Abstract

An approach to implementing optical single sideband (OSSB) polarization modulation, which is a combination of two orthogonally polarized OSSB modulations with complementary phase differences between the optical carrier and the sideband, is demonstrated based on two cascaded polarization modulators (PolMs). The two PolMs are driven by two RF signals that are 90° out of phase. By properly adjusting the polarization state between the two PolMs, OSSB polarization modulation with large operation bandwidth can be realized. An experiment is performed. OSSB polarization modulation with an operation bandwidth from 2 to 35 GHz is successfully demonstrated. The spectral profile of the OSSB polarization-modulated signal is observed through an optical spectrum analyzer, and its complementary phase properties are analyzed by sending the signal to a photodetector (PD) for square-law detection. Due to the complementary phase differences between the optical carrier and the sideband along the two polarization directions, no microwave frequency component is generated after the PD. The generated OSSB polarization-modulated signal is transmitted through 25 and 50 km single-mode fiber with 50 Mbaud 16 quadrature amplitude modulation baseband data to investigate the transmission performance of the proposed system in radio-over-fiber applications, and very small error vector magnitude degradation is observed. OSSB polarization modulation is also employed to realize a microwave photonic phase shifter. A full-range tunable phase shift is obtained for 2 and 35 GHz microwave signals.

© 2014 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [CrossRef]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [CrossRef]
  3. K.-I. Kitayama, “Architectural considerations of fiber-radio millimeter-wave wireless access systems,” Fiber Integr. Opt. 19, 167–186 (2000).
    [CrossRef]
  4. K.-I. Kitayama, “Highly spectrum efficient OFDM/PDM wireless networks by using optical SSB modulation,” J. Lightwave Technol. 16, 969–976 (1998).
    [CrossRef]
  5. G. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74–75 (1997).
    [CrossRef]
  6. T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett. 16, 1534–1536 (2004).
    [CrossRef]
  7. M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17, 2225–2227 (1981).
    [CrossRef]
  8. S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13, 364–366 (2001).
    [CrossRef]
  9. B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Technol. Lett. 10, 600–602 (1998).
    [CrossRef]
  10. M. Zhou, A. Sharma, Z. Shao, and M. Fujise, “Optical single-sideband modulation at 60  GHz using electro-absorption modulators,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 121–124.
  11. A. Loayssa, R. Hernández, and D. Benito, “Optical single-sideband modulators and their applications,” Fiber Integr. Opt. 23, 171–188 (2004).
    [CrossRef]
  12. J. Park, W. Sorin, and K. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550  nm millimeter-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
    [CrossRef]
  13. S. Blais and J. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230–2232 (2006).
    [CrossRef]
  14. J. Capmany, B. Ortega, A. Martinez, D. Pastor, M. Popov, and P. Y. Fonjallaz, “Multiwavelength single sideband modulation for WDM radio-over-fiber systems using a fiber grating array tandem device,” IEEE Photon. Technol. Lett. 17, 471–473 (2005).
    [CrossRef]
  15. Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
    [CrossRef]
  16. A. A. Savchenkov, W. Liang, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical single-sideband modulator with complete sideband suppression,” Opt. Lett. 34, 1300–1303 (2009).
    [CrossRef]
  17. W. Li, N. Zhu, and L. Wang, “Perfectly orthogonal optical single-sideband signal generation based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 751–753 (2012).
    [CrossRef]
  18. J. Fu, S. Pan, M. Huang, and R. Guo, “Photonic microwave bandpass filter based on optical single-sideband polarization modulation for long-reach radio over fiber applications,” in International Topical Meeting on Microwave Photonics (IEEE, 2012), pp. 144–147.
  19. S. Pan and Y. Zhang, “A tunable and wideband microwave photonic phase shifter based on a single sideband polarization modulator and a polarizer,” Opt. Lett. 37, 4483–4485 (2012).
    [CrossRef]
  20. Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38, 766–768 (2013).
    [CrossRef]
  21. Y. Zhang and S. Pan, “A tunable and dispersion-insensitive microwave photonic filter,” Sci. China Ser. B 56, 603–607 (2013).
    [CrossRef]
  22. Y. Zhang and S. Pan, “Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photon. Technol. Lett. 25, 187–189 (2013).
    [CrossRef]
  23. Y. Zhang and S. Pan, “Tunable multi-tap microwave photonic filter with all complex coefficients,” Opt. Lett. 38, 802–804 (2013).
    [CrossRef]
  24. Y. Zhang, H. Wu, D. Zhu, and S. Pan, “An optically controlled phased array antenna based on single sideband polarization modulation,” Opt. Express 22, 3761–3765 (2014).
    [CrossRef]
  25. Y. Zhang, F. Zhang, and S. Pan, “Optical single sideband modulation with tunable optical carrier-to-sideband ratio,” IEEE Photon. Technol. Lett. 26, 653–655 (2014).
    [CrossRef]
  26. C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theor. Tech. 54, 2181–2187 (2006).
    [CrossRef]

2014 (2)

Y. Zhang, F. Zhang, and S. Pan, “Optical single sideband modulation with tunable optical carrier-to-sideband ratio,” IEEE Photon. Technol. Lett. 26, 653–655 (2014).
[CrossRef]

Y. Zhang, H. Wu, D. Zhu, and S. Pan, “An optically controlled phased array antenna based on single sideband polarization modulation,” Opt. Express 22, 3761–3765 (2014).
[CrossRef]

2013 (4)

Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38, 766–768 (2013).
[CrossRef]

Y. Zhang and S. Pan, “Tunable multi-tap microwave photonic filter with all complex coefficients,” Opt. Lett. 38, 802–804 (2013).
[CrossRef]

Y. Zhang and S. Pan, “A tunable and dispersion-insensitive microwave photonic filter,” Sci. China Ser. B 56, 603–607 (2013).
[CrossRef]

Y. Zhang and S. Pan, “Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photon. Technol. Lett. 25, 187–189 (2013).
[CrossRef]

2012 (2)

W. Li, N. Zhu, and L. Wang, “Perfectly orthogonal optical single-sideband signal generation based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 751–753 (2012).
[CrossRef]

S. Pan and Y. Zhang, “A tunable and wideband microwave photonic phase shifter based on a single sideband polarization modulator and a polarizer,” Opt. Lett. 37, 4483–4485 (2012).
[CrossRef]

2009 (2)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

2006 (2)

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theor. Tech. 54, 2181–2187 (2006).
[CrossRef]

S. Blais and J. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230–2232 (2006).
[CrossRef]

2005 (2)

J. Capmany, B. Ortega, A. Martinez, D. Pastor, M. Popov, and P. Y. Fonjallaz, “Multiwavelength single sideband modulation for WDM radio-over-fiber systems using a fiber grating array tandem device,” IEEE Photon. Technol. Lett. 17, 471–473 (2005).
[CrossRef]

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
[CrossRef]

2004 (2)

A. Loayssa, R. Hernández, and D. Benito, “Optical single-sideband modulators and their applications,” Fiber Integr. Opt. 23, 171–188 (2004).
[CrossRef]

T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett. 16, 1534–1536 (2004).
[CrossRef]

2001 (1)

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13, 364–366 (2001).
[CrossRef]

2000 (1)

K.-I. Kitayama, “Architectural considerations of fiber-radio millimeter-wave wireless access systems,” Fiber Integr. Opt. 19, 167–186 (2000).
[CrossRef]

1998 (2)

K.-I. Kitayama, “Highly spectrum efficient OFDM/PDM wireless networks by using optical SSB modulation,” J. Lightwave Technol. 16, 969–976 (1998).
[CrossRef]

B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Technol. Lett. 10, 600–602 (1998).
[CrossRef]

1997 (2)

J. Park, W. Sorin, and K. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550  nm millimeter-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
[CrossRef]

G. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74–75 (1997).
[CrossRef]

1981 (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17, 2225–2227 (1981).
[CrossRef]

Ahmed, Z.

G. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74–75 (1997).
[CrossRef]

Attygalle, M.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theor. Tech. 54, 2181–2187 (2006).
[CrossRef]

Benito, D.

A. Loayssa, R. Hernández, and D. Benito, “Optical single-sideband modulators and their applications,” Fiber Integr. Opt. 23, 171–188 (2004).
[CrossRef]

Blais, S.

S. Blais and J. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230–2232 (2006).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

J. Capmany, B. Ortega, A. Martinez, D. Pastor, M. Popov, and P. Y. Fonjallaz, “Multiwavelength single sideband modulation for WDM radio-over-fiber systems using a fiber grating array tandem device,” IEEE Photon. Technol. Lett. 17, 471–473 (2005).
[CrossRef]

Chen, K.

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
[CrossRef]

Conradi, J.

B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Technol. Lett. 10, 600–602 (1998).
[CrossRef]

Davies, B.

B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Technol. Lett. 10, 600–602 (1998).
[CrossRef]

Fonjallaz, P. Y.

J. Capmany, B. Ortega, A. Martinez, D. Pastor, M. Popov, and P. Y. Fonjallaz, “Multiwavelength single sideband modulation for WDM radio-over-fiber systems using a fiber grating array tandem device,” IEEE Photon. Technol. Lett. 17, 471–473 (2005).
[CrossRef]

Fu, J.

J. Fu, S. Pan, M. Huang, and R. Guo, “Photonic microwave bandpass filter based on optical single-sideband polarization modulation for long-reach radio over fiber applications,” in International Topical Meeting on Microwave Photonics (IEEE, 2012), pp. 144–147.

Fujise, M.

M. Zhou, A. Sharma, Z. Shao, and M. Fujise, “Optical single-sideband modulation at 60  GHz using electro-absorption modulators,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 121–124.

Guo, R.

J. Fu, S. Pan, M. Huang, and R. Guo, “Photonic microwave bandpass filter based on optical single-sideband polarization modulation for long-reach radio over fiber applications,” in International Topical Meeting on Microwave Photonics (IEEE, 2012), pp. 144–147.

Hernández, R.

A. Loayssa, R. Hernández, and D. Benito, “Optical single-sideband modulators and their applications,” Fiber Integr. Opt. 23, 171–188 (2004).
[CrossRef]

Huang, M.

J. Fu, S. Pan, M. Huang, and R. Guo, “Photonic microwave bandpass filter based on optical single-sideband polarization modulation for long-reach radio over fiber applications,” in International Topical Meeting on Microwave Photonics (IEEE, 2012), pp. 144–147.

Ilchenko, V. S.

Izutsu, M.

T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett. 16, 1534–1536 (2004).
[CrossRef]

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13, 364–366 (2001).
[CrossRef]

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17, 2225–2227 (1981).
[CrossRef]

Kawanishi, T.

T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett. 16, 1534–1536 (2004).
[CrossRef]

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13, 364–366 (2001).
[CrossRef]

Kitayama, K.-I.

K.-I. Kitayama, “Architectural considerations of fiber-radio millimeter-wave wireless access systems,” Fiber Integr. Opt. 19, 167–186 (2000).
[CrossRef]

K.-I. Kitayama, “Highly spectrum efficient OFDM/PDM wireless networks by using optical SSB modulation,” J. Lightwave Technol. 16, 969–976 (1998).
[CrossRef]

Kubodera, K.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13, 364–366 (2001).
[CrossRef]

Lau, K.

J. Park, W. Sorin, and K. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550  nm millimeter-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
[CrossRef]

Li, W.

W. Li, N. Zhu, and L. Wang, “Perfectly orthogonal optical single-sideband signal generation based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 751–753 (2012).
[CrossRef]

Liang, W.

Lim, C.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theor. Tech. 54, 2181–2187 (2006).
[CrossRef]

Loayssa, A.

A. Loayssa, R. Hernández, and D. Benito, “Optical single-sideband modulators and their applications,” Fiber Integr. Opt. 23, 171–188 (2004).
[CrossRef]

Maleki, L.

Martinez, A.

J. Capmany, B. Ortega, A. Martinez, D. Pastor, M. Popov, and P. Y. Fonjallaz, “Multiwavelength single sideband modulation for WDM radio-over-fiber systems using a fiber grating array tandem device,” IEEE Photon. Technol. Lett. 17, 471–473 (2005).
[CrossRef]

Matsko, A. B.

Mitsugi, N.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13, 364–366 (2001).
[CrossRef]

Nirmalathas, A.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theor. Tech. 54, 2181–2187 (2006).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theor. Tech. 54, 2181–2187 (2006).
[CrossRef]

G. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74–75 (1997).
[CrossRef]

Oikawa, S.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13, 364–366 (2001).
[CrossRef]

Ortega, B.

J. Capmany, B. Ortega, A. Martinez, D. Pastor, M. Popov, and P. Y. Fonjallaz, “Multiwavelength single sideband modulation for WDM radio-over-fiber systems using a fiber grating array tandem device,” IEEE Photon. Technol. Lett. 17, 471–473 (2005).
[CrossRef]

Pan, S.

Y. Zhang, F. Zhang, and S. Pan, “Optical single sideband modulation with tunable optical carrier-to-sideband ratio,” IEEE Photon. Technol. Lett. 26, 653–655 (2014).
[CrossRef]

Y. Zhang, H. Wu, D. Zhu, and S. Pan, “An optically controlled phased array antenna based on single sideband polarization modulation,” Opt. Express 22, 3761–3765 (2014).
[CrossRef]

Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38, 766–768 (2013).
[CrossRef]

Y. Zhang and S. Pan, “Tunable multi-tap microwave photonic filter with all complex coefficients,” Opt. Lett. 38, 802–804 (2013).
[CrossRef]

Y. Zhang and S. Pan, “Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photon. Technol. Lett. 25, 187–189 (2013).
[CrossRef]

Y. Zhang and S. Pan, “A tunable and dispersion-insensitive microwave photonic filter,” Sci. China Ser. B 56, 603–607 (2013).
[CrossRef]

S. Pan and Y. Zhang, “A tunable and wideband microwave photonic phase shifter based on a single sideband polarization modulator and a polarizer,” Opt. Lett. 37, 4483–4485 (2012).
[CrossRef]

J. Fu, S. Pan, M. Huang, and R. Guo, “Photonic microwave bandpass filter based on optical single-sideband polarization modulation for long-reach radio over fiber applications,” in International Topical Meeting on Microwave Photonics (IEEE, 2012), pp. 144–147.

Park, J.

J. Park, W. Sorin, and K. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550  nm millimeter-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
[CrossRef]

Pastor, D.

J. Capmany, B. Ortega, A. Martinez, D. Pastor, M. Popov, and P. Y. Fonjallaz, “Multiwavelength single sideband modulation for WDM radio-over-fiber systems using a fiber grating array tandem device,” IEEE Photon. Technol. Lett. 17, 471–473 (2005).
[CrossRef]

Popov, M.

J. Capmany, B. Ortega, A. Martinez, D. Pastor, M. Popov, and P. Y. Fonjallaz, “Multiwavelength single sideband modulation for WDM radio-over-fiber systems using a fiber grating array tandem device,” IEEE Photon. Technol. Lett. 17, 471–473 (2005).
[CrossRef]

Saitou, T.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13, 364–366 (2001).
[CrossRef]

Savchenkov, A. A.

Seidel, D.

Shao, Z.

M. Zhou, A. Sharma, Z. Shao, and M. Fujise, “Optical single-sideband modulation at 60  GHz using electro-absorption modulators,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 121–124.

Sharma, A.

M. Zhou, A. Sharma, Z. Shao, and M. Fujise, “Optical single-sideband modulation at 60  GHz using electro-absorption modulators,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 121–124.

Shen, Y.

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
[CrossRef]

Shikama, S.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17, 2225–2227 (1981).
[CrossRef]

Shimotsu, S.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13, 364–366 (2001).
[CrossRef]

Smith, G.

G. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74–75 (1997).
[CrossRef]

Sorin, W.

J. Park, W. Sorin, and K. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550  nm millimeter-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
[CrossRef]

Sueta, T.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17, 2225–2227 (1981).
[CrossRef]

Wang, L.

W. Li, N. Zhu, and L. Wang, “Perfectly orthogonal optical single-sideband signal generation based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 751–753 (2012).
[CrossRef]

Waterhouse, R.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theor. Tech. 54, 2181–2187 (2006).
[CrossRef]

Wu, H.

Yao, J.

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[CrossRef]

S. Blais and J. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230–2232 (2006).
[CrossRef]

Zhang, F.

Y. Zhang, F. Zhang, and S. Pan, “Optical single sideband modulation with tunable optical carrier-to-sideband ratio,” IEEE Photon. Technol. Lett. 26, 653–655 (2014).
[CrossRef]

Zhang, X.

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
[CrossRef]

Zhang, Y.

Zhou, M.

M. Zhou, A. Sharma, Z. Shao, and M. Fujise, “Optical single-sideband modulation at 60  GHz using electro-absorption modulators,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 121–124.

Zhu, D.

Zhu, N.

W. Li, N. Zhu, and L. Wang, “Perfectly orthogonal optical single-sideband signal generation based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 751–753 (2012).
[CrossRef]

Electron. Lett. (2)

J. Park, W. Sorin, and K. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550  nm millimeter-wave optical transmission,” Electron. Lett. 33, 512–513 (1997).
[CrossRef]

G. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74–75 (1997).
[CrossRef]

Fiber Integr. Opt. (2)

A. Loayssa, R. Hernández, and D. Benito, “Optical single-sideband modulators and their applications,” Fiber Integr. Opt. 23, 171–188 (2004).
[CrossRef]

K.-I. Kitayama, “Architectural considerations of fiber-radio millimeter-wave wireless access systems,” Fiber Integr. Opt. 19, 167–186 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17, 2225–2227 (1981).
[CrossRef]

IEEE Photon. Technol. Lett. (9)

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13, 364–366 (2001).
[CrossRef]

B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Technol. Lett. 10, 600–602 (1998).
[CrossRef]

S. Blais and J. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230–2232 (2006).
[CrossRef]

J. Capmany, B. Ortega, A. Martinez, D. Pastor, M. Popov, and P. Y. Fonjallaz, “Multiwavelength single sideband modulation for WDM radio-over-fiber systems using a fiber grating array tandem device,” IEEE Photon. Technol. Lett. 17, 471–473 (2005).
[CrossRef]

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
[CrossRef]

W. Li, N. Zhu, and L. Wang, “Perfectly orthogonal optical single-sideband signal generation based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24, 751–753 (2012).
[CrossRef]

Y. Zhang, F. Zhang, and S. Pan, “Optical single sideband modulation with tunable optical carrier-to-sideband ratio,” IEEE Photon. Technol. Lett. 26, 653–655 (2014).
[CrossRef]

T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett. 16, 1534–1536 (2004).
[CrossRef]

Y. Zhang and S. Pan, “Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photon. Technol. Lett. 25, 187–189 (2013).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theor. Tech. 54, 2181–2187 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Sci. China Ser. B (1)

Y. Zhang and S. Pan, “A tunable and dispersion-insensitive microwave photonic filter,” Sci. China Ser. B 56, 603–607 (2013).
[CrossRef]

Other (2)

J. Fu, S. Pan, M. Huang, and R. Guo, “Photonic microwave bandpass filter based on optical single-sideband polarization modulation for long-reach radio over fiber applications,” in International Topical Meeting on Microwave Photonics (IEEE, 2012), pp. 144–147.

M. Zhou, A. Sharma, Z. Shao, and M. Fujise, “Optical single-sideband modulation at 60  GHz using electro-absorption modulators,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 121–124.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed configuration to implement OSSB polarization modulation. OSA, optical spectrum analyzer.

Fig. 2.
Fig. 2.

(a) Optical spectrum of the generated OSSB polarization-modulated signal after PolM2 and (b) sideband suppression ratios of the OSSB modulated signals when the frequency of the RF signal is varied from 12.5 to 35 GHz.

Fig. 3.
Fig. 3.

Sideband suppression ratios of the OSSB polarization-modulated signal when γ1=0.4488 while γ2 changes from 0 to 3.

Fig. 4.
Fig. 4.

Sideband suppression ratios of the OSSB modulated signals when the phase difference between the two electrical drive signals changes from 0° to 180°.

Fig. 5.
Fig. 5.

Electrical spectra (a) when the OSSB signal is directed straight to the PD and (b) when a polarizer is inserted before the PD.

Fig. 6.
Fig. 6.

Optical spectra of the OSSB polarization-modulated signals at different wavelengths.

Fig. 7.
Fig. 7.

Electrical spectra and constellation diagrams of (a), (b) input and output 10 GHz microwave signal with 50 Mbaud 16 QAM baseband data after (c), (d) 25 km and (e), (f) 50 km fiber transmission.

Fig. 8.
Fig. 8.

Schematic diagram of the microwave photonic phase shifter based on the proposed OSSB PolM. Pol, polarizer.

Fig. 9.
Fig. 9.

Phase responses of the microwave photonic phase shifter based on the proposed OSSB PolM when the frequency changes.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

EPolM1[expj(ωt+γ1cosωmt)expj(ωtγ1cosωmt+φ)],
EPolM1[J1(γ1)expj(ωtωmt+π2)+J0(γ1)exp(jωt)+J1(γ1)expj(ωt+ωmt+π2)J1(γ1)expj(ωtωmtπ2+φ)+J0(γ1)expj(ωt+φ)+J1(γ1)expj(ωt+ωmtπ2+φ)],
EPC2[J1(γ1)expj(ωtωmt+π4)+J0(γ1)expj(ωt+π4)+J1(γ1)expj(ωt+ωmt+π4)J1(γ1)expj(ωtωmtπ4)+J0(γ1)expj(ωt+3π4)+J1(γ1)expj(ωt+ωmtπ4)].
EPolM2=[(J1(γ1)J0(γ2)+J1(γ2)J0(γ1))expj(ωtωmt+π4)+J0(γ1)J0(γ2)expj(ωt+π4)+(J1(γ1)J0(γ2)J1(γ2)J0(γ1))expj(ωt+ωmt+π4)(J1(γ1)J0(γ2)+J1(γ2)J0(γ1))expj(ωtωmtπ4)+J0(γ1)J0(γ2)expj(ωt+3π4)+(J1(γ1)J0(γ2)J1(γ2)J0(γ1))expj(ωt+ωmtπ4)],
EPolM2[2J1(γ)J0(γ)expj(ωtωmt+π4)+J02(γ)expj(ωt+π4)2J1(γ)J0(γ)expj(ωtωmtπ4)+J02(γ)expj(ωt+3π4)].
Epol=J02(γ)exp(j(ωt+π4)+jα)+2J1(γ)J0(γ)exp(j(ωtωmt+π4)jα).
I(t)2J03(γ)J1(γ)cos(ωmt+2α).

Metrics