Abstract

The paper summarizes the recent achievements in the area of ultrafast fiber lasers mode-locked with so-called low-dimensional nanomaterials: graphene, topological insulators (Bi2Te3, Bi2Se3, Sb2Te3), and transition metal sulfide semiconductors, like molybdenum disulfide (MoS2). The most important experimental achievements are described and compared. Additionally, new original results on ultrashort pulse generation at 1.94 μm wavelength using graphene are presented. The designed Tm-doped fiber laser utilizes multilayer graphene as a saturable absorber and generates 654 fs pulses at 1940 nm wavelength, which are currently the shortest pulses generated from a Tm-doped fiber laser with a graphene-based saturable absorber.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives [Invited]

R. I. Woodward, R. C. T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. R. Kelleher
Photon. Res. 3(2) A30-A42 (2015)

Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator

Jaroslaw Sotor, Grzegorz Sobon, and Krzysztof M. Abramski
Opt. Express 22(11) 13244-13249 (2014)

168 fs pulse generation from graphene-chitosan mode-locked fiber laser

Jan Tarka, Grzegorz Sobon, Jakub Boguslawski, Jaroslaw Sotor, Joanna Jagiello, Magdalena Aksienionek, Ludwika Lipinska, Mariusz Zdrojek, Jaroslaw Judek, and Krzysztof M. Abramski
Opt. Mater. Express 4(10) 1981-1986 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
  2. N. Mamalis, “Femtosecond laser: the future of cataract surgery?” J. Cataract Refract. Surg. 37, 1177–1178 (2011).
  3. D. Stehr, C. M. Morris, C. Schmidt, and M. S. Sherwin, “High-performance fiber-laser-based terahertz spectrometer,” Opt. Lett. 35, 3799–3801 (2010).
    [Crossref]
  4. S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14, 030508 (2009).
    [Crossref]
  5. G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560  nm,” Opt. Mater. Express 4, 7–15 (2014).
    [Crossref]
  6. K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100  fs stretched-pulse 205  MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10, 105103 (2013).
    [Crossref]
  7. A. Komarov, H. Leblond, and F. Sanchez, “Passive harmonic mode-locking in a fiber laser with nonlinear polarization rotation,” Opt. Commun. 267, 162–169 (2006).
    [Crossref]
  8. I. N. Duling, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16, 539–541 (1991).
    [Crossref]
  9. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [Crossref]
  10. C. Schriber, F. Emaury, A. Diebold, S. Link, M. Golling, K. Beil, C. Kränkel, C. J. Saraceno, T. Südmeyer, and U. Keller, “Dual-gain SESAM modelocked thin disk laser based on Yb:Lu2O3 and Yb:Sc2O3,” Opt. Express 22, 18979–18986 (2014).
    [Crossref]
  11. M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
    [Crossref]
  12. A. H. C. Neto and K. Novoselov, “Two-dimensional crystals: beyond graphene,” Mater. Express 1, 10–17 (2011).
  13. C. Janisch, N. Mehta, D. Ma, A. L. Elías, N. Perea-López, M. Terrones, and Z. Liu, “Ultrashort optical pulse characterization using WS2 monolayers,” Opt. Lett. 39, 383–385 (2014).
    [Crossref]
  14. K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
    [Crossref]
  15. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
    [Crossref]
  16. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [Crossref]
  17. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
    [Crossref]
  18. K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” arXiv:1411.5777v1 (2014).
  19. F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
    [Crossref]
  20. C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
    [Crossref]
  21. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin hall insulator state in HgTe quantum wells,” Science 318, 766–770 (2007).
    [Crossref]
  22. Y. Ando, “Topological insulator materials,” J. Phys. Soc. Jpn. 82, 102001 (2013).
    [Crossref]
  23. H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z.-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4, 281–286 (2012).
  24. M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).
  25. N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).
  26. D. Hsieh, F. Mahmood, J. W. McIver, D. R. Gardner, Y. S. Lee, and N. Gedik, “Selective probing of photoinduced charge and spin dynamics in the bulk and surface of a topological insulator,” Phys. Rev. Lett. 107, 077401 (2011).
    [Crossref]
  27. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
    [Crossref]
  28. S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
    [Crossref]
  29. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
    [Crossref]
  30. Z.-C. Luo, M. Liu, H. Liu, X.-W. Zheng, A.-P. Luo, C.-J. Zhao, H. Zhang, S.-C. Wen, and W.-C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
    [Crossref]
  31. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4, 1–6 (2014).
    [Crossref]
  32. J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11, 055102 (2014).
    [Crossref]
  33. H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. Luo, W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
    [Crossref]
  34. Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
    [Crossref]
  35. H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, “Aharonov–Bohm interference in topological insulator nanoribbons,” Nat. Mater. 9, 225–229 (2010).
  36. D. Teweldebrhan, V. Goyal, M. Rahman, and A. A. Balandin, “Atomically-thin crystalline films and ribbons of bismuth telluride,” Appl. Phys. Lett. 96, 053107 (2010).
    [Crossref]
  37. Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11, 055107 (2014).
    [Crossref]
  38. M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
    [Crossref]
  39. J. Sotor, G. Sobon, and K. M. Abramski, “Sub-130  fs mode-locked Er-doped fiber laser based on topological insulator,” Opt. Express 22, 13244–13249 (2014).
    [Crossref]
  40. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
    [Crossref]
  41. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
    [Crossref]
  42. J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3 topological insulator,” Laser Phys. 24, 105111 (2014).
    [Crossref]
  43. M. Liu, N. Zhao, H. Liu, X.-W. Zheng, A.-P. Luo, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, H. Zhang, and S.-C. Wen, “Dual-wavelength harmonically mode-locked fiber laser with topological insulator saturable absorber,” IEEE Photon. Technol. Lett. 26, 983–986 (2014).
  44. J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104, 251112 (2014).
    [Crossref]
  45. J. Sotor, G. Sobon, J. Boguslawski, J. Tarka, K. Krzempek, and K. Abramski, “Fiber mode-locked lasers based on topological insulator saturable absorbers,” in 6th EPS-QEOD EUROPHOTON Conference Digest (European Physical Society, 2014), paper no. TuP-T1-P-10.
  46. H. Liu, A.-P. Luo, F.-Z. Wang, R. Tang, M. Liu, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).
    [Crossref]
  47. R. M. A. Lieth and J. C. J. M. Terhell, Transition Metal Dichalcogenides (Springer Netherlands, 1997).
  48. J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys. 18, 193–335 (1969).
    [Crossref]
  49. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
    [Crossref]
  50. M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res., doi: 10.1007/s12274-014-0637-2 (to be published).
  51. J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
    [Crossref]
  52. M. Liu, X.-W. Zheng, Y.-L. Qi, H. Liu, A.-P. Luo, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, and H. Zhang, “Microfiber-based few-layer MoS2 saturable absorber for 2.5  GHz passively harmonic mode-locked fiber laser,” Opt. Express 22, 22841–22846 (2014).
    [Crossref]
  53. R. W. Newson, J. Dean, B. Schmidt, and H. M. van Driel, “Ultrafast carrier kinetics in exfoliated graphene and thin graphite films,” Opt. Express 17, 2326–2333 (2009).
    [Crossref]
  54. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).
    [Crossref]
  55. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
    [Crossref]
  56. I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of Sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
    [Crossref]
  57. E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
    [Crossref]
  58. W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25  μm,” Opt. Lett. 36, 4089–4091 (2011).
    [Crossref]
  59. S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38, 1745–1747 (2013).
    [Crossref]
  60. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
    [Crossref]
  61. A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett. 99, 121107 (2011).
    [Crossref]
  62. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).
  63. W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. Gruneis, D. Haberer, R. Bozek, J. Kupka, and J. M. Baranowski, “Graphene epitaxy by chemical vapor deposition on SiC,” Nano Lett. 11, 1786–1791 (2011).
  64. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4, 297–307 (2011).
  65. P. L. Huang, S.-C. Lin, C.-Y. Yeh, H.-H. Kuo, S.-H. Huang, G.-R. Lin, L.-J. Li, C.-Y. Su, and W.-H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20, 2460–2465 (2012).
    [Crossref]
  66. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009).
    [Crossref]
  67. C. C. Lee, G. Acosta, J. S. Bunch, and T. R. Schibli, “Ultra-short optical pulse generation with single-layer graphene,” J. Nonlinear Opt. Phys. 19, 767–771 (2010).
    [Crossref]
  68. G. Sobon, J. Sotor, I. Pasternak, K. Grodecki, P. Paletko, W. Strupinski, Z. Jankiewicz, and K. M. Abramski, “Er-Doped fiber laser mode-locked by CVD–graphene saturable absorber,” J. Lightwave Technol. 30, 2770–2775 (2012).
    [Crossref]
  69. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
    [Crossref]
  70. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18, 23054–23061 (2010).
    [Crossref]
  71. J. Tarka, G. Sobon, J. Boguslawski, J. Sotor, J. Jagiello, M. Aksienionek, L. Lipinska, M. Zdrojek, J. Judek, and K. M. Abramski, “168  fs pulse generation from graphene-chitosan mode-locked fiber laser,” Opt. Mater. Express 4, 1981–1986 (2014).
    [Crossref]
  72. J. Sotor, G. Sobon, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Simultaneous mode-locking at 1565  nm and 1944  nm in fiber laser based on common graphene saturable absorber,” Opt. Express 21, 18994–19002 (2013).
    [Crossref]
  73. J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22, 5536–5543 (2014).
    [Crossref]
  74. W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760  nm and 16  μm for sensing applications,” Sensors 10, 2492–2510 (2010).
    [Crossref]
  75. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010).
  76. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene–polymer composite,” Opt. Express 20, 25077–25084 (2012).
    [Crossref]
  77. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102, 131117 (2013).
    [Crossref]
  78. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21, 12797–12802 (2013).
    [Crossref]

2014 (19)

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11, 055102 (2014).
[Crossref]

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3 topological insulator,” Laser Phys. 24, 105111 (2014).
[Crossref]

M. Liu, N. Zhao, H. Liu, X.-W. Zheng, A.-P. Luo, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, H. Zhang, and S.-C. Wen, “Dual-wavelength harmonically mode-locked fiber laser with topological insulator saturable absorber,” IEEE Photon. Technol. Lett. 26, 983–986 (2014).

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104, 251112 (2014).
[Crossref]

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11, 055107 (2014).
[Crossref]

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4, 1–6 (2014).
[Crossref]

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560  nm,” Opt. Mater. Express 4, 7–15 (2014).
[Crossref]

C. Janisch, N. Mehta, D. Ma, A. L. Elías, N. Perea-López, M. Terrones, and Z. Liu, “Ultrashort optical pulse characterization using WS2 monolayers,” Opt. Lett. 39, 383–385 (2014).
[Crossref]

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22, 5536–5543 (2014).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. Luo, W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

J. Sotor, G. Sobon, and K. M. Abramski, “Sub-130  fs mode-locked Er-doped fiber laser based on topological insulator,” Opt. Express 22, 13244–13249 (2014).
[Crossref]

H. Liu, A.-P. Luo, F.-Z. Wang, R. Tang, M. Liu, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).
[Crossref]

C. Schriber, F. Emaury, A. Diebold, S. Link, M. Golling, K. Beil, C. Kränkel, C. J. Saraceno, T. Südmeyer, and U. Keller, “Dual-gain SESAM modelocked thin disk laser based on Yb:Lu2O3 and Yb:Sc2O3,” Opt. Express 22, 18979–18986 (2014).
[Crossref]

J. Tarka, G. Sobon, J. Boguslawski, J. Sotor, J. Jagiello, M. Aksienionek, L. Lipinska, M. Zdrojek, J. Judek, and K. M. Abramski, “168  fs pulse generation from graphene-chitosan mode-locked fiber laser,” Opt. Mater. Express 4, 1981–1986 (2014).
[Crossref]

M. Liu, X.-W. Zheng, Y.-L. Qi, H. Liu, A.-P. Luo, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, and H. Zhang, “Microfiber-based few-layer MoS2 saturable absorber for 2.5  GHz passively harmonic mode-locked fiber laser,” Opt. Express 22, 22841–22846 (2014).
[Crossref]

2013 (10)

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38, 1745–1747 (2013).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21, 12797–12802 (2013).
[Crossref]

J. Sotor, G. Sobon, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Simultaneous mode-locking at 1565  nm and 1944  nm in fiber laser based on common graphene saturable absorber,” Opt. Express 21, 18994–19002 (2013).
[Crossref]

Z.-C. Luo, M. Liu, H. Liu, X.-W. Zheng, A.-P. Luo, C.-J. Zhao, H. Zhang, S.-C. Wen, and W.-C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102, 131117 (2013).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100  fs stretched-pulse 205  MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10, 105103 (2013).
[Crossref]

Y. Ando, “Topological insulator materials,” J. Phys. Soc. Jpn. 82, 102001 (2013).
[Crossref]

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
[Crossref]

2012 (11)

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z.-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4, 281–286 (2012).

M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of Sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

P. L. Huang, S.-C. Lin, C.-Y. Yeh, H.-H. Kuo, S.-H. Huang, G.-R. Lin, L.-J. Li, C.-Y. Su, and W.-H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20, 2460–2465 (2012).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, K. Grodecki, P. Paletko, W. Strupinski, Z. Jankiewicz, and K. M. Abramski, “Er-Doped fiber laser mode-locked by CVD–graphene saturable absorber,” J. Lightwave Technol. 30, 2770–2775 (2012).
[Crossref]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene–polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[Crossref]

2011 (8)

A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett. 99, 121107 (2011).
[Crossref]

W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. Gruneis, D. Haberer, R. Bozek, J. Kupka, and J. M. Baranowski, “Graphene epitaxy by chemical vapor deposition on SiC,” Nano Lett. 11, 1786–1791 (2011).

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4, 297–307 (2011).

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25  μm,” Opt. Lett. 36, 4089–4091 (2011).
[Crossref]

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).

D. Hsieh, F. Mahmood, J. W. McIver, D. R. Gardner, Y. S. Lee, and N. Gedik, “Selective probing of photoinduced charge and spin dynamics in the bulk and surface of a topological insulator,” Phys. Rev. Lett. 107, 077401 (2011).
[Crossref]

A. H. C. Neto and K. Novoselov, “Two-dimensional crystals: beyond graphene,” Mater. Express 1, 10–17 (2011).

N. Mamalis, “Femtosecond laser: the future of cataract surgery?” J. Cataract Refract. Surg. 37, 1177–1178 (2011).

2010 (10)

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, “Aharonov–Bohm interference in topological insulator nanoribbons,” Nat. Mater. 9, 225–229 (2010).

D. Teweldebrhan, V. Goyal, M. Rahman, and A. A. Balandin, “Atomically-thin crystalline films and ribbons of bismuth telluride,” Appl. Phys. Lett. 96, 053107 (2010).
[Crossref]

C. C. Lee, G. Acosta, J. S. Bunch, and T. R. Schibli, “Ultra-short optical pulse generation with single-layer graphene,” J. Nonlinear Opt. Phys. 19, 767–771 (2010).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760  nm and 16  μm for sensing applications,” Sensors 10, 2492–2510 (2010).
[Crossref]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18, 23054–23061 (2010).
[Crossref]

D. Stehr, C. M. Morris, C. Schmidt, and M. S. Sherwin, “High-performance fiber-laser-based terahertz spectrometer,” Opt. Lett. 35, 3799–3801 (2010).
[Crossref]

2009 (5)

R. W. Newson, J. Dean, B. Schmidt, and H. M. van Driel, “Ultrafast carrier kinetics in exfoliated graphene and thin graphite films,” Opt. Express 17, 2326–2333 (2009).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009).
[Crossref]

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14, 030508 (2009).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

2008 (3)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

2007 (1)

M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin hall insulator state in HgTe quantum wells,” Science 318, 766–770 (2007).
[Crossref]

2006 (1)

A. Komarov, H. Leblond, and F. Sanchez, “Passive harmonic mode-locking in a fiber laser with nonlinear polarization rotation,” Opt. Commun. 267, 162–169 (2006).
[Crossref]

2005 (1)

C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[Crossref]

1998 (1)

F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[Crossref]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

1991 (1)

1969 (1)

J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys. 18, 193–335 (1969).
[Crossref]

Abramski, K.

J. Sotor, G. Sobon, J. Boguslawski, J. Tarka, K. Krzempek, and K. Abramski, “Fiber mode-locked lasers based on topological insulator saturable absorbers,” in 6th EPS-QEOD EUROPHOTON Conference Digest (European Physical Society, 2014), paper no. TuP-T1-P-10.

Abramski, K. M.

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3 topological insulator,” Laser Phys. 24, 105111 (2014).
[Crossref]

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22, 5536–5543 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11, 055102 (2014).
[Crossref]

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560  nm,” Opt. Mater. Express 4, 7–15 (2014).
[Crossref]

J. Sotor, G. Sobon, and K. M. Abramski, “Sub-130  fs mode-locked Er-doped fiber laser based on topological insulator,” Opt. Express 22, 13244–13249 (2014).
[Crossref]

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104, 251112 (2014).
[Crossref]

J. Tarka, G. Sobon, J. Boguslawski, J. Sotor, J. Jagiello, M. Aksienionek, L. Lipinska, M. Zdrojek, J. Judek, and K. M. Abramski, “168  fs pulse generation from graphene-chitosan mode-locked fiber laser,” Opt. Mater. Express 4, 1981–1986 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4, 1–6 (2014).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21, 12797–12802 (2013).
[Crossref]

J. Sotor, G. Sobon, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Simultaneous mode-locking at 1565  nm and 1944  nm in fiber laser based on common graphene saturable absorber,” Opt. Express 21, 18994–19002 (2013).
[Crossref]

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100  fs stretched-pulse 205  MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10, 105103 (2013).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, K. Grodecki, P. Paletko, W. Strupinski, Z. Jankiewicz, and K. M. Abramski, “Er-Doped fiber laser mode-locked by CVD–graphene saturable absorber,” J. Lightwave Technol. 30, 2770–2775 (2012).
[Crossref]

Acosta, G.

C. C. Lee, G. Acosta, J. S. Bunch, and T. R. Schibli, “Ultra-short optical pulse generation with single-layer graphene,” J. Nonlinear Opt. Phys. 19, 767–771 (2010).
[Crossref]

Agnesi, A.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38, 1745–1747 (2013).
[Crossref]

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

Aguiló, M.

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

Ahn, Y. H.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of Sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

Aksienionek, M.

Ando, Y.

Y. Ando, “Topological insulator materials,” J. Phys. Soc. Jpn. 82, 102001 (2013).
[Crossref]

Aus der Au, J.

F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Bae, S.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38, 1745–1747 (2013).
[Crossref]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of Sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25  μm,” Opt. Lett. 36, 4089–4091 (2011).
[Crossref]

Baek, I. H.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of Sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25  μm,” Opt. Lett. 36, 4089–4091 (2011).
[Crossref]

Balandin, A. A.

D. Teweldebrhan, V. Goyal, M. Rahman, and A. A. Balandin, “Atomically-thin crystalline films and ribbons of bismuth telluride,” Appl. Phys. Lett. 96, 053107 (2010).
[Crossref]

Bao, Q.

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11, 055107 (2014).
[Crossref]

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4, 297–307 (2011).

Bao, Q. L.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009).
[Crossref]

Baranowski, J. M.

W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. Gruneis, D. Haberer, R. Bozek, J. Kupka, and J. M. Baranowski, “Graphene epitaxy by chemical vapor deposition on SiC,” Nano Lett. 11, 1786–1791 (2011).

Beil, K.

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Blau, W. J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Boguslawski, J.

J. Tarka, G. Sobon, J. Boguslawski, J. Sotor, J. Jagiello, M. Aksienionek, L. Lipinska, M. Zdrojek, J. Judek, and K. M. Abramski, “168  fs pulse generation from graphene-chitosan mode-locked fiber laser,” Opt. Mater. Express 4, 1981–1986 (2014).
[Crossref]

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3 topological insulator,” Laser Phys. 24, 105111 (2014).
[Crossref]

J. Sotor, G. Sobon, J. Boguslawski, J. Tarka, K. Krzempek, and K. Abramski, “Fiber mode-locked lasers based on topological insulator saturable absorbers,” in 6th EPS-QEOD EUROPHOTON Conference Digest (European Physical Society, 2014), paper no. TuP-T1-P-10.

Bonaccorso, F.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Boschetto, D.

M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).

Bozek, R.

W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. Gruneis, D. Haberer, R. Bozek, J. Kupka, and J. M. Baranowski, “Graphene epitaxy by chemical vapor deposition on SiC,” Nano Lett. 11, 1786–1791 (2011).

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Brüne, C.

M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin hall insulator state in HgTe quantum wells,” Science 318, 766–770 (2007).
[Crossref]

Buczynski, R.

Buhmann, H.

M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin hall insulator state in HgTe quantum wells,” Science 318, 766–770 (2007).
[Crossref]

Bunch, J. S.

C. C. Lee, G. Acosta, J. S. Bunch, and T. R. Schibli, “Ultra-short optical pulse generation with single-layer graphene,” J. Nonlinear Opt. Phys. 19, 767–771 (2010).
[Crossref]

Butch, N. P.

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).

Cao, J.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z.-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4, 281–286 (2012).

Chandrashekhar, M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).
[Crossref]

Chang, C. Z.

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Chen, H.

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
[Crossref]

Chen, J.

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” arXiv:1411.5777v1 (2014).

Chen, K. P.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102, 131117 (2013).
[Crossref]

Chen, S.

Chen, T.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102, 131117 (2013).
[Crossref]

Chen, X.

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Chen, Y.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z.-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4, 281–286 (2012).

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[Crossref]

H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, “Aharonov–Bohm interference in topological insulator nanoribbons,” Nat. Mater. 9, 225–229 (2010).

Chen, Y. P.

M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).

Chen, Z.

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14, 030508 (2009).
[Crossref]

Cheng, W.-H.

Cho, W. B.

Choi, S. Y.

Coleman, J. N.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Cui, Y.

H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, “Aharonov–Bohm interference in topological insulator nanoribbons,” Nat. Mater. 9, 225–229 (2010).

Dai, X.

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Dang, W.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z.-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4, 281–286 (2012).

Dawlaty, J. M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).
[Crossref]

Dean, J.

Debnath, P.

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

Di Dio Cafiso, S. D.

Diaz, F.

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

Diebold, A.

Du, J.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

Duling, I. N.

Elías, A. L.

Emaury, F.

Erbert, G.

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

Fan, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Fang, Z.

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Feng, Y.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Ferrari, A. C.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene–polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Fiebig, C.

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Fox, D.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Fuchs, P.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760  nm and 16  μm for sensing applications,” Sensors 10, 2492–2510 (2010).
[Crossref]

Fuhrberg, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010).

Fuse, K.

A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett. 99, 121107 (2011).
[Crossref]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18, 23054–23061 (2010).
[Crossref]

Gardner, D. R.

D. Hsieh, F. Mahmood, J. W. McIver, D. R. Gardner, Y. S. Lee, and N. Gedik, “Selective probing of photoinduced charge and spin dynamics in the bulk and surface of a topological insulator,” Phys. Rev. Lett. 107, 077401 (2011).
[Crossref]

Gaskell, P. E.

W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. Gruneis, D. Haberer, R. Bozek, J. Kupka, and J. M. Baranowski, “Graphene epitaxy by chemical vapor deposition on SiC,” Nano Lett. 11, 1786–1791 (2011).

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).

Gedik, N.

D. Hsieh, F. Mahmood, J. W. McIver, D. R. Gardner, Y. S. Lee, and N. Gedik, “Selective probing of photoinduced charge and spin dynamics in the bulk and surface of a topological insulator,” Phys. Rev. Lett. 107, 077401 (2011).
[Crossref]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Gerschuetz, F.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760  nm and 16  μm for sensing applications,” Sensors 10, 2492–2510 (2010).
[Crossref]

Golling, M.

Goyal, V.

D. Teweldebrhan, V. Goyal, M. Rahman, and A. A. Balandin, “Atomically-thin crystalline films and ribbons of bismuth telluride,” Appl. Phys. Lett. 96, 053107 (2010).
[Crossref]

Griebner, U.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38, 1745–1747 (2013).
[Crossref]

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Grodecki, K.

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104, 251112 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4, 1–6 (2014).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, K. Grodecki, P. Paletko, W. Strupinski, Z. Jankiewicz, and K. M. Abramski, “Er-Doped fiber laser mode-locked by CVD–graphene saturable absorber,” J. Lightwave Technol. 30, 2770–2775 (2012).
[Crossref]

W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. Gruneis, D. Haberer, R. Bozek, J. Kupka, and J. M. Baranowski, “Graphene epitaxy by chemical vapor deposition on SiC,” Nano Lett. 11, 1786–1791 (2011).

Gruneis, A.

W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. Gruneis, D. Haberer, R. Bozek, J. Kupka, and J. M. Baranowski, “Graphene epitaxy by chemical vapor deposition on SiC,” Nano Lett. 11, 1786–1791 (2011).

Haberer, D.

W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. Gruneis, D. Haberer, R. Bozek, J. Kupka, and J. M. Baranowski, “Graphene epitaxy by chemical vapor deposition on SiC,” Nano Lett. 11, 1786–1791 (2011).

Hajlaoui, M.

M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).

Hasan, T.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene–polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res., doi: 10.1007/s12274-014-0637-2 (to be published).

He, K.

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Hildebrandt, L.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760  nm and 16  μm for sensing applications,” Sensors 10, 2492–2510 (2010).
[Crossref]

Hong, B. H.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38, 1745–1747 (2013).
[Crossref]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of Sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25  μm,” Opt. Lett. 36, 4089–4091 (2011).
[Crossref]

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Howe, R. C. T.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res., doi: 10.1007/s12274-014-0637-2 (to be published).

Hsieh, D.

D. Hsieh, F. Mahmood, J. W. McIver, D. R. Gardner, Y. S. Lee, and N. Gedik, “Selective probing of photoinduced charge and spin dynamics in the bulk and surface of a topological insulator,” Phys. Rev. Lett. 107, 077401 (2011).
[Crossref]

Hu, G.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res., doi: 10.1007/s12274-014-0637-2 (to be published).

Huang, P. L.

Huang, S.-H.

Jagiello, J.

J. Tarka, G. Sobon, J. Boguslawski, J. Sotor, J. Jagiello, M. Aksienionek, L. Lipinska, M. Zdrojek, J. Judek, and K. M. Abramski, “168  fs pulse generation from graphene-chitosan mode-locked fiber laser,” Opt. Mater. Express 4, 1981–1986 (2014).
[Crossref]

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3 topological insulator,” Laser Phys. 24, 105111 (2014).
[Crossref]

Janisch, C.

Jankiewicz, Z.

Jhon, Y. M.

Jia, J. F.

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Jiang, B.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Jiang, G.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

Jiang, Z.

M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).

Judek, J.

Jung, B. H.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Jung, M.

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

Kaczmarek, P.

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100  fs stretched-pulse 205  MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10, 105103 (2013).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kane, C. L.

C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[Crossref]

Kärtner, F. X.

F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kelleher, E. J. R.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene–polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res., doi: 10.1007/s12274-014-0637-2 (to be published).

Keller, U.

C. Schriber, F. Emaury, A. Diebold, S. Link, M. Golling, K. Beil, C. Kränkel, C. J. Saraceno, T. Südmeyer, and U. Keller, “Dual-gain SESAM modelocked thin disk laser based on Yb:Lu2O3 and Yb:Sc2O3,” Opt. Express 22, 18979–18986 (2014).
[Crossref]

F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kim, J. W.

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25  μm,” Opt. Lett. 36, 4089–4091 (2011).
[Crossref]

Kim, K.

Kirshenbaum, K.

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Klimczak, M.

Koeth, J.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760  nm and 16  μm for sensing applications,” Sensors 10, 2492–2510 (2010).
[Crossref]

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, “Passive harmonic mode-locking in a fiber laser with nonlinear polarization rotation,” Opt. Commun. 267, 162–169 (2006).
[Crossref]

Kong, D.

H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, “Aharonov–Bohm interference in topological insulator nanoribbons,” Nat. Mater. 9, 225–229 (2010).

König, M.

M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin hall insulator state in HgTe quantum wells,” Science 318, 766–770 (2007).
[Crossref]

Koo, J.

Koopmann, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010).

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Krajewska, A.

Kränkel, C.

Krasieva, T. B.

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14, 030508 (2009).
[Crossref]

Krzempek, K.

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560  nm,” Opt. Mater. Express 4, 7–15 (2014).
[Crossref]

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100  fs stretched-pulse 205  MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10, 105103 (2013).
[Crossref]

J. Sotor, G. Sobon, J. Boguslawski, J. Tarka, K. Krzempek, and K. Abramski, “Fiber mode-locked lasers based on topological insulator saturable absorbers,” in 6th EPS-QEOD EUROPHOTON Conference Digest (European Physical Society, 2014), paper no. TuP-T1-P-10.

Kumar, N.

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).

Kuo, H.-H.

Kupka, J.

W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. Gruneis, D. Haberer, R. Bozek, J. Kupka, and J. M. Baranowski, “Graphene epitaxy by chemical vapor deposition on SiC,” Nano Lett. 11, 1786–1791 (2011).

Lai, K.

H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, “Aharonov–Bohm interference in topological insulator nanoribbons,” Nat. Mater. 9, 225–229 (2010).

Lamrini, S.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010).

Lantz, G.

M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, “Passive harmonic mode-locking in a fiber laser with nonlinear polarization rotation,” Opt. Commun. 267, 162–169 (2006).
[Crossref]

Lee, C. C.

C. C. Lee, G. Acosta, J. S. Bunch, and T. R. Schibli, “Ultra-short optical pulse generation with single-layer graphene,” J. Nonlinear Opt. Phys. 19, 767–771 (2010).
[Crossref]

Lee, H. W.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of Sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25  μm,” Opt. Lett. 36, 4089–4091 (2011).
[Crossref]

Lee, J.

Lee, J. H.

Lee, K.

Lee, S.

Lee, Y. S.

D. Hsieh, F. Mahmood, J. W. McIver, D. R. Gardner, Y. S. Lee, and N. Gedik, “Selective probing of photoinduced charge and spin dynamics in the bulk and surface of a topological insulator,” Phys. Rev. Lett. 107, 077401 (2011).
[Crossref]

Li, H.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z.-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4, 281–286 (2012).

Li, L.-J.

Li, M.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102, 131117 (2013).
[Crossref]

Li, X.

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” arXiv:1411.5777v1 (2014).

Li, Y.

Liang, T.

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
[Crossref]

Lieth, R. M. A.

R. M. A. Lieth and J. C. J. M. Terhell, Transition Metal Dichalcogenides (Springer Netherlands, 1997).

Lin, B.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

Lin, G.-R.

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11, 055107 (2014).
[Crossref]

P. L. Huang, S.-C. Lin, C.-Y. Yeh, H.-H. Kuo, S.-H. Huang, G.-R. Lin, L.-J. Li, C.-Y. Su, and W.-H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20, 2460–2465 (2012).
[Crossref]

Lin, S.-C.

Lin, S.-F.

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11, 055107 (2014).
[Crossref]

Lin, Y.-H.

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11, 055107 (2014).
[Crossref]

Link, S.

Lipinska, L.

J. Tarka, G. Sobon, J. Boguslawski, J. Sotor, J. Jagiello, M. Aksienionek, L. Lipinska, M. Zdrojek, J. Judek, and K. M. Abramski, “168  fs pulse generation from graphene-chitosan mode-locked fiber laser,” Opt. Mater. Express 4, 1981–1986 (2014).
[Crossref]

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3 topological insulator,” Laser Phys. 24, 105111 (2014).
[Crossref]

Liu, H.

Liu, J.

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14, 030508 (2009).
[Crossref]

Liu, M.

Liu, Z.

C. Janisch, N. Mehta, D. Ma, A. L. Elías, N. Perea-López, M. Terrones, and Z. Liu, “Ultrashort optical pulse characterization using WS2 monolayers,” Opt. Lett. 39, 383–385 (2014).
[Crossref]

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z.-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4, 281–286 (2012).

Loh, K. P.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4, 297–307 (2011).

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009).
[Crossref]

Lotya, M.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Lu, S.

Lu, S. B.

Lu, Y.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102, 131117 (2013).
[Crossref]

Luo, A.-P.

Luo, Z.-C.

Ma, D.

Ma, X. C.

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Macherzynski, W.

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11, 055102 (2014).
[Crossref]

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3 topological insulator,” Laser Phys. 24, 105111 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4, 1–6 (2014).
[Crossref]

Mahmood, F.

D. Hsieh, F. Mahmood, J. W. McIver, D. R. Gardner, Y. S. Lee, and N. Gedik, “Selective probing of photoinduced charge and spin dynamics in the bulk and surface of a topological insulator,” Phys. Rev. Lett. 107, 077401 (2011).
[Crossref]

Mamalis, N.

N. Mamalis, “Femtosecond laser: the future of cataract surgery?” J. Cataract Refract. Surg. 37, 1177–1178 (2011).

Marsi, M.

M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).

Martinez, A.

A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett. 99, 121107 (2011).
[Crossref]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18, 23054–23061 (2010).
[Crossref]

Martynkien, T.

Mateos, X.

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Mauchain, J.

M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).

McIver, J. W.

D. Hsieh, F. Mahmood, J. W. McIver, D. R. Gardner, Y. S. Lee, and N. Gedik, “Selective probing of photoinduced charge and spin dynamics in the bulk and surface of a topological insulator,” Phys. Rev. Lett. 107, 077401 (2011).
[Crossref]

Mehta, N.

Meister, S.

H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, “Aharonov–Bohm interference in topological insulator nanoribbons,” Nat. Mater. 9, 225–229 (2010).

Mele, E. J.

C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[Crossref]

Miotkowski, I.

M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).

Moisan, N.

M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).

Molenkamp, L. W.

M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin hall insulator state in HgTe quantum wells,” Science 318, 766–770 (2007).
[Crossref]

Morris, C. M.

Naehle, L.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760  nm and 16  μm for sensing applications,” Sensors 10, 2492–2510 (2010).
[Crossref]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Neto, A. H. C.

A. H. C. Neto and K. Novoselov, “Two-dimensional crystals: beyond graphene,” Mater. Express 1, 10–17 (2011).

Newson, R. W.

Ni, Z.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4, 297–307 (2011).

Ni, Z. H.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Nicolosi, V.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).

Niu, Q.

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Novoselov, K.

A. H. C. Neto and K. Novoselov, “Two-dimensional crystals: beyond graphene,” Mater. Express 1, 10–17 (2011).

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

O’Neill, A.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Paglione, J.

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).

Paletko, P.

Papalazarou, E.

M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).

Park, J.

Pasternak, I.

Peng, H.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z.-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4, 281–286 (2012).

H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, “Aharonov–Bohm interference in topological insulator nanoribbons,” Nat. Mater. 9, 225–229 (2010).

Perea-López, N.

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Perfetti, L.

M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).

Petrov, V.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38, 1745–1747 (2013).
[Crossref]

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

Pirzio, F.

Polavarapu, L.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4, 297–307 (2011).

Popa, D.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene–polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Popov, S. V.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene–polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res., doi: 10.1007/s12274-014-0637-2 (to be published).

Pysz, D.

Qi, X.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Qi, X. L.

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, “Aharonov–Bohm interference in topological insulator nanoribbons,” Nat. Mater. 9, 225–229 (2010).

Qi, X.-L.

M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin hall insulator state in HgTe quantum wells,” Science 318, 766–770 (2007).
[Crossref]

Qi, Y.-L.

Rahman, M.

D. Teweldebrhan, V. Goyal, M. Rahman, and A. A. Balandin, “Atomically-thin crystalline films and ribbons of bismuth telluride,” Appl. Phys. Lett. 96, 053107 (2010).
[Crossref]

Rana, F.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).
[Crossref]

Reali, G.

Rotermund, F.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38, 1745–1747 (2013).
[Crossref]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of Sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25  μm,” Opt. Lett. 36, 4089–4091 (2011).
[Crossref]

Roth, A.

M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin hall insulator state in HgTe quantum wells,” Science 318, 766–770 (2007).
[Crossref]

Rozhin, A. G.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Ruzicka, B. A.

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, “Passive harmonic mode-locking in a fiber laser with nonlinear polarization rotation,” Opt. Commun. 267, 162–169 (2006).
[Crossref]

Saraceno, C. J.

Schibli, T. R.

C. C. Lee, G. Acosta, J. S. Bunch, and T. R. Schibli, “Ultra-short optical pulse generation with single-layer graphene,” J. Nonlinear Opt. Phys. 19, 767–771 (2010).
[Crossref]

Schmidt, A.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38, 1745–1747 (2013).
[Crossref]

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

Schmidt, B.

Schmidt, C.

Scholle, K.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010).

Schriber, C.

Shan, W. Y.

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Shen, S. Q.

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Shen, Z.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4, 297–307 (2011).

Shen, Z. X.

H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, “Aharonov–Bohm interference in topological insulator nanoribbons,” Nat. Mater. 9, 225–229 (2010).

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Shen, Z.-X.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z.-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4, 281–286 (2012).

Sherwin, M. S.

Shi, M.

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
[Crossref]

Shivaraman, S.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).
[Crossref]

Sobon, G.

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560  nm,” Opt. Mater. Express 4, 7–15 (2014).
[Crossref]

J. Tarka, G. Sobon, J. Boguslawski, J. Sotor, J. Jagiello, M. Aksienionek, L. Lipinska, M. Zdrojek, J. Judek, and K. M. Abramski, “168  fs pulse generation from graphene-chitosan mode-locked fiber laser,” Opt. Mater. Express 4, 1981–1986 (2014).
[Crossref]

J. Sotor, G. Sobon, and K. M. Abramski, “Sub-130  fs mode-locked Er-doped fiber laser based on topological insulator,” Opt. Express 22, 13244–13249 (2014).
[Crossref]

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104, 251112 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4, 1–6 (2014).
[Crossref]

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22, 5536–5543 (2014).
[Crossref]

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3 topological insulator,” Laser Phys. 24, 105111 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11, 055102 (2014).
[Crossref]

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100  fs stretched-pulse 205  MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10, 105103 (2013).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21, 12797–12802 (2013).
[Crossref]

J. Sotor, G. Sobon, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Simultaneous mode-locking at 1565  nm and 1944  nm in fiber laser based on common graphene saturable absorber,” Opt. Express 21, 18994–19002 (2013).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, K. Grodecki, P. Paletko, W. Strupinski, Z. Jankiewicz, and K. M. Abramski, “Er-Doped fiber laser mode-locked by CVD–graphene saturable absorber,” J. Lightwave Technol. 30, 2770–2775 (2012).
[Crossref]

J. Sotor, G. Sobon, J. Boguslawski, J. Tarka, K. Krzempek, and K. Abramski, “Fiber mode-locked lasers based on topological insulator saturable absorbers,” in 6th EPS-QEOD EUROPHOTON Conference Digest (European Physical Society, 2014), paper no. TuP-T1-P-10.

Song, C. L.

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Song, Y. W.

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

Song, Y.-W.

Sotor, J.

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3 topological insulator,” Laser Phys. 24, 105111 (2014).
[Crossref]

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22, 5536–5543 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11, 055102 (2014).
[Crossref]

J. Tarka, G. Sobon, J. Boguslawski, J. Sotor, J. Jagiello, M. Aksienionek, L. Lipinska, M. Zdrojek, J. Judek, and K. M. Abramski, “168  fs pulse generation from graphene-chitosan mode-locked fiber laser,” Opt. Mater. Express 4, 1981–1986 (2014).
[Crossref]

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104, 251112 (2014).
[Crossref]

J. Sotor, G. Sobon, and K. M. Abramski, “Sub-130  fs mode-locked Er-doped fiber laser based on topological insulator,” Opt. Express 22, 13244–13249 (2014).
[Crossref]

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560  nm,” Opt. Mater. Express 4, 7–15 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4, 1–6 (2014).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21, 12797–12802 (2013).
[Crossref]

J. Sotor, G. Sobon, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Simultaneous mode-locking at 1565  nm and 1944  nm in fiber laser based on common graphene saturable absorber,” Opt. Express 21, 18994–19002 (2013).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, K. Grodecki, P. Paletko, W. Strupinski, Z. Jankiewicz, and K. M. Abramski, “Er-Doped fiber laser mode-locked by CVD–graphene saturable absorber,” J. Lightwave Technol. 30, 2770–2775 (2012).
[Crossref]

J. Sotor, G. Sobon, J. Boguslawski, J. Tarka, K. Krzempek, and K. Abramski, “Fiber mode-locked lasers based on topological insulator saturable absorbers,” in 6th EPS-QEOD EUROPHOTON Conference Digest (European Physical Society, 2014), paper no. TuP-T1-P-10.

Spencer, M. G.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).
[Crossref]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Stehr, D.

Stepien, R.

Stepniewski, R.

W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. Gruneis, D. Haberer, R. Bozek, J. Kupka, and J. M. Baranowski, “Graphene epitaxy by chemical vapor deposition on SiC,” Nano Lett. 11, 1786–1791 (2011).

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Strupinski, W.

Su, C.-Y.

Südmeyer, T.

Sun, Z.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene–polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Syers, P.

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).

Szkopek, T.

W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. Gruneis, D. Haberer, R. Bozek, J. Kupka, and J. M. Baranowski, “Graphene epitaxy by chemical vapor deposition on SiC,” Nano Lett. 11, 1786–1791 (2011).

Taleb-Ibrahimi, A.

M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).

Tan, P. H.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Tang, D.

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[Crossref]

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4, 297–307 (2011).

Tang, D. Y.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009).
[Crossref]

Tang, R.

Tang, S.

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14, 030508 (2009).
[Crossref]

Tarka, J.

J. Tarka, G. Sobon, J. Boguslawski, J. Sotor, J. Jagiello, M. Aksienionek, L. Lipinska, M. Zdrojek, J. Judek, and K. M. Abramski, “168  fs pulse generation from graphene-chitosan mode-locked fiber laser,” Opt. Mater. Express 4, 1981–1986 (2014).
[Crossref]

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22, 5536–5543 (2014).
[Crossref]

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3 topological insulator,” Laser Phys. 24, 105111 (2014).
[Crossref]

J. Sotor, G. Sobon, J. Boguslawski, J. Tarka, K. Krzempek, and K. Abramski, “Fiber mode-locked lasers based on topological insulator saturable absorbers,” in 6th EPS-QEOD EUROPHOTON Conference Digest (European Physical Society, 2014), paper no. TuP-T1-P-10.

Taylor, J. R.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene–polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res., doi: 10.1007/s12274-014-0637-2 (to be published).

Terhell, J. C. J. M.

R. M. A. Lieth and J. C. J. M. Terhell, Transition Metal Dichalcogenides (Springer Netherlands, 1997).

Terrones, M.

Teweldebrhan, D.

D. Teweldebrhan, V. Goyal, M. Rahman, and A. A. Balandin, “Atomically-thin crystalline films and ribbons of bismuth telluride,” Appl. Phys. Lett. 96, 053107 (2010).
[Crossref]

Tjin, S. C.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

Torrisi, F.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene–polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res., doi: 10.1007/s12274-014-0637-2 (to be published).

Travers, J. C.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).

Tromberg, B. J.

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14, 030508 (2009).
[Crossref]

Tseng, W.-H.

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11, 055107 (2014).
[Crossref]

Ugolotti, E.

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38, 1745–1747 (2013).
[Crossref]

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

van Driel, H. M.

Wang, F.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene–polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Wang, F.-Z.

Wang, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” arXiv:1411.5777v1 (2014).

Wang, K.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Wang, L. L.

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Wang, Q.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102, 131117 (2013).
[Crossref]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Wang, Y.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4, 297–307 (2011).

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Wang, Z.

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Wen, S.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[Crossref]

Wen, S. C.

Wen, S.-C.

Wiedmann, S.

M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin hall insulator state in HgTe quantum wells,” Science 318, 766–770 (2007).
[Crossref]

Wilson, J. A.

J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys. 18, 193–335 (1969).
[Crossref]

Woodward, R. I.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res., doi: 10.1007/s12274-014-0637-2 (to be published).

Wu, C.-I.

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11, 055107 (2014).
[Crossref]

Wu, D.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z.-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4, 281–286 (2012).

Wu, K.

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” arXiv:1411.5777v1 (2014).

Wysmolek, A.

W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. Gruneis, D. Haberer, R. Bozek, J. Kupka, and J. M. Baranowski, “Graphene epitaxy by chemical vapor deposition on SiC,” Nano Lett. 11, 1786–1791 (2011).

Xiang, Y.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

Xu, B.

Xu, C.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

Xu, M.

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
[Crossref]

Xu, Q.-H.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4, 297–307 (2011).

Xu, W.-C.

Xue, Q. K.

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Yamashita, S.

A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett. 99, 121107 (2011).
[Crossref]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18, 23054–23061 (2010).
[Crossref]

Yang, C.-Y.

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11, 055107 (2014).
[Crossref]

Yeh, C.-Y.

Yeom, D.-I.

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of Sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25  μm,” Opt. Lett. 36, 4089–4091 (2011).
[Crossref]

Yoffe, A. D.

J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys. 18, 193–335 (1969).
[Crossref]

Zdrojek, M.

Zeller, W.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760  nm and 16  μm for sensing applications,” Sensors 10, 2492–2510 (2010).
[Crossref]

Zhang, B.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102, 131117 (2013).
[Crossref]

Zhang, H.

M. Liu, X.-W. Zheng, Y.-L. Qi, H. Liu, A.-P. Luo, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, and H. Zhang, “Microfiber-based few-layer MoS2 saturable absorber for 2.5  GHz passively harmonic mode-locked fiber laser,” Opt. Express 22, 22841–22846 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

H. Liu, A.-P. Luo, F.-Z. Wang, R. Tang, M. Liu, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).
[Crossref]

H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. Luo, W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
[Crossref]

M. Liu, N. Zhao, H. Liu, X.-W. Zheng, A.-P. Luo, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, H. Zhang, and S.-C. Wen, “Dual-wavelength harmonically mode-locked fiber laser with topological insulator saturable absorber,” IEEE Photon. Technol. Lett. 26, 983–986 (2014).

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Z.-C. Luo, M. Liu, H. Liu, X.-W. Zheng, A.-P. Luo, C.-J. Zhao, H. Zhang, S.-C. Wen, and W.-C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[Crossref]

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4, 297–307 (2011).

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009).
[Crossref]

Zhang, L.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Zhang, M.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene–polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res., doi: 10.1007/s12274-014-0637-2 (to be published).

Zhang, S. C.

H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, “Aharonov–Bohm interference in topological insulator nanoribbons,” Nat. Mater. 9, 225–229 (2010).

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Zhang, S.-C.

M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin hall insulator state in HgTe quantum wells,” Science 318, 766–770 (2007).
[Crossref]

Zhang, X.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” arXiv:1411.5777v1 (2014).

Zhang, Y.

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Zhao, C.

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[Crossref]

Zhao, C.-J.

Zhao, H.

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).

Zhao, L. M.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009).
[Crossref]

Zhao, N.

H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. Luo, W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
[Crossref]

M. Liu, N. Zhao, H. Liu, X.-W. Zheng, A.-P. Luo, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, H. Zhang, and S.-C. Wen, “Dual-wavelength harmonically mode-locked fiber laser with topological insulator saturable absorber,” IEEE Photon. Technol. Lett. 26, 983–986 (2014).

Zhao, Q.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Zheng, J.

Zheng, W.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z.-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4, 281–286 (2012).

Zheng, X.-W.

Zou, Y.

ACS Nano (1)

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Adv. Funct. Mater. (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Adv. Mater. (1)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Adv. Phys. (1)

J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys. 18, 193–335 (1969).
[Crossref]

Appl. Phys. Express (2)

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of Sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

Appl. Phys. Lett. (8)

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104, 251112 (2014).
[Crossref]

D. Teweldebrhan, V. Goyal, M. Rahman, and A. A. Balandin, “Atomically-thin crystalline films and ribbons of bismuth telluride,” Appl. Phys. Lett. 96, 053107 (2010).
[Crossref]

E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101, 161112 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett. 99, 121107 (2011).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).
[Crossref]

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102, 131117 (2013).
[Crossref]

Chem. Rev. (1)

M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Liu, N. Zhao, H. Liu, X.-W. Zheng, A.-P. Luo, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, H. Zhang, and S.-C. Wen, “Dual-wavelength harmonically mode-locked fiber laser with topological insulator saturable absorber,” IEEE Photon. Technol. Lett. 26, 983–986 (2014).

J. Biomed. Opt. (1)

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14, 030508 (2009).
[Crossref]

J. Cataract Refract. Surg. (1)

N. Mamalis, “Femtosecond laser: the future of cataract surgery?” J. Cataract Refract. Surg. 37, 1177–1178 (2011).

J. Lightwave Technol. (1)

J. Nonlinear Opt. Phys. (1)

C. C. Lee, G. Acosta, J. S. Bunch, and T. R. Schibli, “Ultra-short optical pulse generation with single-layer graphene,” J. Nonlinear Opt. Phys. 19, 767–771 (2010).
[Crossref]

J. Phys. Soc. Jpn. (1)

Y. Ando, “Topological insulator materials,” J. Phys. Soc. Jpn. 82, 102001 (2013).
[Crossref]

Laser Phys. (1)

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3 topological insulator,” Laser Phys. 24, 105111 (2014).
[Crossref]

Laser Phys. Lett. (4)

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11, 055107 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11, 055102 (2014).
[Crossref]

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100  fs stretched-pulse 205  MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10, 105103 (2013).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7, 591–596 (2010).
[Crossref]

Mater. Express (1)

A. H. C. Neto and K. Novoselov, “Two-dimensional crystals: beyond graphene,” Mater. Express 1, 10–17 (2011).

Nano Lett. (2)

M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett. 12, 3532–3536 (2012).

W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. Gruneis, D. Haberer, R. Bozek, J. Kupka, and J. M. Baranowski, “Graphene epitaxy by chemical vapor deposition on SiC,” Nano Lett. 11, 1786–1791 (2011).

Nano Res. (2)

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4, 297–307 (2011).

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3, 653–660 (2010).

Nat. Chem. (1)

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z.-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4, 281–286 (2012).

Nat. Mater. (1)

H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, “Aharonov–Bohm interference in topological insulator nanoribbons,” Nat. Mater. 9, 225–229 (2010).

Nat. Nanotechnol. (1)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).

Nat. Phys. (1)

Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nat. Phys. 6, 584–588 (2010).
[Crossref]

Opt. Commun. (1)

A. Komarov, H. Leblond, and F. Sanchez, “Passive harmonic mode-locking in a fiber laser with nonlinear polarization rotation,” Opt. Commun. 267, 162–169 (2006).
[Crossref]

Opt. Express (17)

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene–polymer composite,” Opt. Express 20, 25077–25084 (2012).
[Crossref]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[Crossref]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

R. W. Newson, J. Dean, B. Schmidt, and H. M. van Driel, “Ultrafast carrier kinetics in exfoliated graphene and thin graphite films,” Opt. Express 17, 2326–2333 (2009).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009).
[Crossref]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18, 23054–23061 (2010).
[Crossref]

P. L. Huang, S.-C. Lin, C.-Y. Yeh, H.-H. Kuo, S.-H. Huang, G.-R. Lin, L.-J. Li, C.-Y. Su, and W.-H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20, 2460–2465 (2012).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21, 12797–12802 (2013).
[Crossref]

J. Sotor, G. Sobon, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Simultaneous mode-locking at 1565  nm and 1944  nm in fiber laser based on common graphene saturable absorber,” Opt. Express 21, 18994–19002 (2013).
[Crossref]

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22, 5536–5543 (2014).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. Luo, W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

J. Sotor, G. Sobon, and K. M. Abramski, “Sub-130  fs mode-locked Er-doped fiber laser based on topological insulator,” Opt. Express 22, 13244–13249 (2014).
[Crossref]

C. Schriber, F. Emaury, A. Diebold, S. Link, M. Golling, K. Beil, C. Kränkel, C. J. Saraceno, T. Südmeyer, and U. Keller, “Dual-gain SESAM modelocked thin disk laser based on Yb:Lu2O3 and Yb:Sc2O3,” Opt. Express 22, 18979–18986 (2014).
[Crossref]

M. Liu, X.-W. Zheng, Y.-L. Qi, H. Liu, A.-P. Luo, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, and H. Zhang, “Microfiber-based few-layer MoS2 saturable absorber for 2.5  GHz passively harmonic mode-locked fiber laser,” Opt. Express 22, 22841–22846 (2014).
[Crossref]

Opt. Lett. (7)

H. Liu, A.-P. Luo, F.-Z. Wang, R. Tang, M. Liu, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39, 4591–4594 (2014).
[Crossref]

Z.-C. Luo, M. Liu, H. Liu, X.-W. Zheng, A.-P. Luo, C.-J. Zhao, H. Zhang, S.-C. Wen, and W.-C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

C. Janisch, N. Mehta, D. Ma, A. L. Elías, N. Perea-López, M. Terrones, and Z. Liu, “Ultrashort optical pulse characterization using WS2 monolayers,” Opt. Lett. 39, 383–385 (2014).
[Crossref]

I. N. Duling, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16, 539–541 (1991).
[Crossref]

D. Stehr, C. M. Morris, C. Schmidt, and M. S. Sherwin, “High-performance fiber-laser-based terahertz spectrometer,” Opt. Lett. 35, 3799–3801 (2010).
[Crossref]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25  μm,” Opt. Lett. 36, 4089–4091 (2011).
[Crossref]

S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38, 1745–1747 (2013).
[Crossref]

Opt. Mater. Express (3)

Phys. Rev. B (1)

N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011).

Phys. Rev. Lett. (2)

D. Hsieh, F. Mahmood, J. W. McIver, D. R. Gardner, Y. S. Lee, and N. Gedik, “Selective probing of photoinduced charge and spin dynamics in the bulk and surface of a topological insulator,” Phys. Rev. Lett. 107, 077401 (2011).
[Crossref]

C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[Crossref]

Sci. Rep. (1)

J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4, 6346 (2014).
[Crossref]

Science (2)

M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin hall insulator state in HgTe quantum wells,” Science 318, 766–770 (2007).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Sensors (1)

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760  nm and 16  μm for sensing applications,” Sensors 10, 2492–2510 (2010).
[Crossref]

Other (5)

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010).

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” arXiv:1411.5777v1 (2014).

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res., doi: 10.1007/s12274-014-0637-2 (to be published).

J. Sotor, G. Sobon, J. Boguslawski, J. Tarka, K. Krzempek, and K. Abramski, “Fiber mode-locked lasers based on topological insulator saturable absorbers,” in 6th EPS-QEOD EUROPHOTON Conference Digest (European Physical Society, 2014), paper no. TuP-T1-P-10.

R. M. A. Lieth and J. C. J. M. Terhell, Transition Metal Dichalcogenides (Springer Netherlands, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Z -scan setup for power-dependent transmission measurement of free-space SA.

Fig. 2.
Fig. 2.

Typical setup for power-dependent transmission measurement of fiber-based SAs.

Fig. 3.
Fig. 3.

Different types of SAs based on nanomaterials: (a) deposited on a glass plate, (b) on a fiber connector tip, (c) on a tapered fiber, and (d) on a side-polished fiber (RI—refractive index).

Fig. 4.
Fig. 4.

Experimental setup of the TDFL with CVD-graphene/PMMA SA.

Fig. 5.
Fig. 5.

Measured power-dependent transmission of the 21-layer graphene (dotted line) together with the theoretical fit (solid red line).

Fig. 6.
Fig. 6.

Optical spectrum generated by the TDFL.

Fig. 7.
Fig. 7.

Measured RF spectrum of the TDFL.

Fig. 8.
Fig. 8.

Autocorrelation trace of the 654 fs pulse generated from the mode-locked TDFL.

Tables (3)

Tables Icon

Table 1. Summary of the Reported Fundamentally Mode-Locked Fiber Lasers with TI-Based SAs

Tables Icon

Table 2. Summary of the Reported Saturable Absorption Parameters of Monolayer Graphene

Tables Icon

Table 3. Summary of the Reported TDFLs with Graphene SA

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α ( I ) = α 0 1 + I I sat + α NS .

Metrics