Thomson, F. Y. Gardes, Y. Hu, J.-M. Fedeli, and G. Z. Mashanovich, “High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions,” Front. Phys. 2, 77 (2014).
    [Crossref]
  13. D. Marris-Morini, L. Virot, C. Baudot, J.-M. Fédéli, G. Rasigade, D. Perez-Galacho, J.-M. Hartmann, S. Olivier, P. Brindel, and P. Crozat, “A 40  Gbit/s optical link on a 300-mm silicon platform,” Opt. Express 22, 6674–6679 (2014).
    [Crossref]
  14. A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
    [Crossref]
  15. L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 × 4 non-blocking silicon electro-optic switches based on Mach-Zehnder interferometers,” IEEE Photon. J. 7, 7800108 (2015).
  16. L. Chen and Y.-K. Chen, “Compact, low-loss and low-power 8 × 8 broadband silicon optical switch,” Opt. Express 20, 18977–18985 (2012).
    [Crossref]
  17. L. Yang, Y. Xia, F. Zhang, Q. Chen, J. Ding, P. Zhou, and L. Zhang, “Reconfigurable non-blocking 4-port silicon thermo-optic optical router based on Mach-Zehnder optical switches,” Opt. Lett. 40, 1402–1405 (2015).
    [Crossref]
  18. B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, and C. Reinholm, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32, 743–751 (2014).
    [Crossref]
  19. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express 16, 15915–15922 (2008).
    [Crossref]
  20. L. Yang, H. Jia, Y. Zhao, and Q. Chen, “Reconfigurable non-blocking four-port optical router based on microring resonators,” Opt. Lett. 40, 1129–1132 (2015).
    [Crossref]
  21. A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett. 22, 926–928 (2010).
    [Crossref]
  22. P. DasMahapatra, A. Rohit, R. Stabile, and K. A. Williams, “Broadband 4 × 4 switch matrix using fifth-order resonators,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.2.
  23. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40  Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20, 1096–1101 (2012).
    [Crossref]
  24. N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, and R. Shafiiha, “30  GHz Ge electro-absorption modulator integrated with 3  μm silicon-on-insulator waveguide,” Opt. Express 19, 7062–7067 (2011).
    [Crossref]
  25. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]
  26. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316–11320 (2012).
    [Crossref]
  27. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
    [Crossref]
  28. K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
    [Crossref]
  29. D. Feng, W. Qian, H. Liang, B. Luff, and M. Asghari, “High-speed receiver technology on the SOI platform,” IEEE J. Sel. Top. Quantum Electron. 19, 3800108 (2013).
    [Crossref]
  30. P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3, 215–228 (2014).
    [Crossref]
  31. A. Alduino, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Hot Chips: A Symposium on High Performance Chips, Stanford, CA (2010).
  32. “Cisco Visual Networking Index: Forecast and Methodology, 2013–2018,” http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html .
  33. N. Ophir, C. Mineo, D. Mountain, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro 33, 54–67 (2013).
    [Crossref]
  34. “IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements part 3: carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications amendment 4: media access control parameters, physical layers and management parameters for 40 Gb/s and 100 Gb/s operation,” IEEE Standard 802.3ba-2010 (amendment to IEEE Standard 802.3-2008).
  35. “100 G CWDM4 MSA Technical Specifications” (2014), http://www.cwdm4-msa.org/files/CWDM4_MSA_Technical_Spec_1p0.pdf .
  36. G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
    [Crossref]
  37. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
    [Crossref]
  38. S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
    [Crossref]
  39. A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single-wavelength silicon evanescent lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 535–544 (2009).
    [Crossref]
  40. C. Zhang, S. Srinivasan, Y. B. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
    [Crossref]
  41. S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
    [Crossref]
  42. D. Liang, G. Kurczveil, C. H. Chen, M. Fiorentino, Z. Peng, and R. G. Beausoleil, “Silicon photonic integrated devices for optical interconnects” (2013), http://www.hpl.hp.com/techreports/2013/HPL-2013-56.pdf .
  43. D. Liang, S. Srinivasan, D. A. Fattal, M. Fiorentino, Z. H. Huang, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
    [Crossref]
  44. B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper PDP5C. 8.
  45. G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1521–1527 (2011).
    [Crossref]
  46. G.-H. Duan, C. Jany, A. Le Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, and F. Lelarge, “Hybrid III-V on silicon lasers for photonic integrated circuits on silicon,” IEEE J. Sel. Top. Quantum Electron. 20, 158–170 (2014).
    [Crossref]
  47. S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
    [Crossref]
  48. P. Dong, T.-C. Hu, T.-Y. Liow, Y.-K. Chen, C. Xie, X. Luo, G.-Q. Lo, R. Kopf, and A. Tate, “Novel integration technique for silicon/III-V hybrid laser,” Opt. Express 22, 26854–26861 (2014).
    [Crossref]
  49. D. Liang, S. Srinivasan, M. Fiorentino, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “A metal thermal shunt design for hybrid silicon microring laser,” in IEEE Optical Interconnects Conference (IEEE, 2012), pp. 20–23.
  50. C. Zhang, D. Liang, G. Kurczveil, J. Bowers, and R. Beausoleil, “High Temperature Hybrid Silicon Micro-ring Lasers with Thermal Shunts,” in Conference on Lasers and Electro-Optics, CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW3F.5.
  51. M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17, 1490–1498 (2011).
    [Crossref]
  52. H.-H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “1310  nm silicon evanescent laser,” Opt. Express 15, 11466–11471 (2007).
    [Crossref]
  53. K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).
    [Crossref]
  54. J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744–6749 (2007).
    [Crossref]
  55. J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20, 1345–1347 (2008).
    [Crossref]
  56. Y. Huang, S. Sui, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Sel. Top. Quantum Electron. 51, 2600108 (2015).
  57. S. Keyvaninia, S. Verstuyft, S. Pathak, F. Lelarge, G. H. Duan, D. Bordel, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Roelkens, and D. Van Thourhout, “III-V-on-silicon multi-frequency lasers,” Opt. Express 21, 13675–13683 (2013).
    [Crossref]
  58. P. Mechet, S. Verstuyft, T. de Vries, T. Spuesens, P. Regreny, D. Van Thourhout, G. Roelkens, and G. Morthier, “Unidirectional III-V microdisk lasers heterogeneously integrated on SOI,” Opt. Express 21, 19339–19352 (2013).
    [Crossref]
  59. F. Peng, Z. Yejin, W. Yufei, L. Lei, Z. Siriguleng, W. Hailing, and Z. Wanhua, “A novel hybrid III-V/silicon deformed micro-disk single-mode laser,” J. Semicond. 36, 055008 (2015).
    [Crossref]
  60. Y. Zhang, Y.-D. Yang, Y.-Z. Huang, and A. W. Poon, “Directional-emission III-V-on-silicon microspiral and double-notch microdisk lasers for optical interconnects,” in Conference on Lasers and Electro-Optics, CLEO: Applications and Technology (Optical Society of America, 2014), paper JTu4A.118.
  61. A. W. Poon, Y. Zhang, and L. Zhang, “Hybrid silicon unidirectional-emission microspiral disk lasers for optical interconnect applications,” Proc. SPIE 9343, 934312 (2015).
  62. G. Roelkens, D. Van Thourhout, and R. Baets, “Continuous-wave lasing from DVS-BCB heterogeneously integrated laser diodes,” in Integrated Photonics and Nanophotonics Research and Applications (Optical Society of America, 2007), paper ITuG4.
  63. P. Mechet, F. Raineri, A. Bazin, Y. Halioua, T. Spuesens, T. J. Karle, P. Regreny, P. Monnier, D. Van Thourhout, I. Sagnes, R. Raj, G. Roelkens, and G. Morthier, “Uniformity of the lasing wavelength of heterogeneously integrated InP microdisk lasers on SOI,” Opt. Express 21, 10622–10631 (2013).
    [Crossref]
  64. L. Liu, G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, and R. Baets, “III-V/silicon-on-insulator nanophotonic cavities for optical network-on-chip,” J. Nanosci. Nanotechnol. 10, 1461–1472 (2010).
    [Crossref]
  65. L. Tao, L. Yuan, Y. Li, H. Yu, B. Wang, Q. Kan, W. Chen, J. Pan, G. Ran, and W. Wang, “4-λ InGaAsP-Si distributed feedback evanescent lasers with varying silicon waveguide width,” Opt. Express 22, 5448–5454 (2014).
    [Crossref]
  66. J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23, 2512–2523 (2015).
    [Crossref]
  67. E. Marchena, T. Creazzo, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, J. M. Dallesasse, P. Varangis, R. J. Stone, and A. Mizrahi, “Integrated tunable CMOS laser for Si photonics,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5 C.7.
  68. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
    [Crossref]
  69. D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
    [Crossref]
  70. S. Keyvaninia, M. Muneeb, S. Stanković, P. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3, 35–46 (2013).
    [Crossref]
  71. Dow Chemical, http://www.dow.com/cyclotene/solution/thermprop.htm .
  72. Y. Zhang, S. Y. Yang, H. Guan, A. E. J. Lim, G. Q. Lo, P. Magill, T. Baehr-Jones, and M. Hochberg, “Sagnac loop mirror and micro-ring based laser cavity for silicon-on-insulator,” Opt. Express 22, 17872–17879 (2014).
    [Crossref]
  73. J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Y. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22, 7678–7685 (2014).
    [Crossref]
  74. D. Liang, M. Fiorentino, S. T. Todd, G. Kurczveil, R. G. Beausoleil, and J. E. Bowers, “Fabrication of silicon-on-diamond substrate and low-loss optical waveguides,” IEEE Photon. Technol. Lett. 23, 657–659 (2011).
    [Crossref]
  75. J. E. Bowers, J. T. Bovington, A. Y. Liu, A. C. Gossard, G. Li, T. Creazzo, E. Marchena, P. K. Yu, S. Krasulick, and L. Schares, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communication Conference, San Francisco, CA (IEEE, 2014).
  76. S. Menezo, H. Duprez, A. Descos, D. Bordel, L. Sanchez, P. Brianceau, L. Fulbert, V. Carron, and B. Ben Bakir, “Advances on III-V on silicon DBR and DFB lasers for WDM optical interconnects and associated heterogeneous integration 200  mm-wafer-scale technology,” in 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICs), La Jolla, CA (IEEE, 2014).
  77. G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
    [Crossref]
  78. M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
    [Crossref]
  79. L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser power-efficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871–875 (2014).
    [Crossref]
  80. Y. D. Yang, Y. Zhang, Y. Z. Huang, and A. W. Poon, “Direct-modulated waveguide-coupled microspiral disk lasers with spatially selective injection for on-chip optical interconnects,” Opt. Express 22, 824–838 (2014).
    [Crossref]
  81. D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20, A293–A308 (2012).
    [Crossref]
  82. W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
    [Crossref]
  83. S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “40-Gbit/s direct modulation of membrane buried heterostructure DFB laser on SiO2/Si substrate,” in 2014 International Semiconductor Laser Conference (ISLC) (IEEE, 2014), pp. 30–31.
  84. G. de Valicourt, Y. Pointurier, J.-C. Antona, and G. Duan, “A 20  Gbit/s directly modulated hybrid III-V/Si laser tunable over 12 wavelengths for short-reach access network,” in 2014 European Conference on Optical Communication (ECOC) (IEEE, 2014).
  85. J. H. Marsh, “Quantum well intermixing,” Semicond. Sci. Technol. 8, 1136–1155 (1993).
    [Crossref]
  86. S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, and J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19, 9255–9261 (2011).
    [Crossref]
  87. B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photon. Rev. 3, 355–369 (2009).
    [Crossref]
  88. S. Srinivasan, A. Arrighi, M. J. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, “Harmonically mode-locked hybrid silicon laser with intra-cavity filter to suppress supermode noise,” IEEE J. Sel. Top. Quantum Electron. 20, 8–15 (2014).
    [Crossref]
  89. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
    [Crossref]
  90. P. Dumais, J. Jiang, H. Mehrvar, D. Celo, D. Goodwill, and E. Bernier, “Performance optimization for switch matrices based on carrier-injection-driven Mach-Zehnder switch cells,” in 2014 IEEE 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 96–97.
  91. B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lightwave Technol. 33, 768–777 (2015).
    [Crossref]
  92. H. Mehrvar, “Hybrid photonic ethernet switch for datacenters,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper M3E.6.
  93. L. Zhou, L. Lu, Z. Li, and J. Chen, “Broadband 4 × 4 non-blocking optical switch fabric based on Mach-Zehnder interferometers,” in 2014 13th International Conference on Optical Communications and Networks (ICOCN) (IEEE, 2014).
  94. P. Dong, Y.-K. Chen, T. Gu, L. L. Buhl, D. T. Neilson, and J. H. Sinsky, “Reconfigurable 100  Gb/s silicon photonic network-on-chip,” J. Opt. Commun. Netw. 7, A37–A43 (2015).
    [Crossref]
  95. L. Chen, E. Hall, L. Theogarajan, and J. Bowers, “Photonic switching for data center applications,” IEEE Photon. J. 3, 834–844 (2011).
    [Crossref]
  96. S. S. Haykin, Communication Systems (Wiley, 2001).
  97. IME, https://www.a-star.edu.sg/ime/ .
  98. IMEC, http://www2.imec.be/be_en/home.html .
  99. Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett. 36, 2668–2670 (2011).
    [Crossref]
  100. A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21, 14139–14145 (2013).
    [Crossref]
  101. D. Bachman, Z. Chen, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation,” Opt. Express 21, 11048–11056 (2013).
    [Crossref]
  102. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309–4315 (2008).
    [Crossref]
  103. P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express 18, 25225–25231 (2010).
    [Crossref]
  104. H. Zhou, Y. Zhao, W. Wang, J. Yang, M. Wang, and X. Jiang, “Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).
    [Crossref]
  105. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).
    [Crossref]
  106. P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Athermal performance in high-Q polymer-clad silicon microdisk resonators,” Opt. Lett. 35, 3462–3464 (2010).
    [Crossref]
  107. S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958–13968 (2013).
    [Crossref]
  108. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21, 26557–26563 (2013).
    [Crossref]
  109. B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37, 2253–2255 (2012).
    [Crossref]
  110. L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, and J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21, 9447–9456 (2013).
    [Crossref]
  111. X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.-H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22, 12628–12633 (2014).
    [Crossref]
  112. K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightwave Technol. 32, 505–512 (2014).
    [Crossref]
  113. X. Zhu, K. Padmaraju, L.-W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photon. Technol. Lett. 26, 2365–2368 (2014).
    [Crossref]
  114. J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22, 11279–11289 (2014).
    [Crossref]
  115. Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23, 360–372 (2015).
    [Crossref]
  116. Y. Zhang, Y. Li, S. Feng, and A. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 136–149 (2014).
    [Crossref]
  117. Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “In-microresonator linear-absorption-based real-time photocurrent-monitoring and tuning with closed-loop control for silicon microresonators,” U.S. patent application 14/057,679 (filed October18, 2013).
  118. Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators using slope-detection with an inresonator defect-state-absorption-based photodetector,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SM2I.2
  119. S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
    [Crossref]
  120. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, and F. Horst, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEDM), San Francisco, CA (IEEE, 2012).
  121. H. D. Thacker, Y. Luo, J. Shi, I. Shubin, J. Lexau, X. Zheng, G. Li, J. Yao, J. Costa, and T. Pinguet, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) (IEEE, 2010), pp. 240–246.

2015 (14)

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 × 4 non-blocking silicon electro-optic switches based on Mach-Zehnder interferometers,” IEEE Photon. J. 7, 7800108 (2015).

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Y. Huang, S. Sui, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Sel. Top. Quantum Electron. 51, 2600108 (2015).

F. Peng, Z. Yejin, W. Yufei, L. Lei, Z. Siriguleng, W. Hailing, and Z. Wanhua, “A novel hybrid III-V/silicon deformed micro-disk single-mode laser,” J. Semicond. 36, 055008 (2015).
[Crossref]

A. W. Poon, Y. Zhang, and L. Zhang, “Hybrid silicon unidirectional-emission microspiral disk lasers for optical interconnect applications,” Proc. SPIE 9343, 934312 (2015).

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23, 360–372 (2015).
[Crossref]

K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).
[Crossref]

D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23, 1159–1175 (2015).
[Crossref]

A. Ghiasi, “Large data centers interconnect bottlenecks,” Opt. Express 23, 2085–2090 (2015).
[Crossref]

J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23, 2512–2523 (2015).
[Crossref]

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lightwave Technol. 33, 768–777 (2015).
[Crossref]

L. Yang, H. Jia, Y. Zhao, and Q. Chen, “Reconfigurable non-blocking four-port optical router based on microring resonators,” Opt. Lett. 40, 1129–1132 (2015).
[Crossref]

L. Yang, Y. Xia, F. Zhang, Q. Chen, J. Ding, P. Zhou, and L. Zhang, “Reconfigurable non-blocking 4-port silicon thermo-optic optical router based on Mach-Zehnder optical switches,” Opt. Lett. 40, 1402–1405 (2015).
[Crossref]

P. Dong, Y.-K. Chen, T. Gu, L. L. Buhl, D. T. Neilson, and J. H. Sinsky, “Reconfigurable 100  Gb/s silicon photonic network-on-chip,” J. Opt. Commun. Netw. 7, A37–A43 (2015).
[Crossref]

2014 (23)

P. Dong, T.-C. Hu, T.-Y. Liow, Y.-K. Chen, C. Xie, X. Luo, G.-Q. Lo, R. Kopf, and A. Tate, “Novel integration technique for silicon/III-V hybrid laser,” Opt. Express 22, 26854–26861 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

G.-H. Duan, C. Jany, A. Le Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, and F. Lelarge, “Hybrid III-V on silicon lasers for photonic integrated circuits on silicon,” IEEE J. Sel. Top. Quantum Electron. 20, 158–170 (2014).
[Crossref]

L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser power-efficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871–875 (2014).
[Crossref]

S. Srinivasan, A. Arrighi, M. J. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, “Harmonically mode-locked hybrid silicon laser with intra-cavity filter to suppress supermode noise,” IEEE J. Sel. Top. Quantum Electron. 20, 8–15 (2014).
[Crossref]

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref]

G. T. Reed, D. J. Thomson, F. Y. Gardes, Y. Hu, J.-M. Fedeli, and G. Z. Mashanovich, “High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions,” Front. Phys. 2, 77 (2014).
[Crossref]

P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3, 215–228 (2014).
[Crossref]

X. Zhu, K. Padmaraju, L.-W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photon. Technol. Lett. 26, 2365–2368 (2014).
[Crossref]

Y. Zhang, Y. Li, S. Feng, and A. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 136–149 (2014).
[Crossref]

Y. D. Yang, Y. Zhang, Y. Z. Huang, and A. W. Poon, “Direct-modulated waveguide-coupled microspiral disk lasers with spatially selective injection for on-chip optical interconnects,” Opt. Express 22, 824–838 (2014).
[Crossref]

K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightwave Technol. 32, 505–512 (2014).
[Crossref]

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, and C. Reinholm, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32, 743–751 (2014).
[Crossref]

Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, “Ultra-compact 32-channel drop filter with 100  GHz spacing,” Opt. Express 22, 4692–4698 (2014).
[Crossref]

L. Tao, L. Yuan, Y. Li, H. Yu, B. Wang, Q. Kan, W. Chen, J. Pan, G. Ran, and W. Wang, “4-λ InGaAsP-Si distributed feedback evanescent lasers with varying silicon waveguide width,” Opt. Express 22, 5448–5454 (2014).
[Crossref]

D. Marris-Morini, L. Virot, C. Baudot, J.-M. Fédéli, G. Rasigade, D. Perez-Galacho, J.-M. Hartmann, S. Olivier, P. Brindel, and P. Crozat, “A 40  Gbit/s optical link on a 300-mm silicon platform,” Opt. Express 22, 6674–6679 (2014).
[Crossref]

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Y. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22, 7678–7685 (2014).
[Crossref]

C. Zhang, S. Srinivasan, Y. B. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
[Crossref]

D. Tan, A. Grieco, and Y. Fainman, “Towards 100 channel dense wavelength division multiplexing with 100  GHz spacing on silicon,” Opt. Express 22, 10408–10415 (2014).
[Crossref]

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22, 11279–11289 (2014).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.-H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22, 12628–12633 (2014).
[Crossref]

Y. Zhang, S. Y. Yang, H. Guan, A. E. J. Lim, G. Q. Lo, P. Magill, T. Baehr-Jones, and M. Hochberg, “Sagnac loop mirror and micro-ring based laser cavity for silicon-on-insulator,” Opt. Express 22, 17872–17879 (2014).
[Crossref]

2013 (15)

S. Keyvaninia, M. Muneeb, S. Stanković, P. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3, 35–46 (2013).
[Crossref]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref]

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, and J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21, 9447–9456 (2013).
[Crossref]

P. Mechet, F. Raineri, A. Bazin, Y. Halioua, T. Spuesens, T. J. Karle, P. Regreny, P. Monnier, D. Van Thourhout, I. Sagnes, R. Raj, G. Roelkens, and G. Morthier, “Uniformity of the lasing wavelength of heterogeneously integrated InP microdisk lasers on SOI,” Opt. Express 21, 10622–10631 (2013).
[Crossref]

D. Bachman, Z. Chen, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation,” Opt. Express 21, 11048–11056 (2013).
[Crossref]

S. Keyvaninia, S. Verstuyft, S. Pathak, F. Lelarge, G. H. Duan, D. Bordel, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Roelkens, and D. Van Thourhout, “III-V-on-silicon multi-frequency lasers,” Opt. Express 21, 13675–13683 (2013).
[Crossref]

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958–13968 (2013).
[Crossref]

A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21, 14139–14145 (2013).
[Crossref]

P. Mechet, S. Verstuyft, T. de Vries, T. Spuesens, P. Regreny, D. Van Thourhout, G. Roelkens, and G. Morthier, “Unidirectional III-V microdisk lasers heterogeneously integrated on SOI,” Opt. Express 21, 19339–19352 (2013).
[Crossref]

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21, 26557–26563 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

N. Ophir, C. Mineo, D. Mountain, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro 33, 54–67 (2013).
[Crossref]

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

D. Feng, W. Qian, H. Liang, B. Luff, and M. Asghari, “High-speed receiver technology on the SOI platform,” IEEE J. Sel. Top. Quantum Electron. 19, 3800108 (2013).
[Crossref]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

2012 (7)

2011 (8)

N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, and R. Shafiiha, “30  GHz Ge electro-absorption modulator integrated with 3  μm silicon-on-insulator waveguide,” Opt. Express 19, 7062–7067 (2011).
[Crossref]

S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, and J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19, 9255–9261 (2011).
[Crossref]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
[Crossref]

Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett. 36, 2668–2670 (2011).
[Crossref]

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1521–1527 (2011).
[Crossref]

D. Liang, M. Fiorentino, S. T. Todd, G. Kurczveil, R. G. Beausoleil, and J. E. Bowers, “Fabrication of silicon-on-diamond substrate and low-loss optical waveguides,” IEEE Photon. Technol. Lett. 23, 657–659 (2011).
[Crossref]

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17, 1490–1498 (2011).
[Crossref]

L. Chen, E. Hall, L. Theogarajan, and J. Bowers, “Photonic switching for data center applications,” IEEE Photon. J. 3, 834–844 (2011).
[Crossref]

2010 (6)

P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Athermal performance in high-Q polymer-clad silicon microdisk resonators,” Opt. Lett. 35, 3462–3464 (2010).
[Crossref]

P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express 18, 25225–25231 (2010).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

L. Liu, G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, and R. Baets, “III-V/silicon-on-insulator nanophotonic cavities for optical network-on-chip,” J. Nanosci. Nanotechnol. 10, 1461–1472 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett. 22, 926–928 (2010).
[Crossref]

2009 (5)

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single-wavelength silicon evanescent lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 535–544 (2009).
[Crossref]

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photon. Rev. 3, 355–369 (2009).
[Crossref]

H. Zhou, Y. Zhao, W. Wang, J. Yang, M. Wang, and X. Jiang, “Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).
[Crossref]

2008 (3)

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309–4315 (2008).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express 16, 15915–15922 (2008).
[Crossref]

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20, 1345–1347 (2008).
[Crossref]

2007 (2)

2006 (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

2005 (1)

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
[Crossref]

2004 (1)

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
[Crossref]

2003 (1)

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

2000 (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref]

1993 (1)

J. H. Marsh, “Quantum well intermixing,” Semicond. Sci. Technol. 8, 1136–1155 (1993).
[Crossref]

Accard, A.

G.-H. Duan, C. Jany, A. Le Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, and F. Lelarge, “Hybrid III-V on silicon lasers for photonic integrated circuits on silicon,” IEEE J. Sel. Top. Quantum Electron. 20, 158–170 (2014).
[Crossref]

Ackert, J. J.

Adibi, A.

Alduino, A.

A. Alduino, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Hot Chips: A Symposium on High Performance Chips, Stanford, CA (2010).

A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.-Z. Lo, J. Basak, B. Koch, H.-F. Liu, and H. Rong, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper PDIWI5.

Alipour, P.

Amberg, P.

Antona, J.-C.

G. de Valicourt, Y. Pointurier, J.-C. Antona, and G. Duan, “A 20  Gbit/s directly modulated hybrid III-V/Si laser tunable over 12 wavelengths for short-reach access network,” in 2014 European Conference on Optical Communication (ECOC) (IEEE, 2014).

Arrighi, A.

S. Srinivasan, A. Arrighi, M. J. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, “Harmonically mode-locked hybrid silicon laser with intra-cavity filter to suppress supermode noise,” IEEE J. Sel. Top. Quantum Electron. 20, 8–15 (2014).
[Crossref]

Asano, T.

Asghari, M.

D. Feng, W. Qian, H. Liang, B. Luff, and M. Asghari, “High-speed receiver technology on the SOI platform,” IEEE J. Sel. Top. Quantum Electron. 19, 3800108 (2013).
[Crossref]

P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express 18, 25225–25231 (2010).
[Crossref]

Askari, M.

Assefa, S.

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, and C. Reinholm, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32, 743–751 (2014).
[Crossref]

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, and F. Horst, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEDM), San Francisco, CA (IEEE, 2012).

Atabaki, A. H.

Bachman, D.

Baehr-Jones, T.

Baets, R.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

L. Liu, G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, and R. Baets, “III-V/silicon-on-insulator nanophotonic cavities for optical network-on-chip,” J. Nanosci. Nanotechnol. 10, 1461–1472 (2010).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).
[Crossref]

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20, 1345–1347 (2008).
[Crossref]

J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744–6749 (2007).
[Crossref]

G. Roelkens, D. Van Thourhout, and R. Baets, “Continuous-wave lasing from DVS-BCB heterogeneously integrated laser diodes,” in Integrated Photonics and Nanophotonics Research and Applications (Optical Society of America, 2007), paper ITuG4.

Baks, C. W.

Barwicz, T.

Basak, J.

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958–13968 (2013).
[Crossref]

A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.-Z. Lo, J. Basak, B. Koch, H.-F. Liu, and H. Rong, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper PDIWI5.

Basov, D. N.

Baudot, C.

Bazin, A.

Beausoleil, R.

C. Zhang, D. Liang, G. Kurczveil, J. Bowers, and R. Beausoleil, “High Temperature Hybrid Silicon Micro-ring Lasers with Thermal Shunts,” in Conference on Lasers and Electro-Optics, CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW3F.5.

Beausoleil, R. G.

D. Liang, S. Srinivasan, D. A. Fattal, M. Fiorentino, Z. H. Huang, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17, 1490–1498 (2011).
[Crossref]

D. Liang, M. Fiorentino, S. T. Todd, G. Kurczveil, R. G. Beausoleil, and J. E. Bowers, “Fabrication of silicon-on-diamond substrate and low-loss optical waveguides,” IEEE Photon. Technol. Lett. 23, 657–659 (2011).
[Crossref]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309–4315 (2008).
[Crossref]

D. Liang, S. Srinivasan, M. Fiorentino, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “A metal thermal shunt design for hybrid silicon microring laser,” in IEEE Optical Interconnects Conference (IEEE, 2012), pp. 20–23.

Ben Bakir, B.

S. Menezo, H. Duprez, A. Descos, D. Bordel, L. Sanchez, P. Brianceau, L. Fulbert, V. Carron, and B. Ben Bakir, “Advances on III-V on silicon DBR and DFB lasers for WDM optical interconnects and associated heterogeneous integration 200  mm-wafer-scale technology,” in 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICs), La Jolla, CA (IEEE, 2014).

Bergman, K.

D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23, 1159–1175 (2015).
[Crossref]

K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightwave Technol. 32, 505–512 (2014).
[Crossref]

X. Zhu, K. Padmaraju, L.-W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photon. Technol. Lett. 26, 2365–2368 (2014).
[Crossref]

N. Ophir, C. Mineo, D. Mountain, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro 33, 54–67 (2013).
[Crossref]

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett. 22, 926–928 (2010).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express 16, 15915–15922 (2008).
[Crossref]

Bernier, E.

P. Dumais, J. Jiang, H. Mehrvar, D. Celo, D. Goodwill, and E. Bernier, “Performance optimization for switch matrices based on carrier-injection-driven Mach-Zehnder switch cells,” in 2014 IEEE 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 96–97.

Bessette, J. T.

Biberman, A.

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett. 22, 926–928 (2010).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express 16, 15915–15922 (2008).
[Crossref]

Bickford, J.

Bickford, J. R.

Blivin, C. C.

E. Marchena, T. Creazzo, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, J. M. Dallesasse, P. Varangis, R. J. Stone, and A. Mizrahi, “Integrated tunable CMOS laser for Si photonics,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5 C.7.

Blumenthal, D. J.

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photon. Rev. 3, 355–369 (2009).
[Crossref]

Bogaerts, W.

Bolk, J.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Bordel, D.

Bovington, J. T.

J. E. Bowers, J. T. Bovington, A. Y. Liu, A. C. Gossard, G. Li, T. Creazzo, E. Marchena, P. K. Yu, S. Krasulick, and L. Schares, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communication Conference, San Francisco, CA (IEEE, 2014).

Bowers, J.

L. Chen, E. Hall, L. Theogarajan, and J. Bowers, “Photonic switching for data center applications,” IEEE Photon. J. 3, 834–844 (2011).
[Crossref]

C. Zhang, D. Liang, G. Kurczveil, J. Bowers, and R. Beausoleil, “High Temperature Hybrid Silicon Micro-ring Lasers with Thermal Shunts,” in Conference on Lasers and Electro-Optics, CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW3F.5.

Bowers, J. E.

C. Zhang, S. Srinivasan, Y. B. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
[Crossref]

S. Srinivasan, A. Arrighi, M. J. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, “Harmonically mode-locked hybrid silicon laser with intra-cavity filter to suppress supermode noise,” IEEE J. Sel. Top. Quantum Electron. 20, 8–15 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

D. Liang, S. Srinivasan, D. A. Fattal, M. Fiorentino, Z. H. Huang, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17, 1490–1498 (2011).
[Crossref]

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1521–1527 (2011).
[Crossref]

S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, and J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19, 9255–9261 (2011).
[Crossref]

D. Liang, M. Fiorentino, S. T. Todd, G. Kurczveil, R. G. Beausoleil, and J. E. Bowers, “Fabrication of silicon-on-diamond substrate and low-loss optical waveguides,” IEEE Photon. Technol. Lett. 23, 657–659 (2011).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photon. Rev. 3, 355–369 (2009).
[Crossref]

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single-wavelength silicon evanescent lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 535–544 (2009).
[Crossref]

H.-H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “1310  nm silicon evanescent laser,” Opt. Express 15, 11466–11471 (2007).
[Crossref]

D. Liang, S. Srinivasan, M. Fiorentino, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “A metal thermal shunt design for hybrid silicon microring laser,” in IEEE Optical Interconnects Conference (IEEE, 2012), pp. 20–23.

J. E. Bowers, J. T. Bovington, A. Y. Liu, A. C. Gossard, G. Li, T. Creazzo, E. Marchena, P. K. Yu, S. Krasulick, and L. Schares, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communication Conference, San Francisco, CA (IEEE, 2014).

Brianceau, P.

S. Menezo, H. Duprez, A. Descos, D. Bordel, L. Sanchez, P. Brianceau, L. Fulbert, V. Carron, and B. Ben Bakir, “Advances on III-V on silicon DBR and DFB lasers for WDM optical interconnects and associated heterogeneous integration 200  mm-wafer-scale technology,” in 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICs), La Jolla, CA (IEEE, 2014).

Brindel, P.

Brouckaert, J.

L. Liu, G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, and R. Baets, “III-V/silicon-on-insulator nanophotonic cavities for optical network-on-chip,” J. Nanosci. Nanotechnol. 10, 1461–1472 (2010).
[Crossref]

Buca, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Budd, R.

Buhl, L. L.

Cai, Y.

Calhoun, D.

Camacho-Aguilera, R. E.

Cardenas, J.

Carron, V.

S. Menezo, H. Duprez, A. Descos, D. Bordel, L. Sanchez, P. Brianceau, L. Fulbert, V. Carron, and B. Ben Bakir, “Advances on III-V on silicon DBR and DFB lasers for WDM optical interconnects and associated heterogeneous integration 200  mm-wafer-scale technology,” in 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICs), La Jolla, CA (IEEE, 2014).

Cassan, E.

Celo, D.

P. Dumais, J. Jiang, H. Mehrvar, D. Celo, D. Goodwill, and E. Bernier, “Performance optimization for switch matrices based on carrier-injection-driven Mach-Zehnder switch cells,” in 2014 IEEE 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 96–97.

Chang, E.

Chang, H.-H.

Chang, R. K.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Chang-Hasnain, C. J.

Chen, H.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Chen, J.

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 × 4 non-blocking silicon electro-optic switches based on Mach-Zehnder interferometers,” IEEE Photon. J. 7, 7800108 (2015).

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, and J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21, 9447–9456 (2013).
[Crossref]

L. Zhou, L. Lu, Z. Li, and J. Chen, “Broadband 4 × 4 non-blocking optical switch fabric based on Mach-Zehnder interferometers,” in 2014 13th International Conference on Optical Communications and Networks (ICOCN) (IEEE, 2014).

Chen, L.

Chen, Q.

Chen, W.

Chen, Y.-K.

Chen, Z.

Chern, G. D.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Cheung, S. T. S.

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Cloutier, S. G.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
[Crossref]

Cohen, O.

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photon. Rev. 3, 355–369 (2009).
[Crossref]

H.-H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “1310  nm silicon evanescent laser,” Opt. Express 15, 11466–11471 (2007).
[Crossref]

Costa, J.

H. D. Thacker, Y. Luo, J. Shi, I. Shubin, J. Lexau, X. Zheng, G. Li, J. Yao, J. Costa, and T. Pinguet, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) (IEEE, 2010), pp. 240–246.

Cox, J. A.

Creazzo, T.

J. E. Bowers, J. T. Bovington, A. Y. Liu, A. C. Gossard, G. Li, T. Creazzo, E. Marchena, P. K. Yu, S. Krasulick, and L. Schares, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communication Conference, San Francisco, CA (IEEE, 2014).

E. Marchena, T. Creazzo, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, J. M. Dallesasse, P. Varangis, R. J. Stone, and A. Mizrahi, “Integrated tunable CMOS laser for Si photonics,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5 C.7.

Crozat, P.

Cunningham, J. E.

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref]

Dallesasse, J. M.

E. Marchena, T. Creazzo, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, J. M. Dallesasse, P. Varangis, R. J. Stone, and A. Mizrahi, “Integrated tunable CMOS laser for Si photonics,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5 C.7.

DasMahapatra, P.

P. DasMahapatra, A. Rohit, R. Stabile, and K. A. Williams, “Broadband 4 × 4 switch matrix using fifth-order resonators,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.2.

Davenport, M. L.

de Valicourt, G.

G. de Valicourt, Y. Pointurier, J.-C. Antona, and G. Duan, “A 20  Gbit/s directly modulated hybrid III-V/Si laser tunable over 12 wavelengths for short-reach access network,” in 2014 European Conference on Optical Communication (ECOC) (IEEE, 2014).

De Vries, T.

Descos, A.

S. Menezo, H. Duprez, A. Descos, D. Bordel, L. Sanchez, P. Brianceau, L. Fulbert, V. Carron, and B. Ben Bakir, “Advances on III-V on silicon DBR and DFB lasers for WDM optical interconnects and associated heterogeneous integration 200  mm-wafer-scale technology,” in 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICs), La Jolla, CA (IEEE, 2014).

Di Cioccio, L.

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20, 1345–1347 (2008).
[Crossref]

J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744–6749 (2007).
[Crossref]

Ding, J.

Divliansky, I. B.

Djordjevic, S. S.

Dong, P.

Du, Y.

Y. Huang, S. Sui, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Sel. Top. Quantum Electron. 51, 2600108 (2015).

Duan, G.

G. de Valicourt, Y. Pointurier, J.-C. Antona, and G. Duan, “A 20  Gbit/s directly modulated hybrid III-V/Si laser tunable over 12 wavelengths for short-reach access network,” in 2014 European Conference on Optical Communication (ECOC) (IEEE, 2014).

Duan, G. H.

Duan, G.-H.

G.-H. Duan, C. Jany, A. Le Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, and F. Lelarge, “Hybrid III-V on silicon lasers for photonic integrated circuits on silicon,” IEEE J. Sel. Top. Quantum Electron. 20, 158–170 (2014).
[Crossref]

P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3, 215–228 (2014).
[Crossref]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref]

Dumais, P.

P. Dumais, J. Jiang, H. Mehrvar, D. Celo, D. Goodwill, and E. Bernier, “Performance optimization for switch matrices based on carrier-injection-driven Mach-Zehnder switch cells,” in 2014 IEEE 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 96–97.

Dumon, P.

Duprez, H.

S. Menezo, H. Duprez, A. Descos, D. Bordel, L. Sanchez, P. Brianceau, L. Fulbert, V. Carron, and B. Ben Bakir, “Advances on III-V on silicon DBR and DFB lasers for WDM optical interconnects and associated heterogeneous integration 200  mm-wafer-scale technology,” in 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICs), La Jolla, CA (IEEE, 2014).

Dupuis, N.

Dutt, R.

X. Zhu, K. Padmaraju, L.-W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photon. Technol. Lett. 26, 2365–2368 (2014).
[Crossref]

Eftekhar, A. A.

Fainman, Y.

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Fang, A.

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper PDP5C. 8.

Fang, A. W.

S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, and J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19, 9255–9261 (2011).
[Crossref]

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photon. Rev. 3, 355–369 (2009).
[Crossref]

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single-wavelength silicon evanescent lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 535–544 (2009).
[Crossref]

H.-H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “1310  nm silicon evanescent laser,” Opt. Express 15, 11466–11471 (2007).
[Crossref]

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Fattal, D.

Fattal, D. A.

D. Liang, S. Srinivasan, D. A. Fattal, M. Fiorentino, Z. H. Huang, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

Fedeli, J. M.

Fedeli, J.-M.

G. T. Reed, D. J. Thomson, F. Y. Gardes, Y. Hu, J.-M. Fedeli, and G. Z. Mashanovich, “High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions,” Front. Phys. 2, 77 (2014).
[Crossref]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref]

Fédéli, J. M.

Fédéli, J.-M.

Fedosejevs, R.

Feng, D.

Feng, N.-N.

Feng, S.

Y. Zhang, Y. Li, S. Feng, and A. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 136–149 (2014).
[Crossref]

Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “In-microresonator linear-absorption-based real-time photocurrent-monitoring and tuning with closed-loop control for silicon microresonators,” U.S. patent application 14/057,679 (filed October18, 2013).

Ferrara, J.

Ferrari, A.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Fiorentino, M.

D. Liang, S. Srinivasan, D. A. Fattal, M. Fiorentino, Z. H. Huang, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17, 1490–1498 (2011).
[Crossref]

D. Liang, M. Fiorentino, S. T. Todd, G. Kurczveil, R. G. Beausoleil, and J. E. Bowers, “Fabrication of silicon-on-diamond substrate and low-loss optical waveguides,” IEEE Photon. Technol. Lett. 23, 657–659 (2011).
[Crossref]

D. Liang, S. Srinivasan, M. Fiorentino, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “A metal thermal shunt design for hybrid silicon microring laser,” in IEEE Optical Interconnects Conference (IEEE, 2012), pp. 20–23.

Fish, G.

S. Srinivasan, A. Arrighi, M. J. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, “Harmonically mode-locked hybrid silicon laser with intra-cavity filter to suppress supermode noise,” IEEE J. Sel. Top. Quantum Electron. 20, 8–15 (2014).
[Crossref]

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper PDP5C. 8.

Fish, G. A.

G. A. Fish and D. K. Sparacin, “Enabling flexible datacenter interconnect networks with WDM silicon photonics,” in 2014 IEEE Proceedings of the Custom Integrated Circuits Conference (CICC), San Jose, CA (IEEE, 2014).

Fong, J.

Foster, M. A.

Franzo, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref]

Fujii, T.

Fujisawa, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

Fukuda, H.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref]

Fulbert, L.

S. Menezo, H. Duprez, A. Descos, D. Bordel, L. Sanchez, P. Brianceau, L. Fulbert, V. Carron, and B. Ben Bakir, “Advances on III-V on silicon DBR and DFB lasers for WDM optical interconnects and associated heterogeneous integration 200  mm-wafer-scale technology,” in 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICs), La Jolla, CA (IEEE, 2014).

Gaeta, A. L.

Garcia, J. M.

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1521–1527 (2011).
[Crossref]

Gardes, F. Y.

G. T. Reed, D. J. Thomson, F. Y. Gardes, Y. Hu, J.-M. Fedeli, and G. Z. Mashanovich, “High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions,” Front. Phys. 2, 77 (2014).
[Crossref]

Ge, L.

L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser power-efficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871–875 (2014).
[Crossref]

Geiger, R.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Geluk, E. J.

Ghiasi, A.

Girard, N.

G.-H. Duan, C. Jany, A. Le Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, and F. Lelarge, “Hybrid III-V on silicon lasers for photonic integrated circuits on silicon,” IEEE J. Sel. Top. Quantum Electron. 20, 158–170 (2014).
[Crossref]

Glick, M.

X. Zhu, K. Padmaraju, L.-W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photon. Technol. Lett. 26, 2365–2368 (2014).
[Crossref]

Goodwill, D.

P. Dumais, J. Jiang, H. Mehrvar, D. Celo, D. Goodwill, and E. Bernier, “Performance optimization for switch matrices based on carrier-injection-driven Mach-Zehnder switch cells,” in 2014 IEEE 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 96–97.

Gossard, A. C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

J. E. Bowers, J. T. Bovington, A. Y. Liu, A. C. Gossard, G. Li, T. Creazzo, E. Marchena, P. K. Yu, S. Krasulick, and L. Schares, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communication Conference, San Francisco, CA (IEEE, 2014).

Green, W.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, and F. Horst, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEDM), San Francisco, CA (IEEE, 2012).

Green, W. M.

Grieco, A.

Grützmacher, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Gu, T.

Guan, B.

Guan, H.

Guha, B.

Hailing, W.

F. Peng, Z. Yejin, W. Yufei, L. Lei, Z. Siriguleng, W. Hailing, and Z. Wanhua, “A novel hybrid III-V/silicon deformed micro-disk single-mode laser,” J. Semicond. 36, 055008 (2015).
[Crossref]

Halioua, Y.

Hall, E.

L. Chen, E. Hall, L. Theogarajan, and J. Bowers, “Photonic switching for data center applications,” IEEE Photon. J. 3, 834–844 (2011).
[Crossref]

Han, X.

Hartmann, J. M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40  Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20, 1096–1101 (2012).
[Crossref]

Hartmann, J.-M.

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Hasebe, K.

K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “40-Gbit/s direct modulation of membrane buried heterostructure DFB laser on SiO2/Si substrate,” in 2014 International Semiconductor Laser Conference (ISLC) (IEEE, 2014), pp. 30–31.

Haykin, S. S.

S. S. Haykin, Communication Systems (Wiley, 2001).

Heck, M. J.

S. Srinivasan, A. Arrighi, M. J. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, “Harmonically mode-locked hybrid silicon laser with intra-cavity filter to suppress supermode noise,” IEEE J. Sel. Top. Quantum Electron. 20, 8–15 (2014).
[Crossref]

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1521–1527 (2011).
[Crossref]

Heck, M. J. R.

Hendry, R.

Hiraki, T.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref]

Ho, R.

Hochberg, M.

Horst, F.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, and F. Horst, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEDM), San Francisco, CA (IEEE, 2012).

Hosseini, E. S.

Hu, T.-C.

Hu, Y.

G. T. Reed, D. J. Thomson, F. Y. Gardes, Y. Hu, J.-M. Fedeli, and G. Z. Mashanovich, “High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions,” Front. Phys. 2, 77 (2014).
[Crossref]

Huang, Y.

Y. Huang, S. Sui, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Sel. Top. Quantum Electron. 51, 2600108 (2015).

Huang, Y. Z.

Huang, Y.-Z.

Y. Zhang, Y.-D. Yang, Y.-Z. Huang, and A. W. Poon, “Directional-emission III-V-on-silicon microspiral and double-notch microdisk lasers for optical interconnects,” in Conference on Lasers and Electro-Optics, CLEO: Applications and Technology (Optical Society of America, 2014), paper JTu4A.118.

Huang, Z. H.

D. Liang, S. Srinivasan, D. A. Fattal, M. Fiorentino, Z. H. Huang, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

Hutchinson, J.

S. Srinivasan, A. Arrighi, M. J. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, “Harmonically mode-locked hybrid silicon laser with intra-cavity filter to suppress supermode noise,” IEEE J. Sel. Top. Quantum Electron. 20, 8–15 (2014).
[Crossref]

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper PDP5C. 8.

Ikonic, Z.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Ishikawa, Y.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref]

Ito, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

Jany, C.

G.-H. Duan, C. Jany, A. Le Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, and F. Lelarge, “Hybrid III-V on silicon lasers for photonic integrated circuits on silicon,” IEEE J. Sel. Top. Quantum Electron. 20, 158–170 (2014).
[Crossref]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref]

Jia, H.

Jian, X.

Jiang, J.

P. Dumais, J. Jiang, H. Mehrvar, D. Celo, D. Goodwill, and E. Bernier, “Performance optimization for switch matrices based on carrier-injection-driven Mach-Zehnder switch cells,” in 2014 IEEE 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 96–97.

Jiang, X.

Johnson, N. M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Jones, R.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17, 1490–1498 (2011).
[Crossref]

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single-wavelength silicon evanescent lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 535–544 (2009).
[Crossref]

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photon. Rev. 3, 355–369 (2009).
[Crossref]

H.-H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “1310  nm silicon evanescent laser,” Opt. Express 15, 11466–11471 (2007).
[Crossref]

A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.-Z. Lo, J. Basak, B. Koch, H.-F. Liu, and H. Rong, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper PDIWI5.

Kakitsuka, T.

K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “40-Gbit/s direct modulation of membrane buried heterostructure DFB laser on SiO2/Si substrate,” in 2014 International Semiconductor Laser Conference (ISLC) (IEEE, 2014), pp. 30–31.

Kamlapurkar, S.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, and F. Horst, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEDM), San Francisco, CA (IEEE, 2012).

Kan, Q.

Karle, T. J.

Kaspar, P.

G.-H. Duan, C. Jany, A. Le Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, and F. Lelarge, “Hybrid III-V on silicon lasers for photonic integrated circuits on silicon,” IEEE J. Sel. Top. Quantum Electron. 20, 158–170 (2014).
[Crossref]

Kaye, B.

Keyvaninia, S.

Khater, M.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, and F. Horst, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEDM), San Francisco, CA (IEEE, 2012).

Khater, M. H.

Kiewra, E.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, and F. Horst, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEDM), San Francisco, CA (IEEE, 2012).

Kim, B.

A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.-Z. Lo, J. Basak, B. Koch, H.-F. Liu, and H. Rong, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper PDIWI5.

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper PDP5C. 8.

Kimerling, L. C.

Kneissl, M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Knights, A. P.

Kobayashi, W.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

Koch, B.

A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.-Z. Lo, J. Basak, B. Koch, H.-F. Liu, and H. Rong, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper PDIWI5.

Koch, B. R.

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single-wavelength silicon evanescent lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 535–544 (2009).
[Crossref]

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photon. Rev. 3, 355–369 (2009).
[Crossref]

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper PDP5C. 8.

Kohtoku, M.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

Kopf, R.

Kopp, C.

Kossyrev, P. A.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
[Crossref]

Kou, R.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref]

Krasulick, S.

J. E. Bowers, J. T. Bovington, A. Y. Liu, A. C. Gossard, G. Li, T. Creazzo, E. Marchena, P. K. Yu, S. Krasulick, and L. Schares, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communication Conference, San Francisco, CA (IEEE, 2014).

Krasulick, S. B.

E. Marchena, T. Creazzo, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, J. M. Dallesasse, P. Varangis, R. J. Stone, and A. Mizrahi, “Integrated tunable CMOS laser for Si photonics,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5 C.7.

Krishnamoorthy, A. V.

Kuchta, D. M.

Kung, C.-C.

Kuo, Y. H.

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single-wavelength silicon evanescent lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 535–544 (2009).
[Crossref]

Kuramochi, E.

Kurczveil, G.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17, 1490–1498 (2011).
[Crossref]

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1521–1527 (2011).
[Crossref]

D. Liang, M. Fiorentino, S. T. Todd, G. Kurczveil, R. G. Beausoleil, and J. E. Bowers, “Fabrication of silicon-on-diamond substrate and low-loss optical waveguides,” IEEE Photon. Technol. Lett. 23, 657–659 (2011).
[Crossref]

C. Zhang, D. Liang, G. Kurczveil, J. Bowers, and R. Beausoleil, “High Temperature Hybrid Silicon Micro-ring Lasers with Thermal Shunts,” in Conference on Lasers and Electro-Optics, CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW3F.5.

D. Liang, S. Srinivasan, M. Fiorentino, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “A metal thermal shunt design for hybrid silicon microring laser,” in IEEE Optical Interconnects Conference (IEEE, 2012), pp. 20–23.

Kurosaki, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

Kuzucu, O.

Lagahe, C.

Lamponi, M.

G.-H. Duan, C. Jany, A. Le Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, and F. Lelarge, “Hybrid III-V on silicon lasers for photonic integrated circuits on silicon,” IEEE J. Sel. Top. Quantum Electron. 20, 158–170 (2014).
[Crossref]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref]

Le Liepvre, A.

G.-H. Duan, C. Jany, A. Le Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, and F. Lelarge, “Hybrid III-V on silicon lasers for photonic integrated circuits on silicon,” IEEE J. Sel. Top. Quantum Electron. 20, 158–170 (2014).
[Crossref]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref]

Lee, B. G.

Lee, J. H.

Lee, J.-H.

Lei, L.

F. Peng, Z. Yejin, W. Yufei, L. Lei, Z. Siriguleng, W. Hailing, and Z. Wanhua, “A novel hybrid III-V/silicon deformed micro-disk single-mode laser,” J. Semicond. 36, 055008 (2015).
[Crossref]

Lelarge, F.

Lentine, A. L.

Levaufre, G.

G.-H. Duan, C. Jany, A. Le Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, and F. Lelarge, “Hybrid III-V on silicon lasers for photonic integrated circuits on silicon,” IEEE J. Sel. Top. Quantum Electron. 20, 158–170 (2014).
[Crossref]

Levy, J. S.

Lexau, J.

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.-H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22, 12628–12633 (2014).
[Crossref]

H. D. Thacker, Y. Luo, J. Shi, I. Shubin, J. Lexau, X. Zheng, G. Li, J. Yao, J. Costa, and T. Pinguet, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) (IEEE, 2010), pp. 240–246.

Li, G.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express 18, 25225–25231 (2010).
[Crossref]

J. E. Bowers, J. T. Bovington, A. Y. Liu, A. C. Gossard, G. Li, T. Creazzo, E. Marchena, P. K. Yu, S. Krasulick, and L. Schares, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communication Conference, San Francisco, CA (IEEE, 2014).

H. D. Thacker, Y. Luo, J. Shi, I. Shubin, J. Lexau, X. Zheng, G. Li, J. Yao, J. Costa, and T. Pinguet, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) (IEEE, 2010), pp. 240–246.

Li, Q.

Li, X.

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 × 4 non-blocking silicon electro-optic switches based on Mach-Zehnder interferometers,” IEEE Photon. J. 7, 7800108 (2015).

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, and J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21, 9447–9456 (2013).
[Crossref]

Li, Y.

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23, 360–372 (2015).
[Crossref]

Y. Zhang, Y. Li, S. Feng, and A. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 136–149 (2014).
[Crossref]

L. Tao, L. Yuan, Y. Li, H. Yu, B. Wang, Q. Kan, W. Chen, J. Pan, G. Ran, and W. Wang, “4-λ InGaAsP-Si distributed feedback evanescent lasers with varying silicon waveguide width,” Opt. Express 22, 5448–5454 (2014).
[Crossref]

Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “In-microresonator linear-absorption-based real-time photocurrent-monitoring and tuning with closed-loop control for silicon microresonators,” U.S. patent application 14/057,679 (filed October18, 2013).

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators using slope-detection with an inresonator defect-state-absorption-based photodetector,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SM2I.2

Li, Z.

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 × 4 non-blocking silicon electro-optic switches based on Mach-Zehnder interferometers,” IEEE Photon. J. 7, 7800108 (2015).

L. Zhou, L. Lu, Z. Li, and J. Chen, “Broadband 4 × 4 non-blocking optical switch fabric based on Mach-Zehnder interferometers,” in 2014 13th International Conference on Optical Communications and Networks (ICOCN) (IEEE, 2014).

Liang, D.

D. Liang, S. Srinivasan, D. A. Fattal, M. Fiorentino, Z. H. Huang, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17, 1490–1498 (2011).
[Crossref]

S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, and J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19, 9255–9261 (2011).
[Crossref]

D. Liang, M. Fiorentino, S. T. Todd, G. Kurczveil, R. G. Beausoleil, and J. E. Bowers, “Fabrication of silicon-on-diamond substrate and low-loss optical waveguides,” IEEE Photon. Technol. Lett. 23, 657–659 (2011).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single-wavelength silicon evanescent lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 535–544 (2009).
[Crossref]

D. Liang, S. Srinivasan, M. Fiorentino, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “A metal thermal shunt design for hybrid silicon microring laser,” in IEEE Optical Interconnects Conference (IEEE, 2012), pp. 20–23.

C. Zhang, D. Liang, G. Kurczveil, J. Bowers, and R. Beausoleil, “High Temperature Hybrid Silicon Micro-ring Lasers with Thermal Shunts,” in Conference on Lasers and Electro-Optics, CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW3F.5.

Liang, H.

Liao, L.

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958–13968 (2013).
[Crossref]

A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.-Z. Lo, J. Basak, B. Koch, H.-F. Liu, and H. Rong, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper PDIWI5.

Liao, S.

Lim, A. E. J.

Lin, S.

Lin, S. Y.

Liow, T.-Y.

Lipson, M.

Liu, A. W.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Liu, A. Y.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

J. E. Bowers, J. T. Bovington, A. Y. Liu, A. C. Gossard, G. Li, T. Creazzo, E. Marchena, P. K. Yu, S. Krasulick, and L. Schares, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communication Conference, San Francisco, CA (IEEE, 2014).

Liu, F.

Liu, H.-F.

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958–13968 (2013).
[Crossref]

A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.-Z. Lo, J. Basak, B. Koch, H.-F. Liu, and H. Rong, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper PDIWI5.

Liu, L.

L. Liu, G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, and R. Baets, “III-V/silicon-on-insulator nanophotonic cavities for optical network-on-chip,” J. Nanosci. Nanotechnol. 10, 1461–1472 (2010).
[Crossref]

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20, 1345–1347 (2008).
[Crossref]

Lively, E.

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photon. Rev. 3, 355–369 (2009).
[Crossref]

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single-wavelength silicon evanescent lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 535–544 (2009).
[Crossref]

Lo, G. Q.

Lo, G.-Q.

Lo, W.-Z.

A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.-Z. Lo, J. Basak, B. Koch, H.-F. Liu, and H. Rong, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper PDIWI5.

Logan, D. F.

Lu, L.

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 × 4 non-blocking silicon electro-optic switches based on Mach-Zehnder interferometers,” IEEE Photon. J. 7, 7800108 (2015).

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, and J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21, 9447–9456 (2013).
[Crossref]

L. Zhou, L. Lu, Z. Li, and J. Chen, “Broadband 4 × 4 non-blocking optical switch fabric based on Mach-Zehnder interferometers,” in 2014 13th International Conference on Optical Communications and Networks (ICOCN) (IEEE, 2014).

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Luff, B.

D. Feng, W. Qian, H. Liang, B. Luff, and M. Asghari, “High-speed receiver technology on the SOI platform,” IEEE J. Sel. Top. Quantum Electron. 19, 3800108 (2013).
[Crossref]

Luo, L.-W.

X. Zhu, K. Padmaraju, L.-W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photon. Technol. Lett. 26, 2365–2368 (2014).
[Crossref]

Luo, X.

P. Dong, T.-C. Hu, T.-Y. Liow, Y.-K. Chen, C. Xie, X. Luo, G.-Q. Lo, R. Kopf, and A. Tate, “Novel integration technique for silicon/III-V hybrid laser,” Opt. Express 22, 26854–26861 (2014).
[Crossref]

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Luo, Y.

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Y. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22, 7678–7685 (2014).
[Crossref]

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.-H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22, 12628–12633 (2014).
[Crossref]

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

H. D. Thacker, Y. Luo, J. Shi, I. Shubin, J. Lexau, X. Zheng, G. Li, J. Yao, J. Costa, and T. Pinguet, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) (IEEE, 2010), pp. 240–246.

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Magill, P.

Make, D.

G.-H. Duan, C. Jany, A. Le Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, and F. Lelarge, “Hybrid III-V on silicon lasers for photonic integrated circuits on silicon,” IEEE J. Sel. Top. Quantum Electron. 20, 158–170 (2014).
[Crossref]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref]

Malik, O.

L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser power-efficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871–875 (2014).
[Crossref]

Mantl, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Marchena, E.

J. E. Bowers, J. T. Bovington, A. Y. Liu, A. C. Gossard, G. Li, T. Creazzo, E. Marchena, P. K. Yu, S. Krasulick, and L. Schares, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communication Conference, San Francisco, CA (IEEE, 2014).

E. Marchena, T. Creazzo, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, J. M. Dallesasse, P. Varangis, R. J. Stone, and A. Mizrahi, “Integrated tunable CMOS laser for Si photonics,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5 C.7.

Marris-Morini, D.

Marsh, J. H.

J. H. Marsh, “Quantum well intermixing,” Semicond. Sci. Technol. 8, 1136–1155 (1993).
[Crossref]

Mashanovich, G. Z.

G. T. Reed, D. J. Thomson, F. Y. Gardes, Y. Hu, J.-M. Fedeli, and G. Z. Mashanovich, “High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions,” Front. Phys. 2, 77 (2014).
[Crossref]

Matsuo, S.

K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “40-Gbit/s direct modulation of membrane buried heterostructure DFB laser on SiO2/Si substrate,” in 2014 International Semiconductor Laser Conference (ISLC) (IEEE, 2014), pp. 30–31.

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref]

Mechet, P.

Mehrvar, H.

H. Mehrvar, “Hybrid photonic ethernet switch for datacenters,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper M3E.6.

P. Dumais, J. Jiang, H. Mehrvar, D. Celo, D. Goodwill, and E. Bernier, “Performance optimization for switch matrices based on carrier-injection-driven Mach-Zehnder switch cells,” in 2014 IEEE 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 96–97.

Menezo, S.

S. Menezo, H. Duprez, A. Descos, D. Bordel, L. Sanchez, P. Brianceau, L. Fulbert, V. Carron, and B. Ben Bakir, “Advances on III-V on silicon DBR and DFB lasers for WDM optical interconnects and associated heterogeneous integration 200  mm-wafer-scale technology,” in 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICs), La Jolla, CA (IEEE, 2014).

Michel, J.

Miller, D. A. B.

Mineo, C.

N. Ophir, C. Mineo, D. Mountain, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro 33, 54–67 (2013).
[Crossref]

Miyashita, N.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
[Crossref]

Mizrahi, A.

E. Marchena, T. Creazzo, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, J. M. Dallesasse, P. Varangis, R. J. Stone, and A. Mizrahi, “Integrated tunable CMOS laser for Si photonics,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5 C.7.

Momeni, B.

Monnier, P.

Mookherjea, S.

Morse, M.

A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.-Z. Lo, J. Basak, B. Koch, H.-F. Liu, and H. Rong, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper PDIWI5.

Morthier, G.

Mountain, D.

N. Ophir, C. Mineo, D. Mountain, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro 33, 54–67 (2013).
[Crossref]

Muneeb, M.

Mussler, G.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Neilson, D. T.

P. Dong, Y.-K. Chen, T. Gu, L. L. Buhl, D. T. Neilson, and J. H. Sinsky, “Reconfigurable 100  Gb/s silicon photonic network-on-chip,” J. Opt. Commun. Netw. 7, A37–A43 (2015).
[Crossref]

P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3, 215–228 (2014).
[Crossref]

Nikolova, D.

Nishi, H.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref]

Noda, S.

Norberg, E.

S. Srinivasan, A. Arrighi, M. J. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, “Harmonically mode-locked hybrid silicon laser with intra-cavity filter to suppress supermode noise,” IEEE J. Sel. Top. Quantum Electron. 20, 8–15 (2014).
[Crossref]

Norberg, E. J.

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper PDP5C. 8.

Norman, J.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Notomi, M.

K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

Nozaki, K.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

Olivier, S.

Ophir, N.

N. Ophir, C. Mineo, D. Mountain, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro 33, 54–67 (2013).
[Crossref]

Osmond, J.

Padmaraju, K.

X. Zhu, K. Padmaraju, L.-W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photon. Technol. Lett. 26, 2365–2368 (2014).
[Crossref]

K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightwave Technol. 32, 505–512 (2014).
[Crossref]

Pan, J.

Paniccia, M. J.

Park, H.

Patel, N.

Pathak, S.

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref]

Peng, F.

F. Peng, Z. Yejin, W. Yufei, L. Lei, Z. Siriguleng, W. Hailing, and Z. Wanhua, “A novel hybrid III-V/silicon deformed micro-disk single-mode laser,” J. Semicond. 36, 055008 (2015).
[Crossref]

Pepeljugoski, P.

Perez-Galacho, D.

Peters, J.

Peters, J. D.

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1521–1527 (2011).
[Crossref]

Piels, M.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17, 1490–1498 (2011).
[Crossref]

Pinguet, T.

H. D. Thacker, Y. Luo, J. Shi, I. Shubin, J. Lexau, X. Zheng, G. Li, J. Yao, J. Costa, and T. Pinguet, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) (IEEE, 2010), pp. 240–246.

Pointurier, Y.

G. de Valicourt, Y. Pointurier, J.-C. Antona, and G. Duan, “A 20  Gbit/s directly modulated hybrid III-V/Si laser tunable over 12 wavelengths for short-reach access network,” in 2014 European Conference on Optical Communication (ECOC) (IEEE, 2014).

Polzer, A.

Poon, A.

Y. Zhang, Y. Li, S. Feng, and A. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 136–149 (2014).
[Crossref]

Poon, A. W.

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23, 360–372 (2015).
[Crossref]

A. W. Poon, Y. Zhang, and L. Zhang, “Hybrid silicon unidirectional-emission microspiral disk lasers for optical interconnect applications,” Proc. SPIE 9343, 934312 (2015).

Y. D. Yang, Y. Zhang, Y. Z. Huang, and A. W. Poon, “Direct-modulated waveguide-coupled microspiral disk lasers with spatially selective injection for on-chip optical interconnects,” Opt. Express 22, 824–838 (2014).
[Crossref]

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Y. Zhang, Y.-D. Yang, Y.-Z. Huang, and A. W. Poon, “Directional-emission III-V-on-silicon microspiral and double-notch microdisk lasers for optical interconnects,” in Conference on Lasers and Electro-Optics, CLEO: Applications and Technology (Optical Society of America, 2014), paper JTu4A.118.

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators using slope-detection with an inresonator defect-state-absorption-based photodetector,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SM2I.2

Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “In-microresonator linear-absorption-based real-time photocurrent-monitoring and tuning with closed-loop control for silicon microresonators,” U.S. patent application 14/057,679 (filed October18, 2013).

Preston, K.

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref]

Qian, W.

Qiao, P.

Raday, O.

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single-wavelength silicon evanescent lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 535–544 (2009).
[Crossref]

H.-H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “1310  nm silicon evanescent laser,” Opt. Express 15, 11466–11471 (2007).
[Crossref]

Raineri, F.

Raj, K.

Raj, R.

Ran, G.

Rasigade, G.

Reed, G. T.

G. T. Reed, D. J. Thomson, F. Y. Gardes, Y. Hu, J.-M. Fedeli, and G. Z. Mashanovich, “High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions,” Front. Phys. 2, 77 (2014).
[Crossref]

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004).

Regreny, P.

Reinholm, C.

B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, and C. Reinholm, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32, 743–751 (2014).
[Crossref]

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, and F. Horst, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEDM), San Francisco, CA (IEEE, 2012).

Rimolo-Donadio, R.

Roelkens, G.

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref]

S. Keyvaninia, S. Verstuyft, S. Pathak, F. Lelarge, G. H. Duan, D. Bordel, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Roelkens, and D. Van Thourhout, “III-V-on-silicon multi-frequency lasers,” Opt. Express 21, 13675–13683 (2013).
[Crossref]

P. Mechet, S. Verstuyft, T. de Vries, T. Spuesens, P. Regreny, D. Van Thourhout, G. Roelkens, and G. Morthier, “Unidirectional III-V microdisk lasers heterogeneously integrated on SOI,” Opt. Express 21, 19339–19352 (2013).
[Crossref]

P. Mechet, F. Raineri, A. Bazin, Y. Halioua, T. Spuesens, T. J. Karle, P. Regreny, P. Monnier, D. Van Thourhout, I. Sagnes, R. Raj, G. Roelkens, and G. Morthier, “Uniformity of the lasing wavelength of heterogeneously integrated InP microdisk lasers on SOI,” Opt. Express 21, 10622–10631 (2013).
[Crossref]

S. Keyvaninia, M. Muneeb, S. Stanković, P. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3, 35–46 (2013).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

L. Liu, G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, and R. Baets, “III-V/silicon-on-insulator nanophotonic cavities for optical network-on-chip,” J. Nanosci. Nanotechnol. 10, 1461–1472 (2010).
[Crossref]

G. Roelkens, D. Van Thourhout, and R. Baets, “Continuous-wave lasing from DVS-BCB heterogeneously integrated laser diodes,” in Integrated Photonics and Nanophotonics Research and Applications (Optical Society of America, 2007), paper ITuG4.

Rohit, A.

P. DasMahapatra, A. Rohit, R. Stabile, and K. A. Williams, “Broadband 4 × 4 switch matrix using fifth-order resonators,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.2.

Rojo-Romeo, P.

Romagnoli, M.

Romeo, P. R.

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20, 1345–1347 (2008).
[Crossref]

Rong, H.

A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.-Z. Lo, J. Basak, B. Koch, H.-F. Liu, and H. Rong, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper PDIWI5.

Rumley, S.

Rylyakov, A.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, and F. Horst, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEDM), San Francisco, CA (IEEE, 2012).

Rylyakov, A. V.

Sagnes, I.

Saha, K.

Samadi, P.

Sanchez, L.

S. Menezo, H. Duprez, A. Descos, D. Bordel, L. Sanchez, P. Brianceau, L. Fulbert, V. Carron, and B. Ben Bakir, “Advances on III-V on silicon DBR and DFB lasers for WDM optical interconnects and associated heterogeneous integration 200  mm-wafer-scale technology,” in 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICs), La Jolla, CA (IEEE, 2014).

Sanjoh, H.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

Sato, T.

K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “40-Gbit/s direct modulation of membrane buried heterostructure DFB laser on SiO2/Si substrate,” in 2014 International Semiconductor Laser Conference (ISLC) (IEEE, 2014), pp. 30–31.

Schares, L.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lightwave Technol. 33, 768–777 (2015).
[Crossref]

J. E. Bowers, J. T. Bovington, A. Y. Liu, A. C. Gossard, G. Li, T. Creazzo, E. Marchena, P. K. Yu, S. Krasulick, and L. Schares, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communication Conference, San Francisco, CA (IEEE, 2014).

Schow, C.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, and F. Horst, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEDM), San Francisco, CA (IEEE, 2012).

Schow, C. L.

Seassal, C.

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20, 1345–1347 (2008).
[Crossref]

J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744–6749 (2007).
[Crossref]

Shafiiha, R.

Shang, K.

Shank, S.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, and F. Horst, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEDM), San Francisco, CA (IEEE, 2012).

Shen, Y.

Sherwood-Droz, N.

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett. 22, 926–928 (2010).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express 16, 15915–15922 (2008).
[Crossref]

Shi, J.

H. D. Thacker, Y. Luo, J. Shi, I. Shubin, J. Lexau, X. Zheng, G. Li, J. Yao, J. Costa, and T. Pinguet, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) (IEEE, 2010), pp. 240–246.

Shibata, Y.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

Shin, J.-H.

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper PDP5C. 8.

Shinya, A.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

Shiraishi, T.

Shubin, I.

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.-H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22, 12628–12633 (2014).
[Crossref]

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Y. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22, 7678–7685 (2014).
[Crossref]

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

H. D. Thacker, Y. Luo, J. Shi, I. Shubin, J. Lexau, X. Zheng, G. Li, J. Yao, J. Costa, and T. Pinguet, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) (IEEE, 2010), pp. 240–246.

Sigg, H.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Sinsky, J. H.

Siriguleng, Z.

F. Peng, Z. Yejin, W. Yufei, L. Lei, Z. Siriguleng, W. Hailing, and Z. Wanhua, “A novel hybrid III-V/silicon deformed micro-disk single-mode laser,” J. Semicond. 36, 055008 (2015).
[Crossref]

Smalbrugge, B.

Smit, M.

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

Spann, J. Y.

E. Marchena, T. Creazzo, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, J. M. Dallesasse, P. Varangis, R. J. Stone, and A. Mizrahi, “Integrated tunable CMOS laser for Si photonics,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5 C.7.

Sparacin, D. K.

G. A. Fish and D. K. Sparacin, “Enabling flexible datacenter interconnect networks with WDM silicon photonics,” in 2014 IEEE Proceedings of the Custom Integrated Circuits Conference (CICC), San Jose, CA (IEEE, 2014).

Spencer, D.

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1521–1527 (2011).
[Crossref]

Spencer, D. T.

D. Liang, S. Srinivasan, D. A. Fattal, M. Fiorentino, Z. H. Huang, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

Spuesens, T.

Srinivasan, S.

S. Srinivasan, A. Arrighi, M. J. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, “Harmonically mode-locked hybrid silicon laser with intra-cavity filter to suppress supermode noise,” IEEE J. Sel. Top. Quantum Electron. 20, 8–15 (2014).
[Crossref]

C. Zhang, S. Srinivasan, Y. B. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
[Crossref]

D. Liang, S. Srinivasan, D. A. Fattal, M. Fiorentino, Z. H. Huang, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, and J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19, 9255–9261 (2011).
[Crossref]

D. Liang, S. Srinivasan, M. Fiorentino, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “A metal thermal shunt design for hybrid silicon microring laser,” in IEEE Optical Interconnects Conference (IEEE, 2012), pp. 20–23.

Stabile, R.

P. DasMahapatra, A. Rohit, R. Stabile, and K. A. Williams, “Broadband 4 × 4 switch matrix using fifth-order resonators,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.2.

Stankovic, S.

Starbuck, A. L.

Stoica, T.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Stone, A. D.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Stone, R. J.

E. Marchena, T. Creazzo, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, J. M. Dallesasse, P. Varangis, R. J. Stone, and A. Mizrahi, “Integrated tunable CMOS laser for Si photonics,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5 C.7.

Sui, S.

Y. Huang, S. Sui, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Sel. Top. Quantum Electron. 51, 2600108 (2015).

Sun, X.

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Sysak, M. N.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17, 1490–1498 (2011).
[Crossref]

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single-wavelength silicon evanescent lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 535–544 (2009).
[Crossref]

H.-H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “1310  nm silicon evanescent laser,” Opt. Express 15, 11466–11471 (2007).
[Crossref]

Tadokoro, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

Takahashi, Y.

Takeda, K.

K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “40-Gbit/s direct modulation of membrane buried heterostructure DFB laser on SiO2/Si substrate,” in 2014 International Semiconductor Laser Conference (ISLC) (IEEE, 2014), pp. 30–31.

Tan, D.

Tang, M.

Y. Huang, S. Sui, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Sel. Top. Quantum Electron. 51, 2600108 (2015).

Tang, Y. B.

Taniyama, H.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

Tao, L.

Tate, A.

Teepe, M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
[Crossref]

Teng, J.

Thacker, H.

Thacker, H. D.

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Y. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22, 7678–7685 (2014).
[Crossref]

H. D. Thacker, Y. Luo, J. Shi, I. Shubin, J. Lexau, X. Zheng, G. Li, J. Yao, J. Costa, and T. Pinguet, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) (IEEE, 2010), pp. 240–246.

Theogarajan, L.

L. Chen, E. Hall, L. Theogarajan, and J. Bowers, “Photonic switching for data center applications,” IEEE Photon. J. 3, 834–844 (2011).
[Crossref]

Thomson, D. J.

G. T. Reed, D. J. Thomson, F. Y. Gardes, Y. Hu, J.-M. Fedeli, and G. Z. Mashanovich, “High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions,” Front. Phys. 2, 77 (2014).
[Crossref]

Todd, S. T.

D. Liang, M. Fiorentino, S. T. Todd, G. Kurczveil, R. G. Beausoleil, and J. E. Bowers, “Fabrication of silicon-on-diamond substrate and low-loss optical waveguides,” IEEE Photon. Technol. Lett. 23, 657–659 (2011).
[Crossref]

Trotter, D. C.

Tsuchizawa, T.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref]

Tsui, Y. Y.

Tureci, H. E.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

Türeci, H. E.

L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser power-efficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871–875 (2014).
[Crossref]

Van, V.

Van Campenhout, J.

L. Liu, G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, and R. Baets, “III-V/silicon-on-insulator nanophotonic cavities for optical network-on-chip,” J. Nanosci. Nanotechnol. 10, 1461–1472 (2010).
[Crossref]

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20, 1345–1347 (2008).
[Crossref]

J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744–6749 (2007).
[Crossref]

Van Orden, D.

E. Marchena, T. Creazzo, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, J. M. Dallesasse, P. Varangis, R. J. Stone, and A. Mizrahi, “Integrated tunable CMOS laser for Si photonics,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5 C.7.

Van Thourhout, D.

P. Mechet, F. Raineri, A. Bazin, Y. Halioua, T. Spuesens, T. J. Karle, P. Regreny, P. Monnier, D. Van Thourhout, I. Sagnes, R. Raj, G. Roelkens, and G. Morthier, “Uniformity of the lasing wavelength of heterogeneously integrated InP microdisk lasers on SOI,” Opt. Express 21, 10622–10631 (2013).
[Crossref]

S. Keyvaninia, M. Muneeb, S. Stanković, P. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3, 35–46 (2013).
[Crossref]

P. Mechet, S. Verstuyft, T. de Vries, T. Spuesens, P. Regreny, D. Van Thourhout, G. Roelkens, and G. Morthier, “Unidirectional III-V microdisk lasers heterogeneously integrated on SOI,” Opt. Express 21, 19339–19352 (2013).
[Crossref]

S. Keyvaninia, S. Verstuyft, S. Pathak, F. Lelarge, G. H. Duan, D. Bordel, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Roelkens, and D. Van Thourhout, “III-V-on-silicon multi-frequency lasers,” Opt. Express 21, 13675–13683 (2013).
[Crossref]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref]

L. Liu, G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, and R. Baets, “III-V/silicon-on-insulator nanophotonic cavities for optical network-on-chip,” J. Nanosci. Nanotechnol. 10, 1461–1472 (2010).
[Crossref]

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20, 1345–1347 (2008).
[Crossref]

J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744–6749 (2007).
[Crossref]

G. Roelkens, D. Van Thourhout, and R. Baets, “Continuous-wave lasing from DVS-BCB heterogeneously integrated laser diodes,” in Integrated Photonics and Nanophotonics Research and Applications (Optical Society of America, 2007), paper ITuG4.

Van Veldhoven, P.

Varangis, P.

E. Marchena, T. Creazzo, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, J. M. Dallesasse, P. Varangis, R. J. Stone, and A. Mizrahi, “Integrated tunable CMOS laser for Si photonics,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5 C.7.

Verstuyft, S.

Virot, L.

Vivien, L.

Vlasov, Y. A.

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
[Crossref]

von den Driesch, N.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Wada, K.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref]

Wang, B.

Wang, H.

Wang, M.

Wang, W.

Wang, X.

Wanhua, Z.

F. Peng, Z. Yejin, W. Yufei, L. Lei, Z. Siriguleng, W. Hailing, and Z. Wanhua, “A novel hybrid III-V/silicon deformed micro-disk single-mode laser,” J. Semicond. 36, 055008 (2015).
[Crossref]

Williams, K. A.

P. DasMahapatra, A. Rohit, R. Stabile, and K. A. Williams, “Broadband 4 × 4 switch matrix using fifth-order resonators,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.2.

Wirths, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Xia, Y.

Xiao, J.

Y. Huang, S. Sui, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Sel. Top. Quantum Electron. 51, 2600108 (2015).

Xie, C.

Xie, J.

Xu, F.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Xu, J.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
[Crossref]

Xu, Q.

Yamada, K.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref]

Yamamoto, T.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref]

Yamanaka, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

Yamashita, D.

Yang, J.

Yang, L.

Yang, S.

X. Zhu, K. Padmaraju, L.-W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photon. Technol. Lett. 26, 2365–2368 (2014).
[Crossref]

Yang, S. Y.

Yang, W.

Yang, Y.

Y. Huang, S. Sui, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Sel. Top. Quantum Electron. 51, 2600108 (2015).

Yang, Y. D.

Yang, Y.-D.

Y. Zhang, Y.-D. Yang, Y.-Z. Huang, and A. W. Poon, “Directional-emission III-V-on-silicon microspiral and double-notch microdisk lasers for optical interconnects,” in Conference on Lasers and Electro-Optics, CLEO: Applications and Technology (Optical Society of America, 2014), paper JTu4A.118.

Yao, J.

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Y. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22, 7678–7685 (2014).
[Crossref]

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.-H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22, 12628–12633 (2014).
[Crossref]

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

H. D. Thacker, Y. Luo, J. Shi, I. Shubin, J. Lexau, X. Zheng, G. Li, J. Yao, J. Costa, and T. Pinguet, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) (IEEE, 2010), pp. 240–246.

Yejin, Z.

F. Peng, Z. Yejin, W. Yufei, L. Lei, Z. Siriguleng, W. Hailing, and Z. Wanhua, “A novel hybrid III-V/silicon deformed micro-disk single-mode laser,” J. Semicond. 36, 055008 (2015).
[Crossref]

Yoo, S. J. B.

Yu, H.

Yu, P.

E. Marchena, T. Creazzo, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, J. M. Dallesasse, P. Varangis, R. J. Stone, and A. Mizrahi, “Integrated tunable CMOS laser for Si photonics,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5 C.7.

Yu, P. K.

J. E. Bowers, J. T. Bovington, A. Y. Liu, A. C. Gossard, G. Li, T. Creazzo, E. Marchena, P. K. Yu, S. Krasulick, and L. Schares, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communication Conference, San Francisco, CA (IEEE, 2014).

Yuan, L.

Yufei, W.

F. Peng, Z. Yejin, W. Yufei, L. Lei, Z. Siriguleng, W. Hailing, and Z. Wanhua, “A novel hybrid III-V/silicon deformed micro-disk single-mode laser,” J. Semicond. 36, 055008 (2015).
[Crossref]

Zhang, C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

C. Zhang, S. Srinivasan, Y. B. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
[Crossref]

C. Zhang, D. Liang, G. Kurczveil, J. Bowers, and R. Beausoleil, “High Temperature Hybrid Silicon Micro-ring Lasers with Thermal Shunts,” in Conference on Lasers and Electro-Optics, CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW3F.5.

Zhang, F.

Zhang, H.

Zhang, L.

L. Yang, Y. Xia, F. Zhang, Q. Chen, J. Ding, P. Zhou, and L. Zhang, “Reconfigurable non-blocking 4-port silicon thermo-optic optical router based on Mach-Zehnder optical switches,” Opt. Lett. 40, 1402–1405 (2015).
[Crossref]

A. W. Poon, Y. Zhang, and L. Zhang, “Hybrid silicon unidirectional-emission microspiral disk lasers for optical interconnect applications,” Proc. SPIE 9343, 934312 (2015).

Zhang, Y.

A. W. Poon, Y. Zhang, and L. Zhang, “Hybrid silicon unidirectional-emission microspiral disk lasers for optical interconnect applications,” Proc. SPIE 9343, 934312 (2015).

Y. Zhang, S. Y. Yang, H. Guan, A. E. J. Lim, G. Q. Lo, P. Magill, T. Baehr-Jones, and M. Hochberg, “Sagnac loop mirror and micro-ring based laser cavity for silicon-on-insulator,” Opt. Express 22, 17872–17879 (2014).
[Crossref]

Y. D. Yang, Y. Zhang, Y. Z. Huang, and A. W. Poon, “Direct-modulated waveguide-coupled microspiral disk lasers with spatially selective injection for on-chip optical interconnects,” Opt. Express 22, 824–838 (2014).
[Crossref]

Y. Zhang, Y. Li, S. Feng, and A. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 136–149 (2014).
[Crossref]

Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “In-microresonator linear-absorption-based real-time photocurrent-monitoring and tuning with closed-loop control for silicon microresonators,” U.S. patent application 14/057,679 (filed October18, 2013).

Y. Zhang, Y.-D. Yang, Y.-Z. Huang, and A. W. Poon, “Directional-emission III-V-on-silicon microspiral and double-notch microdisk lasers for optical interconnects,” in Conference on Lasers and Electro-Optics, CLEO: Applications and Technology (Optical Society of America, 2014), paper JTu4A.118.

Zhao, M.

Zhao, Y.

Zheng, X.

Zhou, H.

Zhou, L.

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 × 4 non-blocking silicon electro-optic switches based on Mach-Zehnder interferometers,” IEEE Photon. J. 7, 7800108 (2015).

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, and J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21, 9447–9456 (2013).
[Crossref]

L. Zhou, L. Lu, Z. Li, and J. Chen, “Broadband 4 × 4 non-blocking optical switch fabric based on Mach-Zehnder interferometers,” in 2014 13th International Conference on Optical Communications and Networks (ICOCN) (IEEE, 2014).

Zhou, P.

Zhu, H.

Zhu, L.

Zhu, X.

X. Zhu, K. Padmaraju, L.-W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photon. Technol. Lett. 26, 2365–2368 (2014).
[Crossref]

Zimmermann, H.

Zou, Z.

Appl. Phys. Lett. (3)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[Crossref]

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).
[Crossref]

Front. Phys. (1)

G. T. Reed, D. J. Thomson, F. Y. Gardes, Y. Hu, J.-M. Fedeli, and G. Z. Mashanovich, “High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions,” Front. Phys. 2, 77 (2014).
[Crossref]

IEEE Commun. Mag. (1)

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (12)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

D. Feng, W. Qian, H. Liang, B. Luff, and M. Asghari, “High-speed receiver technology on the SOI platform,” IEEE J. Sel. Top. Quantum Electron. 19, 3800108 (2013).
[Crossref]

A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single-wavelength silicon evanescent lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 535–544 (2009).
[Crossref]

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1521–1527 (2011).
[Crossref]

G.-H. Duan, C. Jany, A. Le Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, and F. Lelarge, “Hybrid III-V on silicon lasers for photonic integrated circuits on silicon,” IEEE J. Sel. Top. Quantum Electron. 20, 158–170 (2014).
[Crossref]

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17, 1490–1498 (2011).
[Crossref]

Y. Huang, S. Sui, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Sel. Top. Quantum Electron. 51, 2600108 (2015).

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).
[Crossref]

S. Srinivasan, A. Arrighi, M. J. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, “Harmonically mode-locked hybrid silicon laser with intra-cavity filter to suppress supermode noise,” IEEE J. Sel. Top. Quantum Electron. 20, 8–15 (2014).
[Crossref]

Y. Zhang, Y. Li, S. Feng, and A. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 136–149 (2014).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).
[Crossref]

IEEE Micro (1)

N. Ophir, C. Mineo, D. Mountain, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro 33, 54–67 (2013).
[Crossref]

IEEE Photon. J. (2)

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 × 4 non-blocking silicon electro-optic switches based on Mach-Zehnder interferometers,” IEEE Photon. J. 7, 7800108 (2015).

L. Chen, E. Hall, L. Theogarajan, and J. Bowers, “Photonic switching for data center applications,” IEEE Photon. J. 3, 834–844 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (5)

X. Zhu, K. Padmaraju, L.-W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photon. Technol. Lett. 26, 2365–2368 (2014).
[Crossref]

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett. 22, 926–928 (2010).
[Crossref]

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20, 1345–1347 (2008).
[Crossref]

D. Liang, S. Srinivasan, D. A. Fattal, M. Fiorentino, Z. H. Huang, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

D. Liang, M. Fiorentino, S. T. Todd, G. Kurczveil, R. G. Beausoleil, and J. E. Bowers, “Fabrication of silicon-on-diamond substrate and low-loss optical waveguides,” IEEE Photon. Technol. Lett. 23, 657–659 (2011).
[Crossref]

J. Lightwave Technol. (3)

J. Nanosci. Nanotechnol. (1)

L. Liu, G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, and R. Baets, “III-V/silicon-on-insulator nanophotonic cavities for optical network-on-chip,” J. Nanosci. Nanotechnol. 10, 1461–1472 (2010).
[Crossref]

J. Opt. Commun. Netw. (1)

J. Semicond. (1)

F. Peng, Z. Yejin, W. Yufei, L. Lei, Z. Siriguleng, W. Hailing, and Z. Wanhua, “A novel hybrid III-V/silicon deformed micro-disk single-mode laser,” J. Semicond. 36, 055008 (2015).
[Crossref]

Laser Photon. Rev. (1)

B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photon. Rev. 3, 355–369 (2009).
[Crossref]

Materials (1)

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

Nanophotonics (1)

P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3, 215–228 (2014).
[Crossref]

Nat. Mater. (1)

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
[Crossref]

Nat. Photonics (3)

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser power-efficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871–875 (2014).
[Crossref]

Nature (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref]

Opt. Express (40)

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref]

P. Dong, T.-C. Hu, T.-Y. Liow, Y.-K. Chen, C. Xie, X. Luo, G.-Q. Lo, R. Kopf, and A. Tate, “Novel integration technique for silicon/III-V hybrid laser,” Opt. Express 22, 26854–26861 (2014).
[Crossref]

S. Keyvaninia, S. Verstuyft, S. Pathak, F. Lelarge, G. H. Duan, D. Bordel, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Roelkens, and D. Van Thourhout, “III-V-on-silicon multi-frequency lasers,” Opt. Express 21, 13675–13683 (2013).
[Crossref]

P. Mechet, S. Verstuyft, T. de Vries, T. Spuesens, P. Regreny, D. Van Thourhout, G. Roelkens, and G. Morthier, “Unidirectional III-V microdisk lasers heterogeneously integrated on SOI,” Opt. Express 21, 19339–19352 (2013).
[Crossref]

H.-H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “1310  nm silicon evanescent laser,” Opt. Express 15, 11466–11471 (2007).
[Crossref]

K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).
[Crossref]

J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744–6749 (2007).
[Crossref]

Y. Zhang, S. Y. Yang, H. Guan, A. E. J. Lim, G. Q. Lo, P. Magill, T. Baehr-Jones, and M. Hochberg, “Sagnac loop mirror and micro-ring based laser cavity for silicon-on-insulator,” Opt. Express 22, 17872–17879 (2014).
[Crossref]

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Y. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22, 7678–7685 (2014).
[Crossref]

L. Tao, L. Yuan, Y. Li, H. Yu, B. Wang, Q. Kan, W. Chen, J. Pan, G. Ran, and W. Wang, “4-λ InGaAsP-Si distributed feedback evanescent lasers with varying silicon waveguide width,” Opt. Express 22, 5448–5454 (2014).
[Crossref]

J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23, 2512–2523 (2015).
[Crossref]

C. Zhang, S. Srinivasan, Y. B. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).
[Crossref]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316–11320 (2012).
[Crossref]

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40  Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20, 1096–1101 (2012).
[Crossref]

N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, and R. Shafiiha, “30  GHz Ge electro-absorption modulator integrated with 3  μm silicon-on-insulator waveguide,” Opt. Express 19, 7062–7067 (2011).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express 16, 15915–15922 (2008).
[Crossref]

L. Chen and Y.-K. Chen, “Compact, low-loss and low-power 8 × 8 broadband silicon optical switch,” Opt. Express 20, 18977–18985 (2012).
[Crossref]

D. Marris-Morini, L. Virot, C. Baudot, J.-M. Fédéli, G. Rasigade, D. Perez-Galacho, J.-M. Hartmann, S. Olivier, P. Brindel, and P. Crozat, “A 40  Gbit/s optical link on a 300-mm silicon platform,” Opt. Express 22, 6674–6679 (2014).
[Crossref]

Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, “Ultra-compact 32-channel drop filter with 100  GHz spacing,” Opt. Express 22, 4692–4698 (2014).
[Crossref]

D. Tan, A. Grieco, and Y. Fainman, “Towards 100 channel dense wavelength division multiplexing with 100  GHz spacing on silicon,” Opt. Express 22, 10408–10415 (2014).
[Crossref]

A. Ghiasi, “Large data centers interconnect bottlenecks,” Opt. Express 23, 2085–2090 (2015).
[Crossref]

D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23, 1159–1175 (2015).
[Crossref]

Y. D. Yang, Y. Zhang, Y. Z. Huang, and A. W. Poon, “Direct-modulated waveguide-coupled microspiral disk lasers with spatially selective injection for on-chip optical interconnects,” Opt. Express 22, 824–838 (2014).
[Crossref]

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20, A293–A308 (2012).
[Crossref]

P. Mechet, F. Raineri, A. Bazin, Y. Halioua, T. Spuesens, T. J. Karle, P. Regreny, P. Monnier, D. Van Thourhout, I. Sagnes, R. Raj, G. Roelkens, and G. Morthier, “Uniformity of the lasing wavelength of heterogeneously integrated InP microdisk lasers on SOI,” Opt. Express 21, 10622–10631 (2013).
[Crossref]

S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, and J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19, 9255–9261 (2011).
[Crossref]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
[Crossref]

A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21, 14139–14145 (2013).
[Crossref]

D. Bachman, Z. Chen, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation,” Opt. Express 21, 11048–11056 (2013).
[Crossref]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309–4315 (2008).
[Crossref]

P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express 18, 25225–25231 (2010).
[Crossref]

H. Zhou, Y. Zhao, W. Wang, J. Yang, M. Wang, and X. Jiang, “Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).
[Crossref]

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22, 11279–11289 (2014).
[Crossref]

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23, 360–372 (2015).
[Crossref]

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958–13968 (2013).
[Crossref]

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21, 26557–26563 (2013).
[Crossref]

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, and J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21, 9447–9456 (2013).
[Crossref]

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.-H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22, 12628–12633 (2014).
[Crossref]

Opt. Lett. (5)

Opt. Mater. Express (1)

Proc. IEEE (1)

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Proc. SPIE (1)

A. W. Poon, Y. Zhang, and L. Zhang, “Hybrid silicon unidirectional-emission microspiral disk lasers for optical interconnect applications,” Proc. SPIE 9343, 934312 (2015).

Sci. Technol. Adv. Mater. (1)

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref]

Semicond. Sci. Technol. (1)

J. H. Marsh, “Quantum well intermixing,” Semicond. Sci. Technol. 8, 1136–1155 (1993).
[Crossref]

Other (32)

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “40-Gbit/s direct modulation of membrane buried heterostructure DFB laser on SiO2/Si substrate,” in 2014 International Semiconductor Laser Conference (ISLC) (IEEE, 2014), pp. 30–31.

G. de Valicourt, Y. Pointurier, J.-C. Antona, and G. Duan, “A 20  Gbit/s directly modulated hybrid III-V/Si laser tunable over 12 wavelengths for short-reach access network,” in 2014 European Conference on Optical Communication (ECOC) (IEEE, 2014).

P. Dumais, J. Jiang, H. Mehrvar, D. Celo, D. Goodwill, and E. Bernier, “Performance optimization for switch matrices based on carrier-injection-driven Mach-Zehnder switch cells,” in 2014 IEEE 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 96–97.

S. S. Haykin, Communication Systems (Wiley, 2001).

IME, https://www.a-star.edu.sg/ime/ .

IMEC, http://www2.imec.be/be_en/home.html .

H. Mehrvar, “Hybrid photonic ethernet switch for datacenters,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper M3E.6.

L. Zhou, L. Lu, Z. Li, and J. Chen, “Broadband 4 × 4 non-blocking optical switch fabric based on Mach-Zehnder interferometers,” in 2014 13th International Conference on Optical Communications and Networks (ICOCN) (IEEE, 2014).

Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “In-microresonator linear-absorption-based real-time photocurrent-monitoring and tuning with closed-loop control for silicon microresonators,” U.S. patent application 14/057,679 (filed October18, 2013).

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators using slope-detection with an inresonator defect-state-absorption-based photodetector,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SM2I.2

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, and F. Horst, “A 90  nm CMOS integrated nano-photonics technology for 25  Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEDM), San Francisco, CA (IEEE, 2012).

H. D. Thacker, Y. Luo, J. Shi, I. Shubin, J. Lexau, X. Zheng, G. Li, J. Yao, J. Costa, and T. Pinguet, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) (IEEE, 2010), pp. 240–246.

“IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements part 3: carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications amendment 4: media access control parameters, physical layers and management parameters for 40 Gb/s and 100 Gb/s operation,” IEEE Standard 802.3ba-2010 (amendment to IEEE Standard 802.3-2008).

“100 G CWDM4 MSA Technical Specifications” (2014), http://www.cwdm4-msa.org/files/CWDM4_MSA_Technical_Spec_1p0.pdf .

D. Liang, G. Kurczveil, C. H. Chen, M. Fiorentino, Z. Peng, and R. G. Beausoleil, “Silicon photonic integrated devices for optical interconnects” (2013), http://www.hpl.hp.com/techreports/2013/HPL-2013-56.pdf .

A. Alduino, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Hot Chips: A Symposium on High Performance Chips, Stanford, CA (2010).

“Cisco Visual Networking Index: Forecast and Methodology, 2013–2018,” http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html .

P. DasMahapatra, A. Rohit, R. Stabile, and K. A. Williams, “Broadband 4 × 4 switch matrix using fifth-order resonators,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.2.

Finisar, http://www.finisar.com/products/active-cables .

Fujitsu, http://www.fujitsu.com/us/news/pr/fcai_20140304-01.html .

A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.-Z. Lo, J. Basak, B. Koch, H.-F. Liu, and H. Rong, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper PDIWI5.

G. A. Fish and D. K. Sparacin, “Enabling flexible datacenter interconnect networks with WDM silicon photonics,” in 2014 IEEE Proceedings of the Custom Integrated Circuits Conference (CICC), San Jose, CA (IEEE, 2014).

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004).

G. Roelkens, D. Van Thourhout, and R. Baets, “Continuous-wave lasing from DVS-BCB heterogeneously integrated laser diodes,” in Integrated Photonics and Nanophotonics Research and Applications (Optical Society of America, 2007), paper ITuG4.

Y. Zhang, Y.-D. Yang, Y.-Z. Huang, and A. W. Poon, “Directional-emission III-V-on-silicon microspiral and double-notch microdisk lasers for optical interconnects,” in Conference on Lasers and Electro-Optics, CLEO: Applications and Technology (Optical Society of America, 2014), paper JTu4A.118.

E. Marchena, T. Creazzo, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, J. M. Dallesasse, P. Varangis, R. J. Stone, and A. Mizrahi, “Integrated tunable CMOS laser for Si photonics,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5 C.7.

Dow Chemical, http://www.dow.com/cyclotene/solution/thermprop.htm .

J. E. Bowers, J. T. Bovington, A. Y. Liu, A. C. Gossard, G. Li, T. Creazzo, E. Marchena, P. K. Yu, S. Krasulick, and L. Schares, “A path to 300  mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communication Conference, San Francisco, CA (IEEE, 2014).

S. Menezo, H. Duprez, A. Descos, D. Bordel, L. Sanchez, P. Brianceau, L. Fulbert, V. Carron, and B. Ben Bakir, “Advances on III-V on silicon DBR and DFB lasers for WDM optical interconnects and associated heterogeneous integration 200  mm-wafer-scale technology,” in 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICs), La Jolla, CA (IEEE, 2014).

D. Liang, S. Srinivasan, M. Fiorentino, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “A metal thermal shunt design for hybrid silicon microring laser,” in IEEE Optical Interconnects Conference (IEEE, 2012), pp. 20–23.

C. Zhang, D. Liang, G. Kurczveil, J. Bowers, and R. Beausoleil, “High Temperature Hybrid Silicon Micro-ring Lasers with Thermal Shunts,” in Conference on Lasers and Electro-Optics, CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW3F.5.

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper PDP5C. 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Schematic of a WDM silicon photonic interconnect for datacenters. N servers connected with optical transceivers are interconnected by an N × N switch fabric. The black, red, green, and purple lines show different routes from different transmitters emitting in sets of four wavelengths, denoted as λ A , λ B , λ C , and λ M , respectively. The colored blocks represent the “on” state of a switch element in the route. (b) Schematic spectra of the laser wavelengths output from the transmitters (upper), the switch fabric transmission bands at the “on” (solid) and “off” (dashed) states (middle), and the filter passbands of the DeMUX at the receiver (lower). The solid, dashed, dotted, and dashed–dotted arrows in the upper figure represent different wavelength channels from a single transmitter. The solid, dashed, dotted and dashed–dotted lines in the lower figure represent the filter passbands in a DeMUX. (c)–(e) Schematic view of (c) a four-channel direct-modulated (DM) transmitter at 100 Gb/s, (d) an N × N switch fabric using silicon microrings in a cross-bar topology with monolithically integrated CMOS control units, and (e) a four-channel receiver with a microring-based DeMUX and four integrated photodetectors (PDs).
Fig. 2.
Fig. 2. (a) Schematic of a four-channel WDM-based transmitter with four individual DM lasers and multiplexed into a single output. (b) Schematic of a four-channel WDM-based transmitter with four individual lasers each modulated by an external modulator and multiplexed into a single output. (c) Schematic of N WDM-based transmitters with a master frequency-comb laser demultiplexed into N sets of four-wavelength channels and each set of wavelengths modulated by four WS external modulators.
Fig. 3.
Fig. 3. Schematics of the bonding processes for hybrid silicon lasers realized by (a) molecular bonding, (b) adhesive bonding, and (c) metallic bonding. CMP, chemical-mechanical polishing.
Fig. 4.
Fig. 4. (a) Schematic of an evanescent waveguide coupled hybrid silicon microdisk laser with a reflector for unidirectional output. CW, clockwise; CCW, counter-clockwise. (b) Schematic of a hybrid silicon deformed microdisk laser. (c) Schematic and (d) optical microscope image of a hybrid silicon microspiral disk laser.
Fig. 5.
Fig. 5. (a) Optical microscope image of an III–V microspiral disk laser with a ring-shaped p- and n-contact design for spatially selective injection. (b) Measured eye diagram at 15 Gb/s.
Fig. 6.
Fig. 6. (a) Measured lasing spectrum and 25 Gb/s eye diagrams of a four-channel WDM transmitter. Reproduced with permission from [6], © IEEE 2014. (b) Measured lasing spectrum of two adjacent eight-channel laser arrays at 20°C and 80°C. Reproduced with permission from [6], © IEEE 2014. (c) Optical micrograph of a 16-channel cascaded microdisk laser array. Reproduced with permission from [56], © IEEE 2015.
Fig. 7.
Fig. 7. Schematics of the four common network topologies: (a) Beneš, (b) cross bar, (c) switch-and-select, and (d) dilated Banyan.
Fig. 8.
Fig. 8. Schematics of (a) a microring coupled to a waveguide crossing, and (b) “on” (solid) and “off” (dashed) state transmission spectra of a microring switch element. Schematics of (c) a MZI and (d) “on” (solid) and “off” (dashed) state transmission spectra of a MZI switch element.
Fig. 9.
Fig. 9. Active resonance wavelength stabilization schemes for silicon microring resonators. (a) Threshold-detection method by Zheng et al. [111]. Reproduced with permission, © Optical Society of America 2014. (b) Dithering-signal method by Padmaraju et al. [112]. Reproduced with permission, © IEEE 2013. (c) Threshold-detection method by Li et al. [118]. L.B.: leakage block.

Tables (8)

Tables Icon

Table 1. Key Requirements for Intra-Datacenter Optical Links

Tables Icon

Table 2. Key Requirements for Transmitters for Intra-Datacenter Applications

Tables Icon

Table 3. Typical Bonding Characteristics of Molecular, Adhesive, and Metallic Bonding

Tables Icon

Table 4. Summary of State of the Art of Hybrid Silicon Lasersa

Tables Icon

Table 5. Summary of State of the Art of Hybrid Silicon WDM Transmitters/Laser Arrays

Tables Icon

Table 6. Key Requirements for High-Port-Count Silicon Switch Fabrics for Intra-Datacenter Applications

Tables Icon

Table 7. Key Methods and Performance of State-of-the-Art High-Port-Count Silicon Switch Fabrics

Tables Icon

Table 8. Key Methods and Performance of Active Resonance Wavelength Stabilization Schemes for Silicon Microresonators

Metrics