Abstract

In underwater optical wireless communication (UOWC), a channel is characterized by abundant scattering/absorption effects and optical turbulence. Most previous studies on UOWC have been limited to scattering/absorption effects. However, experiments in the literature indicate that underwater optical turbulence (UOT) can cause severe degradation of UOWC performance. In this paper, we characterize an UOWC channel with both scattering/absorption and UOT taken into consideration, and a spatial diversity receiver scheme, say a single-input–multiple-output (SIMO) scheme, based on a light-emitting-diode (LED) source and multiple detectors is proposed to mitigate deep fading. The Monte Carlo based statistical simulation method is introduced to evaluate the bit-error-rate performance of the system. It is shown that spatial diversity can effectively reduce channel fading and remarkably extend communication range.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Correlation and Outage Probability of NLOS SIMO Optical Wireless Scattering Communication Channels Under Turbulence

Chen Gong, Boyang Huang, and Zhengyuan Xu
J. Opt. Commun. Netw. 8(12) 928-937 (2016)

Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation

Zahra Vali, Asghar Gholami, Zabih Ghassemlooy, David G. Michelson, Masood Omoomi, and Hamed Noori
J. Opt. Soc. Am. A 34(7) 1187-1193 (2017)

Scintillation analysis of multiple-input single-output underwater optical links

Muhsİn Caner Gökçe and Yahya Baykal
Appl. Opt. 55(22) 6130-6136 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. Vasilescu, C. Detweiler, and D. Rus, “AquaNodes: an underwater sensor network,” in Proceedings of the Second Workshop on Underwater Networks (ACM, 2007), pp. 85–88.
  2. B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Ocean. Eng. 33, 513–521 (2008).
  3. X. Cheng, F. Qu, and L. Yang, “Single carrier FDMA over underwater acoustic channels,” in Proceedings of Communications and Networking in China (CHINACOM) (IEEE, 2011), pp. 1052–1057.
  4. B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts,” IEEE J. Ocean. Eng. 33, 198–209 (2008).
  5. X. Cheng, M. Wen, X. Cheng, L. Yang, and Z. Xu, “Effective self-cancellation of intercarrier interference for OFDM underwater acoustic communications,” in Proceedings of the 8th ACM International Conference on Underwater Networks & Systems (2013).
  6. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47, 277–283 (2008).
    [Crossref]
  7. M. Doniec and D. Rus, “BiDirectional optical communication with AquaOptical II,” in Proceedings of IEEE International Conference on Communication Systems (ICCS) (IEEE, 2009), pp. 390–394.
  8. M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” in Proceedings of OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges (IEEE, 2009), pp. 1–6.
  9. D. Anguita, D. Brizzolara, and G. Parodi, “Building an underwater wireless sensor network based on optical communication: Research challenges and current results,” in Proceedings of Third International Conference on Sensor Technologies and Applications (IEEE, 2009), pp. 476–479.
  10. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  11. C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Proceedings of IEEE GLOBECOM Workshops on Optical Wireless Communications (IEEE, 2011), pp. 833–837.
  12. F. Schill, U. R. Zimmer, and J. Trumpf, “Visible spectrum optical communication and distance sensing for underwater applications,” in Proceedings of Australian Conference on Robotics and Automation (ACRA) (2004).
  13. S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun. 26, 1620–1627 (2008).
    [Crossref]
  14. W. Hou, “A simple underwater imaging model,” Opt. Lett. 34, 2688–2690 (2009).
    [Crossref]
  15. J. A. Domaradzki, “Light scattering induced by turbulence flow: a numerical study,” (University of Southern California, 1997).
  16. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 2005).
  17. D. J. Bogucki, J. A. Domaradzki, C. Anderson, H. W. Wijesekera, J. R. V. Zaneveld, and C. Moore, “Optical measurement of rates of dissipation of temperature variance due to oceanic turbulence,” Opt. Express 15, 7224–7230 (2007).
    [Crossref]
  18. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  19. L. C. Andrews, R. L. Philips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
  20. F. S. Vetelino, C. Young, L. Andrews, and J. Recolons, “Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence,” Appl. Opt. 46, 2099–2108 (2007).
    [Crossref]
  21. H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
    [Crossref]
  22. C. Gabriel, M.-A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5, 1–12 (2013).
    [Crossref]
  23. W. Liu, D. Zou, P. Wang, Z. Xu, and L. Yang, “Wavelength dependent channel characterization for underwater optical wireless communications,” in Proceedings of IEEE International Conference on Signal Processing, Communications and Computing (IEEE, 2014), pp. 895–899.
  24. T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 8, 951–957 (2009).
  25. F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in Proceedings of the 11th International Conference on Telecommunications (IEEE, 2011), pp. 211–218.
  26. P. Wang and Z. Xu, “Characteristics of ultraviolet scattering and turbulent channels,” Opt. Lett. 38, 2773–2775 (2013).
    [Crossref]

2013 (2)

2009 (3)

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 8, 951–957 (2009).

W. Hou, “A simple underwater imaging model,” Opt. Lett. 34, 2688–2690 (2009).
[Crossref]

2008 (4)

F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47, 277–283 (2008).
[Crossref]

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Ocean. Eng. 33, 513–521 (2008).

B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts,” IEEE J. Ocean. Eng. 33, 198–209 (2008).

S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun. 26, 1620–1627 (2008).
[Crossref]

2007 (2)

Anderson, C.

Andrews, L.

Andrews, L. C.

L. C. Andrews, R. L. Philips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 2005).

Anguita, D.

D. Anguita, D. Brizzolara, and G. Parodi, “Building an underwater wireless sensor network based on optical communication: Research challenges and current results,” in Proceedings of Third International Conference on Sensor Technologies and Applications (IEEE, 2009), pp. 476–479.

Bogucki, D. J.

Bourennane, S.

C. Gabriel, M.-A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5, 1–12 (2013).
[Crossref]

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Proceedings of IEEE GLOBECOM Workshops on Optical Wireless Communications (IEEE, 2011), pp. 833–837.

F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in Proceedings of the 11th International Conference on Telecommunications (IEEE, 2011), pp. 211–218.

Brizzolara, D.

D. Anguita, D. Brizzolara, and G. Parodi, “Building an underwater wireless sensor network based on optical communication: Research challenges and current results,” in Proceedings of Third International Conference on Sensor Technologies and Applications (IEEE, 2009), pp. 476–479.

Chen, G.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

Cheng, X.

X. Cheng, M. Wen, X. Cheng, L. Yang, and Z. Xu, “Effective self-cancellation of intercarrier interference for OFDM underwater acoustic communications,” in Proceedings of the 8th ACM International Conference on Underwater Networks & Systems (2013).

X. Cheng, M. Wen, X. Cheng, L. Yang, and Z. Xu, “Effective self-cancellation of intercarrier interference for OFDM underwater acoustic communications,” in Proceedings of the 8th ACM International Conference on Underwater Networks & Systems (2013).

X. Cheng, F. Qu, and L. Yang, “Single carrier FDMA over underwater acoustic channels,” in Proceedings of Communications and Networking in China (CHINACOM) (IEEE, 2011), pp. 1052–1057.

Chitre, M.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” in Proceedings of OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges (IEEE, 2009), pp. 1–6.

Cochenour, B. M.

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Ocean. Eng. 33, 513–521 (2008).

Detweiler, C.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” in Proceedings of OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges (IEEE, 2009), pp. 1–6.

I. Vasilescu, C. Detweiler, and D. Rus, “AquaNodes: an underwater sensor network,” in Proceedings of the Second Workshop on Underwater Networks (ACM, 2007), pp. 85–88.

Ding, H.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

Domaradzki, J. A.

Doniec, M.

M. Doniec and D. Rus, “BiDirectional optical communication with AquaOptical II,” in Proceedings of IEEE International Conference on Communication Systems (ICCS) (IEEE, 2009), pp. 390–394.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” in Proceedings of OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges (IEEE, 2009), pp. 1–6.

Freitag, L.

B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts,” IEEE J. Ocean. Eng. 33, 198–209 (2008).

Gabriel, C.

C. Gabriel, M.-A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5, 1–12 (2013).
[Crossref]

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Proceedings of IEEE GLOBECOM Workshops on Optical Wireless Communications (IEEE, 2011), pp. 833–837.

Hanson, F.

Hoffmann-Kuhnt, M.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” in Proceedings of OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges (IEEE, 2009), pp. 1–6.

Hopen, C. Y.

L. C. Andrews, R. L. Philips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

Hou, W.

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

Jaruwatanadilok, S.

S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun. 26, 1620–1627 (2008).
[Crossref]

Karagiannidis, G. K.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 8, 951–957 (2009).

Khalighi, M. A.

F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in Proceedings of the 11th International Conference on Telecommunications (IEEE, 2011), pp. 211–218.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Proceedings of IEEE GLOBECOM Workshops on Optical Wireless Communications (IEEE, 2011), pp. 833–837.

Khalighi, M.-A.

Laux, A. E.

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Ocean. Eng. 33, 513–521 (2008).

Léon, P.

C. Gabriel, M.-A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5, 1–12 (2013).
[Crossref]

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Proceedings of IEEE GLOBECOM Workshops on Optical Wireless Communications (IEEE, 2011), pp. 833–837.

Li, B.

B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts,” IEEE J. Ocean. Eng. 33, 198–209 (2008).

Liu, W.

W. Liu, D. Zou, P. Wang, Z. Xu, and L. Yang, “Wavelength dependent channel characterization for underwater optical wireless communications,” in Proceedings of IEEE International Conference on Signal Processing, Communications and Computing (IEEE, 2014), pp. 895–899.

Majumdar, A. K.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

Mobley, C. D.

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

Moore, C.

Mullen, L. J.

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Ocean. Eng. 33, 513–521 (2008).

Parodi, G.

D. Anguita, D. Brizzolara, and G. Parodi, “Building an underwater wireless sensor network based on optical communication: Research challenges and current results,” in Proceedings of Third International Conference on Sensor Technologies and Applications (IEEE, 2009), pp. 476–479.

Philips, R. L.

L. C. Andrews, R. L. Philips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 2005).

Qu, F.

X. Cheng, F. Qu, and L. Yang, “Single carrier FDMA over underwater acoustic channels,” in Proceedings of Communications and Networking in China (CHINACOM) (IEEE, 2011), pp. 1052–1057.

Radic, S.

Recolons, J.

Rigaud, V.

C. Gabriel, M.-A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5, 1–12 (2013).
[Crossref]

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Proceedings of IEEE GLOBECOM Workshops on Optical Wireless Communications (IEEE, 2011), pp. 833–837.

Rus, D.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” in Proceedings of OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges (IEEE, 2009), pp. 1–6.

M. Doniec and D. Rus, “BiDirectional optical communication with AquaOptical II,” in Proceedings of IEEE International Conference on Communication Systems (ICCS) (IEEE, 2009), pp. 390–394.

I. Vasilescu, C. Detweiler, and D. Rus, “AquaNodes: an underwater sensor network,” in Proceedings of the Second Workshop on Underwater Networks (ACM, 2007), pp. 85–88.

Sadler, B. M.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

Sandalidis, H. G.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 8, 951–957 (2009).

Schill, F.

F. Schill, U. R. Zimmer, and J. Trumpf, “Visible spectrum optical communication and distance sensing for underwater applications,” in Proceedings of Australian Conference on Robotics and Automation (ACRA) (2004).

Stojanovic, M.

B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts,” IEEE J. Ocean. Eng. 33, 198–209 (2008).

Trumpf, J.

F. Schill, U. R. Zimmer, and J. Trumpf, “Visible spectrum optical communication and distance sensing for underwater applications,” in Proceedings of Australian Conference on Robotics and Automation (ACRA) (2004).

Tsiftsis, T. A.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 8, 951–957 (2009).

Uysal, M.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 8, 951–957 (2009).

Vasilescu, I.

I. Vasilescu, C. Detweiler, and D. Rus, “AquaNodes: an underwater sensor network,” in Proceedings of the Second Workshop on Underwater Networks (ACM, 2007), pp. 85–88.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” in Proceedings of OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges (IEEE, 2009), pp. 1–6.

Vetelino, F. S.

Wang, P.

P. Wang and Z. Xu, “Characteristics of ultraviolet scattering and turbulent channels,” Opt. Lett. 38, 2773–2775 (2013).
[Crossref]

W. Liu, D. Zou, P. Wang, Z. Xu, and L. Yang, “Wavelength dependent channel characterization for underwater optical wireless communications,” in Proceedings of IEEE International Conference on Signal Processing, Communications and Computing (IEEE, 2014), pp. 895–899.

Wen, M.

X. Cheng, M. Wen, X. Cheng, L. Yang, and Z. Xu, “Effective self-cancellation of intercarrier interference for OFDM underwater acoustic communications,” in Proceedings of the 8th ACM International Conference on Underwater Networks & Systems (2013).

Wijesekera, H. W.

Willett, P.

B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts,” IEEE J. Ocean. Eng. 33, 198–209 (2008).

Xu, F.

F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in Proceedings of the 11th International Conference on Telecommunications (IEEE, 2011), pp. 211–218.

Xu, Z.

P. Wang and Z. Xu, “Characteristics of ultraviolet scattering and turbulent channels,” Opt. Lett. 38, 2773–2775 (2013).
[Crossref]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

W. Liu, D. Zou, P. Wang, Z. Xu, and L. Yang, “Wavelength dependent channel characterization for underwater optical wireless communications,” in Proceedings of IEEE International Conference on Signal Processing, Communications and Computing (IEEE, 2014), pp. 895–899.

X. Cheng, M. Wen, X. Cheng, L. Yang, and Z. Xu, “Effective self-cancellation of intercarrier interference for OFDM underwater acoustic communications,” in Proceedings of the 8th ACM International Conference on Underwater Networks & Systems (2013).

Yang, L.

X. Cheng, M. Wen, X. Cheng, L. Yang, and Z. Xu, “Effective self-cancellation of intercarrier interference for OFDM underwater acoustic communications,” in Proceedings of the 8th ACM International Conference on Underwater Networks & Systems (2013).

X. Cheng, F. Qu, and L. Yang, “Single carrier FDMA over underwater acoustic channels,” in Proceedings of Communications and Networking in China (CHINACOM) (IEEE, 2011), pp. 1052–1057.

W. Liu, D. Zou, P. Wang, Z. Xu, and L. Yang, “Wavelength dependent channel characterization for underwater optical wireless communications,” in Proceedings of IEEE International Conference on Signal Processing, Communications and Computing (IEEE, 2014), pp. 895–899.

Young, C.

Zaneveld, J. R. V.

Zhou, S.

B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts,” IEEE J. Ocean. Eng. 33, 198–209 (2008).

Zimmer, U. R.

F. Schill, U. R. Zimmer, and J. Trumpf, “Visible spectrum optical communication and distance sensing for underwater applications,” in Proceedings of Australian Conference on Robotics and Automation (ACRA) (2004).

Zou, D.

W. Liu, D. Zou, P. Wang, Z. Xu, and L. Yang, “Wavelength dependent channel characterization for underwater optical wireless communications,” in Proceedings of IEEE International Conference on Signal Processing, Communications and Computing (IEEE, 2014), pp. 895–899.

Appl. Opt. (2)

IEEE J. Ocean. Eng. (2)

B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts,” IEEE J. Ocean. Eng. 33, 198–209 (2008).

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Ocean. Eng. 33, 513–521 (2008).

IEEE J. Sel. Areas Commun. (2)

S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun. 26, 1620–1627 (2008).
[Crossref]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

IEEE Trans. Wireless Commun. (1)

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 8, 951–957 (2009).

J. Opt. Commun. Netw. (1)

Opt. Express (1)

Opt. Lett. (2)

Other (15)

F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in Proceedings of the 11th International Conference on Telecommunications (IEEE, 2011), pp. 211–218.

X. Cheng, M. Wen, X. Cheng, L. Yang, and Z. Xu, “Effective self-cancellation of intercarrier interference for OFDM underwater acoustic communications,” in Proceedings of the 8th ACM International Conference on Underwater Networks & Systems (2013).

J. A. Domaradzki, “Light scattering induced by turbulence flow: a numerical study,” (University of Southern California, 1997).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 2005).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

L. C. Andrews, R. L. Philips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

W. Liu, D. Zou, P. Wang, Z. Xu, and L. Yang, “Wavelength dependent channel characterization for underwater optical wireless communications,” in Proceedings of IEEE International Conference on Signal Processing, Communications and Computing (IEEE, 2014), pp. 895–899.

I. Vasilescu, C. Detweiler, and D. Rus, “AquaNodes: an underwater sensor network,” in Proceedings of the Second Workshop on Underwater Networks (ACM, 2007), pp. 85–88.

X. Cheng, F. Qu, and L. Yang, “Single carrier FDMA over underwater acoustic channels,” in Proceedings of Communications and Networking in China (CHINACOM) (IEEE, 2011), pp. 1052–1057.

M. Doniec and D. Rus, “BiDirectional optical communication with AquaOptical II,” in Proceedings of IEEE International Conference on Communication Systems (ICCS) (IEEE, 2009), pp. 390–394.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” in Proceedings of OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges (IEEE, 2009), pp. 1–6.

D. Anguita, D. Brizzolara, and G. Parodi, “Building an underwater wireless sensor network based on optical communication: Research challenges and current results,” in Proceedings of Third International Conference on Sensor Technologies and Applications (IEEE, 2009), pp. 476–479.

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Proceedings of IEEE GLOBECOM Workshops on Optical Wireless Communications (IEEE, 2011), pp. 833–837.

F. Schill, U. R. Zimmer, and J. Trumpf, “Visible spectrum optical communication and distance sensing for underwater applications,” in Proceedings of Australian Conference on Robotics and Automation (ACRA) (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Coherent length versus propagation length as a function of UOT strength.

Fig. 2.
Fig. 2.

Proposed SIMO transceiver system for UOWC.

Fig. 3.
Fig. 3.

Mean BER versus mean SNR for different combing schemes with M=3 and M=5.

Fig. 4.
Fig. 4.

Mean BER versus mean SNR for different UOT strengths.

Fig. 5.
Fig. 5.

Mean BER versus communication range for different combining schemes under attenuation and turbulence. The transmitting power is It=1W.

Fig. 6.
Fig. 6.

Mean BER versus communication range for different combining schemes under different turbulence.

Tables (1)

Tables Icon

Table 1. Simulation Parameters

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Ir=It·Pl·I,
ΦnK(κ)=K3κ11/3,
f(I)=1Iσ2πexp((ln(I/I0)μ)22σ2),
σ2=I2I2I2.
σ2=exp[0.49σr2(1+1.11σr12/5)7/6+0.51σr2(1+0.69σr12/5)5/6]1,
σr2=37.3K3(2πλ)7/6L11/6,
ρ0=(44.2K3(2πλ)2L)3/5.
r=η(Ir+Ib)+n,
pe=0f(Ir)Q(ηIr2N0)dIr,
pe=0f(Ir)Q(η2MN0i=1MIi2)dIr,
pe=0f(Ir)Q(ηM2N0i=1MIi)dIr.
pe=0f(Ir)Q(ηIr2MN0)dIr,
Ir=max(I1,I2,,IM).
SNRij=2η2Irij2N0,
SNR¯=1Mnsj=1Mi=1nsSNRij.
BERi=Q(ηIrci2N0).
BER¯=1nsi=1nsBERi,

Metrics