Abstract

We review recent advances in the field of quantum dot lasers on silicon. A summary of device performance, reliability, and comparison with similar quantum well lasers grown on silicon will be presented. We consider the possibility of scalable, low size, weight, and power nanolasers grown on silicon enabled by quantum dot active regions for future short-reach silicon photonics interconnects.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
1.3  μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers

Jun Wang, Haiyang Hu, Haiying Yin, Yiming Bai, Jian Li, Xin Wei, Yuanyuan Liu, Yongqing Huang, Xiaomin Ren, and Huiyun Liu
Photon. Res. 6(4) 321-325 (2018)

Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths

Fanglu Lu, Indrasen Bhattacharya, Hao Sun, Thai-Truong D. Tran, Kar Wei Ng, Gilliard N. Malheiros-Silveira, and Connie Chang-Hasnain
Optica 4(7) 717-723 (2017)

Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si

Justin Norman, M. J. Kennedy, Jennifer Selvidge, Qiang Li, Yating Wan, Alan Y. Liu, Patrick G. Callahan, McLean P. Echlin, Tresa M. Pollock, Kei May Lau, Arthur C. Gossard, and John E. Bowers
Opt. Express 25(4) 3927-3934 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
    [Crossref]
  2. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
  3. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316–11320 (2012).
    [Crossref]
  4. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
    [Crossref]
  5. O. Ueda and S. J. Pearton, Materials and Reliability Handbook for Semiconductor Optical and Electron Devices (Springer, 2013).
  6. J.-M. Gerard and C. Weisbuch, “Semiconductor structure for optoelectronic components with inclusions,” U.S. patent5,075,742 (December24, 1991).
  7. J. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
    [Crossref]
  8. K. Linder, J. Phillips, O. Qasaimeh, X. Liu, S. Krishna, P. Bhattacharya, and J. Jiang, “Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates,” Appl. Phys. Lett. 74, 1355–1357 (1999).
    [Crossref]
  9. Z. Mi, P. Bhattacharya, J. Yang, and K. Pipe, “Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
    [Crossref]
  10. J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Devices 54, 2849–2855 (2007).
    [Crossref]
  11. Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).
    [Crossref]
  12. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
    [Crossref]
  13. A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).
    [Crossref]
  14. S. Chen, M. Tang, J. Wu, Q. Jiang, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C,” Electron. Lett. 50, 1467–1468 (2014).
    [Crossref]
  15. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
    [Crossref]
  16. D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  17. D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14(9), 388–397 (2011).
  18. T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011).
  19. Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125°C,” J. Lightwave Technol. 33, 1223–1229 (2014).
    [Crossref]
  20. D. Livshits, A. Gubenko, S. Mikhrin, V. Mikhrin, C.-H. Chen, M. Fiorentino, and R. Beausoleil, “High efficiency diode comb-laser for DWDM optical interconnects,” in IEEE Optical Interconnects Conference (2014), pp. 83–84.
  21. C.-H. J. Chen, T.-C. Huang, D. Livshit, A. Gubenko, S. Mikhrin, V. Mikhrin, M. Fiorentino, and R. Beausoleil, “A comb laser-driven DWDM silicon photonic transmitter with microring modulator for optical interconnect,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper STu4F-1.
  22. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
    [Crossref]
  23. K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6, 082703 (2013).
    [Crossref]
  24. K. Tanabe and Y. Arakawa, “1.3 μm InAs/GaAs quantum dot lasers on SOI waveguide structures,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper STh1G-6.
  25. Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photon. Technol. Lett. 27, 875–878 (2015).
    [Crossref]
  26. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
    [Crossref]
  27. R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
    [Crossref]
  28. L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
    [Crossref]
  29. C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55 μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).
    [Crossref]
  30. A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
    [Crossref]
  31. Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn J. Appl. Phys. 40, 4903 (2001).
  32. J. Li, J. Hydrick, J. Park, J. Li, J. Bai, Z. Cheng, M. Carroll, J. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic integration of GaAs/InGaAs lasers on virtual Ge substrates via aspect-ratio trapping,” J. Electrochem. Soc. 156, H574–H578 (2009).
    [Crossref]
  33. X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).
    [Crossref]
  34. L. Kimerling, “Recombination enhanced defect reactions,” Solid-State Electron. 21, 1391–1401 (1978).
    [Crossref]
  35. A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
  36. P. Petroff and R. Hartman, “Defect structure introduced during operation of heterojunction GaAs lasers,” Appl. Phys. Lett. 23, 469–471 (1973).
    [Crossref]
  37. R. Beanland, A. Sanchez, D. Childs, K. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103, 014913 (2008).
    [Crossref]
  38. R. Beanland, J. David, and A. Sanchez, “Quantum dots in strained layers preventing relaxation through the precipitate hardening effect,” J. Appl. Phys. 104, 123502 (2008).
    [Crossref]
  39. E. Fitzgerald and N. Chand, “Epitaxial necking in GaAs grown on pre-pattemed Si substrates,” J. Electron. Mater. 20, 839–853 (1991).
    [Crossref]
  40. X. Zhang, P. Li, G. Zhao, D. W. Parent, F. Jain, and J. Ayers, “Removal of threading dislocations from patterned heteroepitaxial semiconductors by glide to sidewalls,” J. Electron. Mater. 27, 1248–1253 (1998).
    [Crossref]
  41. M. J. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
    [Crossref]
  42. A. Able, W. Wegscheider, K. Engl, and J. Zweck, “Growth of crack-free GaN on Si (111) with graded AlGaN buffer layers,” J. Cryst. Growth 276, 415–418 (2005).
    [Crossref]
  43. S. Zamek, L. Feng, M. Khajavikhan, D. T. Tan, M. Ayache, and Y. Fainman, “Micro-resonator with metallic mirrors coupled to a bus waveguide,” Opt. Express 19, 2417–2425 (2011).
    [Crossref]
  44. D. Liang, S. Srinivasan, D. Fattal, M. Fiorentino, Z. Huang, D. Spencer, J. Bowers, and R. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
    [Crossref]
  45. J. K. Kim, R. L. Naone, and L. A. Coldren, “Lateral carrier confinement in miniature lasers using quantum dots,” IEEE J. Sel. Top. Quantum Electron. 6, 504–510 (2000).
    [Crossref]
  46. S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
    [Crossref]
  47. E. Yablonovitch, C. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated GaAs surfaces,” Appl. Phys. Lett. 51, 439–441 (1987).
    [Crossref]
  48. M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87, 3497–3504 (2000).
    [Crossref]
  49. V. Chobpattana, E. Mikheev, J. Y. Zhang, T. E. Mates, and S. Stemmer, “Extremely scaled high-k/In0.53Ga0.47As gate stacks with low leakage and low interface trap densities,” J. Appl. Phys. 116, 124104 (2014).
    [Crossref]

2015 (3)

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photon. Technol. Lett. 27, 875–878 (2015).
[Crossref]

A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

2014 (7)

M. J. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C,” Electron. Lett. 50, 1467–1468 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

V. Chobpattana, E. Mikheev, J. Y. Zhang, T. E. Mates, and S. Stemmer, “Extremely scaled high-k/In0.53Ga0.47As gate stacks with low leakage and low interface trap densities,” J. Appl. Phys. 116, 124104 (2014).
[Crossref]

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125°C,” J. Lightwave Technol. 33, 1223–1229 (2014).
[Crossref]

2013 (1)

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6, 082703 (2013).
[Crossref]

2012 (4)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

D. Liang, S. Srinivasan, D. Fattal, M. Fiorentino, Z. Huang, D. Spencer, J. Bowers, and R. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316–11320 (2012).
[Crossref]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).
[Crossref]

2011 (5)

S. Zamek, L. Feng, M. Khajavikhan, D. T. Tan, M. Ayache, and Y. Fainman, “Micro-resonator with metallic mirrors coupled to a bus waveguide,” Opt. Express 19, 2417–2425 (2011).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref]

D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14(9), 388–397 (2011).

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55 μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).
[Crossref]

2010 (2)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).

2009 (3)

J. Li, J. Hydrick, J. Park, J. Li, J. Bai, Z. Cheng, M. Carroll, J. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic integration of GaAs/InGaAs lasers on virtual Ge substrates via aspect-ratio trapping,” J. Electrochem. Soc. 156, H574–H578 (2009).
[Crossref]

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).
[Crossref]

D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

2008 (2)

R. Beanland, A. Sanchez, D. Childs, K. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

R. Beanland, J. David, and A. Sanchez, “Quantum dots in strained layers preventing relaxation through the precipitate hardening effect,” J. Appl. Phys. 104, 123502 (2008).
[Crossref]

2007 (2)

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Devices 54, 2849–2855 (2007).
[Crossref]

2006 (2)

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

2005 (2)

Z. Mi, P. Bhattacharya, J. Yang, and K. Pipe, “Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[Crossref]

A. Able, W. Wegscheider, K. Engl, and J. Zweck, “Growth of crack-free GaN on Si (111) with graded AlGaN buffer layers,” J. Cryst. Growth 276, 415–418 (2005).
[Crossref]

2001 (1)

Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn J. Appl. Phys. 40, 4903 (2001).

2000 (2)

J. K. Kim, R. L. Naone, and L. A. Coldren, “Lateral carrier confinement in miniature lasers using quantum dots,” IEEE J. Sel. Top. Quantum Electron. 6, 504–510 (2000).
[Crossref]

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87, 3497–3504 (2000).
[Crossref]

1999 (1)

K. Linder, J. Phillips, O. Qasaimeh, X. Liu, S. Krishna, P. Bhattacharya, and J. Jiang, “Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates,” Appl. Phys. Lett. 74, 1355–1357 (1999).
[Crossref]

1998 (1)

X. Zhang, P. Li, G. Zhao, D. W. Parent, F. Jain, and J. Ayers, “Removal of threading dislocations from patterned heteroepitaxial semiconductors by glide to sidewalls,” J. Electron. Mater. 27, 1248–1253 (1998).
[Crossref]

1996 (1)

J. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
[Crossref]

1991 (1)

E. Fitzgerald and N. Chand, “Epitaxial necking in GaAs grown on pre-pattemed Si substrates,” J. Electron. Mater. 20, 839–853 (1991).
[Crossref]

1987 (1)

E. Yablonovitch, C. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated GaAs surfaces,” Appl. Phys. Lett. 51, 439–441 (1987).
[Crossref]

1978 (1)

L. Kimerling, “Recombination enhanced defect reactions,” Solid-State Electron. 21, 1391–1401 (1978).
[Crossref]

1973 (1)

P. Petroff and R. Hartman, “Defect structure introduced during operation of heterojunction GaAs lasers,” Appl. Phys. Lett. 23, 469–471 (1973).
[Crossref]

Able, A.

A. Able, W. Wegscheider, K. Engl, and J. Zweck, “Growth of crack-free GaN on Si (111) with graded AlGaN buffer layers,” J. Cryst. Growth 276, 415–418 (2005).
[Crossref]

Agarwal, H.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Alexander, R. R.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Arakawa, Y.

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photon. Technol. Lett. 27, 875–878 (2015).
[Crossref]

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125°C,” J. Lightwave Technol. 33, 1223–1229 (2014).
[Crossref]

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6, 082703 (2013).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

K. Tanabe and Y. Arakawa, “1.3 μm InAs/GaAs quantum dot lasers on SOI waveguide structures,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper STh1G-6.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011).

Ayache, M.

Ayers, J.

X. Zhang, P. Li, G. Zhao, D. W. Parent, F. Jain, and J. Ayers, “Removal of threading dislocations from patterned heteroepitaxial semiconductors by glide to sidewalls,” J. Electron. Mater. 27, 1248–1253 (1998).
[Crossref]

Badcock, T. J.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Bai, J.

J. Li, J. Hydrick, J. Park, J. Li, J. Bai, Z. Cheng, M. Carroll, J. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic integration of GaAs/InGaAs lasers on virtual Ge substrates via aspect-ratio trapping,” J. Electrochem. Soc. 156, H574–H578 (2009).
[Crossref]

Beanland, R.

R. Beanland, A. Sanchez, D. Childs, K. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

R. Beanland, J. David, and A. Sanchez, “Quantum dots in strained layers preventing relaxation through the precipitate hardening effect,” J. Appl. Phys. 104, 123502 (2008).
[Crossref]

Beausoleil, R.

D. Liang, S. Srinivasan, D. Fattal, M. Fiorentino, Z. Huang, D. Spencer, J. Bowers, and R. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

C.-H. J. Chen, T.-C. Huang, D. Livshit, A. Gubenko, S. Mikhrin, V. Mikhrin, M. Fiorentino, and R. Beausoleil, “A comb laser-driven DWDM silicon photonic transmitter with microring modulator for optical interconnect,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper STu4F-1.

D. Livshits, A. Gubenko, S. Mikhrin, V. Mikhrin, C.-H. Chen, M. Fiorentino, and R. Beausoleil, “High efficiency diode comb-laser for DWDM optical interconnects,” in IEEE Optical Interconnects Conference (2014), pp. 83–84.

Benamara, M.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C,” Electron. Lett. 50, 1467–1468 (2014).
[Crossref]

Bessette, J. T.

Bhat, R.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87, 3497–3504 (2000).
[Crossref]

E. Yablonovitch, C. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated GaAs surfaces,” Appl. Phys. Lett. 51, 439–441 (1987).
[Crossref]

Bhattacharya, P.

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).
[Crossref]

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Devices 54, 2849–2855 (2007).
[Crossref]

Z. Mi, P. Bhattacharya, J. Yang, and K. Pipe, “Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[Crossref]

K. Linder, J. Phillips, O. Qasaimeh, X. Liu, S. Krishna, P. Bhattacharya, and J. Jiang, “Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates,” Appl. Phys. Lett. 74, 1355–1357 (1999).
[Crossref]

Bimberg, D.

D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14(9), 388–397 (2011).

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Boroditsky, M.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87, 3497–3504 (2000).
[Crossref]

Bowers, J.

A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).

D. Liang, S. Srinivasan, D. Fattal, M. Fiorentino, Z. Huang, D. Spencer, J. Bowers, and R. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).

Bowers, J. E.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

M. J. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

Buca, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Cabrol, O.

J. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
[Crossref]

Cai, Y.

Camacho-Aguilera, R. E.

Carroll, M.

J. Li, J. Hydrick, J. Park, J. Li, J. Bai, Z. Cheng, M. Carroll, J. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic integration of GaAs/InGaAs lasers on virtual Ge substrates via aspect-ratio trapping,” J. Electrochem. Soc. 156, H574–H578 (2009).
[Crossref]

Cataluna, M. A.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Chan, W.

J. Li, J. Hydrick, J. Park, J. Li, J. Bai, Z. Cheng, M. Carroll, J. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic integration of GaAs/InGaAs lasers on virtual Ge substrates via aspect-ratio trapping,” J. Electrochem. Soc. 156, H574–H578 (2009).
[Crossref]

Chand, N.

E. Fitzgerald and N. Chand, “Epitaxial necking in GaAs grown on pre-pattemed Si substrates,” J. Electron. Mater. 20, 839–853 (1991).
[Crossref]

Chen, C.-H.

D. Livshits, A. Gubenko, S. Mikhrin, V. Mikhrin, C.-H. Chen, M. Fiorentino, and R. Beausoleil, “High efficiency diode comb-laser for DWDM optical interconnects,” in IEEE Optical Interconnects Conference (2014), pp. 83–84.

Chen, C.-H. J.

C.-H. J. Chen, T.-C. Huang, D. Livshit, A. Gubenko, S. Mikhrin, V. Mikhrin, M. Fiorentino, and R. Beausoleil, “A comb laser-driven DWDM silicon photonic transmitter with microring modulator for optical interconnect,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper STu4F-1.

Chen, S.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C,” Electron. Lett. 50, 1467–1468 (2014).
[Crossref]

Cheng, C.-C.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87, 3497–3504 (2000).
[Crossref]

Cheng, Z.

J. Li, J. Hydrick, J. Park, J. Li, J. Bai, Z. Cheng, M. Carroll, J. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic integration of GaAs/InGaAs lasers on virtual Ge substrates via aspect-ratio trapping,” J. Electrochem. Soc. 156, H574–H578 (2009).
[Crossref]

Childs, D.

R. Beanland, A. Sanchez, D. Childs, K. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

Childs, D. T.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Chobpattana, V.

V. Chobpattana, E. Mikheev, J. Y. Zhang, T. E. Mates, and S. Stemmer, “Extremely scaled high-k/In0.53Ga0.47As gate stacks with low leakage and low interface trap densities,” J. Appl. Phys. 116, 124104 (2014).
[Crossref]

Coldren, L. A.

J. K. Kim, R. L. Naone, and L. A. Coldren, “Lateral carrier confinement in miniature lasers using quantum dots,” IEEE J. Sel. Top. Quantum Electron. 6, 504–510 (2000).
[Crossref]

David, J.

R. Beanland, J. David, and A. Sanchez, “Quantum dots in strained layers preventing relaxation through the precipitate hardening effect,” J. Appl. Phys. 104, 123502 (2008).
[Crossref]

Dorogan, V.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C,” Electron. Lett. 50, 1467–1468 (2014).
[Crossref]

Egawa, T.

Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn J. Appl. Phys. 40, 4903 (2001).

Engl, K.

A. Able, W. Wegscheider, K. Engl, and J. Zweck, “Growth of crack-free GaN on Si (111) with graded AlGaN buffer layers,” J. Cryst. Growth 276, 415–418 (2005).
[Crossref]

Fainman, Y.

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

Fattal, D.

D. Liang, S. Srinivasan, D. Fattal, M. Fiorentino, Z. Huang, D. Spencer, J. Bowers, and R. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

Feng, L.

Fiol, G.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Fiorentino, M.

D. Liang, S. Srinivasan, D. Fattal, M. Fiorentino, Z. Huang, D. Spencer, J. Bowers, and R. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

D. Livshits, A. Gubenko, S. Mikhrin, V. Mikhrin, C.-H. Chen, M. Fiorentino, and R. Beausoleil, “High efficiency diode comb-laser for DWDM optical interconnects,” in IEEE Optical Interconnects Conference (2014), pp. 83–84.

C.-H. J. Chen, T.-C. Huang, D. Livshit, A. Gubenko, S. Mikhrin, V. Mikhrin, M. Fiorentino, and R. Beausoleil, “A comb laser-driven DWDM silicon photonic transmitter with microring modulator for optical interconnect,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper STu4F-1.

Fiorenza, J.

J. Li, J. Hydrick, J. Park, J. Li, J. Bai, Z. Cheng, M. Carroll, J. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic integration of GaAs/InGaAs lasers on virtual Ge substrates via aspect-ratio trapping,” J. Electrochem. Soc. 156, H574–H578 (2009).
[Crossref]

Fitzgerald, E.

E. Fitzgerald and N. Chand, “Epitaxial necking in GaAs grown on pre-pattemed Si substrates,” J. Electron. Mater. 20, 839–853 (1991).
[Crossref]

Flynn, M. B.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Fujikata, J.

Geiger, R.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Gerard, J.-M.

J.-M. Gerard and C. Weisbuch, “Semiconductor structure for optoelectronic components with inclusions,” U.S. patent5,075,742 (December24, 1991).

Gérard, J.

J. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
[Crossref]

Gilfert, C.

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55 μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).
[Crossref]

Gmitter, T.

E. Yablonovitch, C. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated GaAs surfaces,” Appl. Phys. Lett. 51, 439–441 (1987).
[Crossref]

Gontijo, I.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87, 3497–3504 (2000).
[Crossref]

Gordeev, N. Y.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Gossard, A.

A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).

Gossard, A. C.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Groom, K.

R. Beanland, A. Sanchez, D. Childs, K. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

Groom, K. M.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Grutzmacher, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Gubenko, A.

C.-H. J. Chen, T.-C. Huang, D. Livshit, A. Gubenko, S. Mikhrin, V. Mikhrin, M. Fiorentino, and R. Beausoleil, “A comb laser-driven DWDM silicon photonic transmitter with microring modulator for optical interconnect,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper STu4F-1.

D. Livshits, A. Gubenko, S. Mikhrin, V. Mikhrin, C.-H. Chen, M. Fiorentino, and R. Beausoleil, “High efficiency diode comb-laser for DWDM optical interconnects,” in IEEE Optical Interconnects Conference (2014), pp. 83–84.

Hartman, R.

P. Petroff and R. Hartman, “Defect structure introduced during operation of heterojunction GaAs lasers,” Appl. Phys. Lett. 23, 469–471 (1973).
[Crossref]

Hartmann, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Hatori, N.

Heck, M. J.

M. J. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
[Crossref]

Herrick, R.

A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).

Hogg, R.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Hogg, R. A.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Hopkinson, M.

R. Beanland, A. Sanchez, D. Childs, K. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Horikawa, T.

Huang, T.-C.

C.-H. J. Chen, T.-C. Huang, D. Livshit, A. Gubenko, S. Mikhrin, V. Mikhrin, M. Fiorentino, and R. Beausoleil, “A comb laser-driven DWDM silicon photonic transmitter with microring modulator for optical interconnect,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper STu4F-1.

Huang, X.

X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).
[Crossref]

Huang, Z.

D. Liang, S. Srinivasan, D. Fattal, M. Fiorentino, Z. Huang, D. Spencer, J. Bowers, and R. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

Hydrick, J.

J. Li, J. Hydrick, J. Park, J. Li, J. Bai, Z. Cheng, M. Carroll, J. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic integration of GaAs/InGaAs lasers on virtual Ge substrates via aspect-ratio trapping,” J. Electrochem. Soc. 156, H574–H578 (2009).
[Crossref]

Ikonic, Z.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Ishida, M.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Ivanov, V.

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55 μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).
[Crossref]

Iwamoto, S.

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photon. Technol. Lett. 27, 875–878 (2015).
[Crossref]

Jackson, M.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87, 3497–3504 (2000).
[Crossref]

Jain, F.

X. Zhang, P. Li, G. Zhao, D. W. Parent, F. Jain, and J. Ayers, “Removal of threading dislocations from patterned heteroepitaxial semiconductors by glide to sidewalls,” J. Electron. Mater. 27, 1248–1253 (1998).
[Crossref]

Jhang, Y.-H.

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photon. Technol. Lett. 27, 875–878 (2015).
[Crossref]

Jiang, J.

K. Linder, J. Phillips, O. Qasaimeh, X. Liu, S. Krishna, P. Bhattacharya, and J. Jiang, “Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates,” Appl. Phys. Lett. 74, 1355–1357 (1999).
[Crossref]

Jiang, Q.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C,” Electron. Lett. 50, 1467–1468 (2014).
[Crossref]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Jimbo, T.

Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn J. Appl. Phys. 40, 4903 (2001).

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).

Jung, D.

X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).
[Crossref]

Kageyama, T.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011).

Karachinsky, L. Y.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Kazi, Z. I.

Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn J. Appl. Phys. 40, 4903 (2001).

Kettler, T.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Khajavikhan, M.

Kim, J. K.

J. K. Kim, R. L. Naone, and L. A. Coldren, “Lateral carrier confinement in miniature lasers using quantum dots,” IEEE J. Sel. Top. Quantum Electron. 6, 504–510 (2000).
[Crossref]

Kimerling, L.

L. Kimerling, “Recombination enhanced defect reactions,” Solid-State Electron. 21, 1391–1401 (1978).
[Crossref]

Kimerling, L. C.

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).

Kotlyar, M. V.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Kovsh, R.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Krames, M.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87, 3497–3504 (2000).
[Crossref]

Krauss, T.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87, 3497–3504 (2000).
[Crossref]

Krauss, T. F.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Krishna, S.

K. Linder, J. Phillips, O. Qasaimeh, X. Liu, S. Krishna, P. Bhattacharya, and J. Jiang, “Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates,” Appl. Phys. Lett. 74, 1355–1357 (1999).
[Crossref]

Kryzhanovskaya, N.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Kuntz, M.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Ledentsov, N.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Lee, A.

Lee, M.

X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).
[Crossref]

Li, J.

J. Li, J. Hydrick, J. Park, J. Li, J. Bai, Z. Cheng, M. Carroll, J. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic integration of GaAs/InGaAs lasers on virtual Ge substrates via aspect-ratio trapping,” J. Electrochem. Soc. 156, H574–H578 (2009).
[Crossref]

J. Li, J. Hydrick, J. Park, J. Li, J. Bai, Z. Cheng, M. Carroll, J. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic integration of GaAs/InGaAs lasers on virtual Ge substrates via aspect-ratio trapping,” J. Electrochem. Soc. 156, H574–H578 (2009).
[Crossref]

Li, P.

X. Zhang, P. Li, G. Zhao, D. W. Parent, F. Jain, and J. Ayers, “Removal of threading dislocations from patterned heteroepitaxial semiconductors by glide to sidewalls,” J. Electron. Mater. 27, 1248–1253 (1998).
[Crossref]

Liang, D.

D. Liang, S. Srinivasan, D. Fattal, M. Fiorentino, Z. Huang, D. Spencer, J. Bowers, and R. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

Linder, K.

K. Linder, J. Phillips, O. Qasaimeh, X. Liu, S. Krishna, P. Bhattacharya, and J. Jiang, “Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates,” Appl. Phys. Lett. 74, 1355–1357 (1999).
[Crossref]

Liu, A.

A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).

Liu, A. W.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Liu, A. Y.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

Liu, H.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C,” Electron. Lett. 50, 1467–1468 (2014).
[Crossref]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

R. Beanland, A. Sanchez, D. Childs, K. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

Liu, H.-Y.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).

Liu, X.

K. Linder, J. Phillips, O. Qasaimeh, X. Liu, S. Krishna, P. Bhattacharya, and J. Jiang, “Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates,” Appl. Phys. Lett. 74, 1355–1357 (1999).
[Crossref]

Livshit, D.

C.-H. J. Chen, T.-C. Huang, D. Livshit, A. Gubenko, S. Mikhrin, V. Mikhrin, M. Fiorentino, and R. Beausoleil, “A comb laser-driven DWDM silicon photonic transmitter with microring modulator for optical interconnect,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper STu4F-1.

Livshits, D.

D. Livshits, A. Gubenko, S. Mikhrin, V. Mikhrin, C.-H. Chen, M. Fiorentino, and R. Beausoleil, “High efficiency diode comb-laser for DWDM optical interconnects,” in IEEE Optical Interconnects Conference (2014), pp. 83–84.

Lochmann, A.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Lochtefeld, A.

J. Li, J. Hydrick, J. Park, J. Li, J. Bai, Z. Cheng, M. Carroll, J. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic integration of GaAs/InGaAs lasers on virtual Ge substrates via aspect-ratio trapping,” J. Electrochem. Soc. 156, H574–H578 (2009).
[Crossref]

Lubyshev, D.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Ma, Z.

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).
[Crossref]

Maeda, Y.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011).

Mantl, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Masuda, T.

X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).
[Crossref]

Mates, T. E.

V. Chobpattana, E. Mikheev, J. Y. Zhang, T. E. Mates, and S. Stemmer, “Extremely scaled high-k/In0.53Ga0.47As gate stacks with low leakage and low interface trap densities,” J. Appl. Phys. 116, 124104 (2014).
[Crossref]

Maximov, M.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Mazur, Y.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C,” Electron. Lett. 50, 1467–1468 (2014).
[Crossref]

Mi, Z.

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).
[Crossref]

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Devices 54, 2849–2855 (2007).
[Crossref]

Z. Mi, P. Bhattacharya, J. Yang, and K. Pipe, “Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[Crossref]

Michel, J.

Mikheev, E.

V. Chobpattana, E. Mikheev, J. Y. Zhang, T. E. Mates, and S. Stemmer, “Extremely scaled high-k/In0.53Ga0.47As gate stacks with low leakage and low interface trap densities,” J. Appl. Phys. 116, 124104 (2014).
[Crossref]

Mikhrin, S.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

C.-H. J. Chen, T.-C. Huang, D. Livshit, A. Gubenko, S. Mikhrin, V. Mikhrin, M. Fiorentino, and R. Beausoleil, “A comb laser-driven DWDM silicon photonic transmitter with microring modulator for optical interconnect,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper STu4F-1.

D. Livshits, A. Gubenko, S. Mikhrin, V. Mikhrin, C.-H. Chen, M. Fiorentino, and R. Beausoleil, “High efficiency diode comb-laser for DWDM optical interconnects,” in IEEE Optical Interconnects Conference (2014), pp. 83–84.

Mikhrin, V.

D. Livshits, A. Gubenko, S. Mikhrin, V. Mikhrin, C.-H. Chen, M. Fiorentino, and R. Beausoleil, “High efficiency diode comb-laser for DWDM optical interconnects,” in IEEE Optical Interconnects Conference (2014), pp. 83–84.

C.-H. J. Chen, T.-C. Huang, D. Livshit, A. Gubenko, S. Mikhrin, V. Mikhrin, M. Fiorentino, and R. Beausoleil, “A comb laser-driven DWDM silicon photonic transmitter with microring modulator for optical interconnect,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper STu4F-1.

Miller, D. A.

D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Mizutani, K.

Mochida, R.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011).

Moore, S. A.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Mowbray, D.

R. Beanland, A. Sanchez, D. Childs, K. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

Mowbray, D. J.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Mussler, G.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Nakamura, T.

Naone, R. L.

J. K. Kim, R. L. Naone, and L. A. Coldren, “Lateral carrier confinement in miniature lasers using quantum dots,” IEEE J. Sel. Top. Quantum Electron. 6, 504–510 (2000).
[Crossref]

Nishi, K.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011).

Norman, J.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Novikov, I.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

O’Faolain, L.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Oehl, N.

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55 μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).
[Crossref]

Parent, D. W.

X. Zhang, P. Li, G. Zhao, D. W. Parent, F. Jain, and J. Ayers, “Removal of threading dislocations from patterned heteroepitaxial semiconductors by glide to sidewalls,” J. Electron. Mater. 27, 1248–1253 (1998).
[Crossref]

Park, J.

J. Li, J. Hydrick, J. Park, J. Li, J. Bai, Z. Cheng, M. Carroll, J. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic integration of GaAs/InGaAs lasers on virtual Ge substrates via aspect-ratio trapping,” J. Electrochem. Soc. 156, H574–H578 (2009).
[Crossref]

Patel, N.

Pearton, S. J.

O. Ueda and S. J. Pearton, Materials and Reliability Handbook for Semiconductor Optical and Electron Devices (Springer, 2013).

Petroff, P.

A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).

P. Petroff and R. Hartman, “Defect structure introduced during operation of heterojunction GaAs lasers,” Appl. Phys. Lett. 23, 469–471 (1973).
[Crossref]

Phillips, J.

K. Linder, J. Phillips, O. Qasaimeh, X. Liu, S. Krishna, P. Bhattacharya, and J. Jiang, “Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates,” Appl. Phys. Lett. 74, 1355–1357 (1999).
[Crossref]

Pipe, K.

Z. Mi, P. Bhattacharya, J. Yang, and K. Pipe, “Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[Crossref]

Pohl, U. W.

D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14(9), 388–397 (2011).

Posilovic, K.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Pozzi, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref]

Qasaimeh, O.

K. Linder, J. Phillips, O. Qasaimeh, X. Liu, S. Krishna, P. Bhattacharya, and J. Jiang, “Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates,” Appl. Phys. Lett. 74, 1355–1357 (1999).
[Crossref]

Qin, G.

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).
[Crossref]

Rae, T.

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6, 082703 (2013).
[Crossref]

Reissmann, L.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Reithmaier, J.

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55 μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).
[Crossref]

Roelkens, G.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).

Romagnoli, M.

Royce, R. J.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Salamo, G.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C,” Electron. Lett. 50, 1467–1468 (2014).
[Crossref]

Sanchez, A.

R. Beanland, A. Sanchez, D. Childs, K. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

R. Beanland, J. David, and A. Sanchez, “Quantum dots in strained layers preventing relaxation through the precipitate hardening effect,” J. Appl. Phys. 104, 123502 (2008).
[Crossref]

Sandroff, C.

E. Yablonovitch, C. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated GaAs surfaces,” Appl. Phys. Lett. 51, 439–441 (1987).
[Crossref]

Scherer, A.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87, 3497–3504 (2000).
[Crossref]

Schulz, O.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Seeds, A.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C,” Electron. Lett. 50, 1467–1468 (2014).
[Crossref]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Semenova, E.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Sermage, B.

J. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
[Crossref]

Shchukin, V.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Shellenbarger, Z.

J. Li, J. Hydrick, J. Park, J. Li, J. Bai, Z. Cheng, M. Carroll, J. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic integration of GaAs/InGaAs lasers on virtual Ge substrates via aspect-ratio trapping,” J. Electrochem. Soc. 156, H574–H578 (2009).
[Crossref]

Shernyakov, Y. M.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Sigg, H.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

Song, Y.

X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).
[Crossref]

Spencer, D.

D. Liang, S. Srinivasan, D. Fattal, M. Fiorentino, Z. Huang, D. Spencer, J. Bowers, and R. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

Srinivasan, S.

D. Liang, S. Srinivasan, D. Fattal, M. Fiorentino, Z. Huang, D. Spencer, J. Bowers, and R. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

Stemmer, S.

V. Chobpattana, E. Mikheev, J. Y. Zhang, T. E. Mates, and S. Stemmer, “Extremely scaled high-k/In0.53Ga0.47As gate stacks with low leakage and low interface trap densities,” J. Appl. Phys. 116, 124104 (2014).
[Crossref]

Stoica, T.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Sugawara, M.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011).

Takemasa, K.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011).

Tan, D. T.

Tanabe, K.

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photon. Technol. Lett. 27, 875–878 (2015).
[Crossref]

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6, 082703 (2013).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

K. Tanabe and Y. Arakawa, “1.3 μm InAs/GaAs quantum dot lasers on SOI waveguide structures,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper STh1G-6.

Tanaka, Y.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011).

Tang, M.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C,” Electron. Lett. 50, 1467–1468 (2014).
[Crossref]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).
[Crossref]

Thilakan, P.

Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn J. Appl. Phys. 40, 4903 (2001).

Tutu, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Ueda, O.

A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).

O. Ueda and S. J. Pearton, Materials and Reliability Handbook for Semiconductor Optical and Electron Devices (Springer, 2013).

Umeno, M.

Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn J. Appl. Phys. 40, 4903 (2001).

Urino, Y.

Ustinov, V.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Usuki, T.

Vasil’Ev, A.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

von den Driesch, N.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Vrijen, R.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87, 3497–3504 (2000).
[Crossref]

Wang, T.

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

Watanabe, K.

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6, 082703 (2013).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Wegscheider, W.

A. Able, W. Wegscheider, K. Engl, and J. Zweck, “Growth of crack-free GaN on Si (111) with graded AlGaN buffer layers,” J. Cryst. Growth 276, 415–418 (2005).
[Crossref]

Weisbuch, C.

J.-M. Gerard and C. Weisbuch, “Semiconductor structure for optoelectronic components with inclusions,” U.S. patent5,075,742 (December24, 1991).

Wirths, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Wu, J.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C,” Electron. Lett. 50, 1467–1468 (2014).
[Crossref]

Yablonovitch, E.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87, 3497–3504 (2000).
[Crossref]

E. Yablonovitch, C. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated GaAs surfaces,” Appl. Phys. Lett. 51, 439–441 (1987).
[Crossref]

Yacob, M.

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55 μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).
[Crossref]

Yamada, K.

Yamaguchi, M.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011).

Yamamoto, T.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011).

Yang, J.

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).
[Crossref]

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Devices 54, 2849–2855 (2007).
[Crossref]

Z. Mi, P. Bhattacharya, J. Yang, and K. Pipe, “Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[Crossref]

Zamek, S.

Zhang, C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

Zhang, J. Y.

V. Chobpattana, E. Mikheev, J. Y. Zhang, T. E. Mates, and S. Stemmer, “Extremely scaled high-k/In0.53Ga0.47As gate stacks with low leakage and low interface trap densities,” J. Appl. Phys. 116, 124104 (2014).
[Crossref]

Zhang, X.

X. Zhang, P. Li, G. Zhao, D. W. Parent, F. Jain, and J. Ayers, “Removal of threading dislocations from patterned heteroepitaxial semiconductors by glide to sidewalls,” J. Electron. Mater. 27, 1248–1253 (1998).
[Crossref]

Zhao, G.

X. Zhang, P. Li, G. Zhao, D. W. Parent, F. Jain, and J. Ayers, “Removal of threading dislocations from patterned heteroepitaxial semiconductors by glide to sidewalls,” J. Electron. Mater. 27, 1248–1253 (1998).
[Crossref]

Zhukov, A.

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Zweck, J.

A. Able, W. Wegscheider, K. Engl, and J. Zweck, “Growth of crack-free GaN on Si (111) with graded AlGaN buffer layers,” J. Cryst. Growth 276, 415–418 (2005).
[Crossref]

Appl. Phys. Express (1)

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6, 082703 (2013).
[Crossref]

Appl. Phys. Lett. (6)

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55 μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).
[Crossref]

P. Petroff and R. Hartman, “Defect structure introduced during operation of heterojunction GaAs lasers,” Appl. Phys. Lett. 23, 469–471 (1973).
[Crossref]

J. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
[Crossref]

K. Linder, J. Phillips, O. Qasaimeh, X. Liu, S. Krishna, P. Bhattacharya, and J. Jiang, “Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates,” Appl. Phys. Lett. 74, 1355–1357 (1999).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

E. Yablonovitch, C. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated GaAs surfaces,” Appl. Phys. Lett. 51, 439–441 (1987).
[Crossref]

Electron. Lett. (3)

X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C,” Electron. Lett. 50, 1467–1468 (2014).
[Crossref]

Z. Mi, P. Bhattacharya, J. Yang, and K. Pipe, “Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

M. J. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
[Crossref]

A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).

J. K. Kim, R. L. Naone, and L. A. Coldren, “Lateral carrier confinement in miniature lasers using quantum dots,” IEEE J. Sel. Top. Quantum Electron. 6, 504–510 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (3)

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

D. Liang, S. Srinivasan, D. Fattal, M. Fiorentino, Z. Huang, D. Spencer, J. Bowers, and R. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photon. Technol. Lett. 27, 875–878 (2015).
[Crossref]

IEEE Trans. Electron Devices (1)

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Devices 54, 2849–2855 (2007).
[Crossref]

J. Appl. Phys. (4)

R. Beanland, A. Sanchez, D. Childs, K. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

R. Beanland, J. David, and A. Sanchez, “Quantum dots in strained layers preventing relaxation through the precipitate hardening effect,” J. Appl. Phys. 104, 123502 (2008).
[Crossref]

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87, 3497–3504 (2000).
[Crossref]

V. Chobpattana, E. Mikheev, J. Y. Zhang, T. E. Mates, and S. Stemmer, “Extremely scaled high-k/In0.53Ga0.47As gate stacks with low leakage and low interface trap densities,” J. Appl. Phys. 116, 124104 (2014).
[Crossref]

J. Cryst. Growth (1)

A. Able, W. Wegscheider, K. Engl, and J. Zweck, “Growth of crack-free GaN on Si (111) with graded AlGaN buffer layers,” J. Cryst. Growth 276, 415–418 (2005).
[Crossref]

J. Electrochem. Soc. (1)

J. Li, J. Hydrick, J. Park, J. Li, J. Bai, Z. Cheng, M. Carroll, J. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic integration of GaAs/InGaAs lasers on virtual Ge substrates via aspect-ratio trapping,” J. Electrochem. Soc. 156, H574–H578 (2009).
[Crossref]

J. Electron. Mater. (2)

E. Fitzgerald and N. Chand, “Epitaxial necking in GaAs grown on pre-pattemed Si substrates,” J. Electron. Mater. 20, 839–853 (1991).
[Crossref]

X. Zhang, P. Li, G. Zhao, D. W. Parent, F. Jain, and J. Ayers, “Removal of threading dislocations from patterned heteroepitaxial semiconductors by glide to sidewalls,” J. Electron. Mater. 27, 1248–1253 (1998).
[Crossref]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. B (1)

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

Jpn J. Appl. Phys. (1)

Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn J. Appl. Phys. 40, 4903 (2001).

Laser Photon. Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).

Mater. Today (1)

D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14(9), 388–397 (2011).

Nat. Photonics (3)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

Opt. Express (4)

Proc. IEEE (2)

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).
[Crossref]

D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Sci. Rep. (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Semicond. Sci. Technol. (1)

L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).
[Crossref]

Solid-State Electron. (1)

L. Kimerling, “Recombination enhanced defect reactions,” Solid-State Electron. 21, 1391–1401 (1978).
[Crossref]

Other (6)

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011).

O. Ueda and S. J. Pearton, Materials and Reliability Handbook for Semiconductor Optical and Electron Devices (Springer, 2013).

J.-M. Gerard and C. Weisbuch, “Semiconductor structure for optoelectronic components with inclusions,” U.S. patent5,075,742 (December24, 1991).

K. Tanabe and Y. Arakawa, “1.3 μm InAs/GaAs quantum dot lasers on SOI waveguide structures,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper STh1G-6.

D. Livshits, A. Gubenko, S. Mikhrin, V. Mikhrin, C.-H. Chen, M. Fiorentino, and R. Beausoleil, “High efficiency diode comb-laser for DWDM optical interconnects,” in IEEE Optical Interconnects Conference (2014), pp. 83–84.

C.-H. J. Chen, T.-C. Huang, D. Livshit, A. Gubenko, S. Mikhrin, V. Mikhrin, M. Fiorentino, and R. Beausoleil, “A comb laser-driven DWDM silicon photonic transmitter with microring modulator for optical interconnect,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper STu4F-1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Layer structure of the quantum well or quantum dot GaAs/AlGaAs lasers on silicon. QW: quantum well; QD: quantum dot.
Fig. 2.
Fig. 2. Room-temperature broad-area laser characteristics of In0.2Ga0.8As quantum well and InAs quantum dot lasers on GaAs substrates. (a) Threshold current versus cavity length. (b) Modal gain versus injected current density. Fitting parameters are listed in Table 2.
Fig. 3.
Fig. 3. Room-temperature PL comparison of (a) single InAs quantum dot layer and (b) single 8 nm In0.20Ga0.80As quantum well grown on GaAs versus silicon substrates.
Fig. 4.
Fig. 4. Bright-field cross-sectional TEM images of (a) quantum well laser and (b) quantum dot laser grown on silicon. Dislocations manifest as irregular dark lines. (Scale is approximate.)
Fig. 5.
Fig. 5. (a) and (b) Room-temperature CW current–voltage and (c) and (d) light-versus-current plots for the (a) and (c) In0.20Ga0.80As quantum well and (b) and (d) InAs quantum dot lasers grown on silicon substrates.
Fig. 6.
Fig. 6. Threshold current at the aging temperature of 30°C versus total aging time in hours for one of the InAs quantum dot lasers epitaxially grown on Ge/Si substrates reported in [15].
Fig. 7.
Fig. 7. Scaled broad-area laser threshold currents versus cavity length for GaAs- and InP-based quantum dots. A facet reflectivity R=95% was assumed for both cases. Gain parameters used are listed in Table 2.
Fig. 8.
Fig. 8. (a) Transverse cross-sectional schematic of the proposed quantum dot nanolaser where the output is butt-coupled to an Si rib waveguide (WG). (b) Top-down view of the active region plane. The active region is aligned to the thicker Si rib waveguide to maximize coupling, while the partial etch depth can be varied to tailor the transverse index profile. A calculated mode profile is shown in Fig 9.
Fig. 9.
Fig. 9. Calculated fundamental TE mode profiles of an InAs/InP quantum dot nanolaser on SOI with seven quantum dot layers (left) and a half-etched Si rib waveguide to which the laser may be butt-coupled to (right). The estimated coupling loss is 0.35dB. The confinement factor for the quantum dot layers is 1.95%. The depth of the partially etched Si layers may be varied to tailor the transverse index/mode profile to maximize coupling.
Fig. 10.
Fig. 10. Schematic of the longitudinal cross section for an InAs/InP quantum dot nanolaser showing different possible mirror designs. (a) Distributed Bragg reflector mirrors in silicon. (b) Distributed feedback gratings. (c) Metal or dielectric high-reflection coatings. (d) High-Q ring cavity coupled to an output waveguide (shown on the left traveling perpendicular to the page).
Fig. 11.
Fig. 11. Calculated threshold currents versus ridge width for both GaAs (vs=5×104cm/s) and InP (vs=1×104cm/s) quantum dots and various diffusion lengths. A mean diffusion length of 1 μm was reported in [46]. A cavity length of 50 μm, R=95%, and seven quantum dot layers were assumed for both cases (see Table 2).

Tables (2)

Tables Icon

Table 1. Representative Summary of In(Ga)As/GaAs Self-Assembled Quantum Dot Lasers Epitaxially Grown on Silicon

Tables Icon

Table 2. Parameters Used for Calculations in Figs. 7 and 11a

Metrics