Abstract

Three-dimensional (3D) terahertz (THz) imaging or THz tomography has recently proven to be useful for nondestructive testing of industrial materials and structures. In place of previous imaging techniques such as THz pulsed/continuous-wave radar and THz computed tomography, we propose a THz optical coherence tomography using photonics- and electronics-based THz sources, and demonstrate thickness measurement and tomographic imaging in frequency regions from 400 to 800 GHz.

© 2014 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
    [CrossRef]
  2. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
    [CrossRef]
  3. K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. Terahertz Sci. Technol. 1, 293–300 (2011).
  4. A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thickness using terahertz pulsed imaging,” J. Pharm. Sci. 94, 177–183 (2005).
    [CrossRef]
  5. J. Takayanagi, H. Jinno, S. Ichino, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “High-resolution time-of-flight terahertz tomography using a femtosecond fiber laser,” Opt. Express 17, 7533–7539 (2009).
    [CrossRef]
  6. X.-X. Yin, B. W.-H. Ng, B. Ferguson, S. P. Mickan, and D. Abbott, “2-D wavelet segmentation in 3-D T-ray tomography,” IEEE Sens. J. 7, 342–343 (2007).
    [CrossRef]
  7. B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
    [CrossRef]
  8. M. Imamura, S. Nishina, A. Irisawa, T. Yamashita, and E. Kato, “3D imaging and analysis system using terahertz waves,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2010), paper We-B3.1.
  9. H. Quast and T. Loeffler, “3D-terahertz-tomography for material inspection and security,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2009), paper T3D02.0311.
  10. H. Quast, A. Keil, T. Hoyer, and T. Loeffler, “All-electronic 3D terahertz imaging for the NDT of composites,” in Proceedings of the 2nd International Symposium on NDT in Aerospace (Singapore Institute of Manufacturing Technology, 2010), paper We.4.B.3.
  11. K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllent, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theor. Tech. 56, 2771–2778 (2008).
    [CrossRef]
  12. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  13. T. Isogawa, T. Kumashiro, H.-J. Song, K. Ajito, N. Kukutsu, K. Iwatsuki, and T. Nagatsuma, “Tomographic imaging using photonically generated low-coherence terahertz noise sources,” IEEE. Trans. Terahertz Sci. Technol. 2, 485–492 (2012).
    [CrossRef]
  14. T. Nagatsuma, T. Kumashiro, Y. Fujimoto, K. Taniguchi, K. Ajito, N. Kukutsu, T. Furuta, A. Wakatsuki, and Y. Kado, “Millimeter-wave imaging using photonics-based noise source,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2009), paper M3C05.
  15. T. Ikeou, T. Isogawa, K. Ajito, N. Kukutsu, and T. Nagatsuma, “Terahertz imaging using swept source optical-coherence-tomography techniques,” in International Topical Meeting on Microwave Photonics (IEEE, 2012), paper session 8-4.
  16. T. Nagatsuma, T. Ikeo, and H. Nishii, “Terahertz imaging based on optical coherence tomography,” in 21st International Conference on Applied Electromagnetics and Communications (2013).
  17. T. Nagatsuma and H. Ito, “High-power RF uni-traveling-carrier photodiodes (UTC-PDs) and their applications,” in Advances in Photodiodes, G. F. Dalla Betta, ed. (InTech, 2011).
  18. T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Continuous THz wave generation by photodiodes up to 2.5  THz,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2013), paper We2-5.
  19. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
    [CrossRef]
  20. H.-C. Ryu, N. Kim, S.-P. Han, H. Ko, J.-W. Park, K. Moon, and K. H. Park, “Simple and cost-effective thickness measurement terahertz system based on a compact 1.55  μm λ/4 phase-shifted dual-mode laser,” Opt. Express 20, 25990–25999 (2012).
    [CrossRef]
  21. S. Hisatake, G. Kitahara, N. Kukutsu, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
    [CrossRef]
  22. http://vadiodes.com/index.php/en/products/vector-network-analyzer .
  23. L. Moeller, J. F. Federici, and K. Su, “THz wireless communications: 2.5  Gb/s error-free transmission at 625  GHz using a narrow-bandwidth 1  mW THz source,” in URSI General Assembly and Scientific Symposium (Turkey, 2011), paper DAF2–7.
  24. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz communications based on photonics technologies,” Opt. Express 21, 23736–23748 (2013).
    [CrossRef]

2013 (2)

S. Hisatake, G. Kitahara, N. Kukutsu, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
[CrossRef]

T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz communications based on photonics technologies,” Opt. Express 21, 23736–23748 (2013).
[CrossRef]

2012 (2)

H.-C. Ryu, N. Kim, S.-P. Han, H. Ko, J.-W. Park, K. Moon, and K. H. Park, “Simple and cost-effective thickness measurement terahertz system based on a compact 1.55  μm λ/4 phase-shifted dual-mode laser,” Opt. Express 20, 25990–25999 (2012).
[CrossRef]

T. Isogawa, T. Kumashiro, H.-J. Song, K. Ajito, N. Kukutsu, K. Iwatsuki, and T. Nagatsuma, “Tomographic imaging using photonically generated low-coherence terahertz noise sources,” IEEE. Trans. Terahertz Sci. Technol. 2, 485–492 (2012).
[CrossRef]

2011 (2)

2009 (1)

2008 (1)

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllent, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theor. Tech. 56, 2771–2778 (2008).
[CrossRef]

2007 (2)

X.-X. Yin, B. W.-H. Ng, B. Ferguson, S. P. Mickan, and D. Abbott, “2-D wavelet segmentation in 3-D T-ray tomography,” IEEE Sens. J. 7, 342–343 (2007).
[CrossRef]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

2005 (1)

A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thickness using terahertz pulsed imaging,” J. Pharm. Sci. 94, 177–183 (2005).
[CrossRef]

2003 (1)

1995 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Abbott, D.

X.-X. Yin, B. W.-H. Ng, B. Ferguson, S. P. Mickan, and D. Abbott, “2-D wavelet segmentation in 3-D T-ray tomography,” IEEE Sens. J. 7, 342–343 (2007).
[CrossRef]

Abraham, E.

Ajito, K.

T. Isogawa, T. Kumashiro, H.-J. Song, K. Ajito, N. Kukutsu, K. Iwatsuki, and T. Nagatsuma, “Tomographic imaging using photonically generated low-coherence terahertz noise sources,” IEEE. Trans. Terahertz Sci. Technol. 2, 485–492 (2012).
[CrossRef]

K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. Terahertz Sci. Technol. 1, 293–300 (2011).

T. Nagatsuma, T. Kumashiro, Y. Fujimoto, K. Taniguchi, K. Ajito, N. Kukutsu, T. Furuta, A. Wakatsuki, and Y. Kado, “Millimeter-wave imaging using photonics-based noise source,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2009), paper M3C05.

T. Ikeou, T. Isogawa, K. Ajito, N. Kukutsu, and T. Nagatsuma, “Terahertz imaging using swept source optical-coherence-tomography techniques,” in International Topical Meeting on Microwave Photonics (IEEE, 2012), paper session 8-4.

Bouma, B. E.

Bryllent, T.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllent, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theor. Tech. 56, 2771–2778 (2008).
[CrossRef]

Caumes, J.-P.

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chassagne, B.

Chattopadhyay, G.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllent, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theor. Tech. 56, 2771–2778 (2008).
[CrossRef]

Cole, B. E.

A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thickness using terahertz pulsed imaging,” J. Pharm. Sci. 94, 177–183 (2005).
[CrossRef]

Cooper, K. B.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllent, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theor. Tech. 56, 2771–2778 (2008).
[CrossRef]

de Boer, J. F.

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Dengler, R. J.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllent, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theor. Tech. 56, 2771–2778 (2008).
[CrossRef]

Desbarats, P.

Federici, J. F.

L. Moeller, J. F. Federici, and K. Su, “THz wireless communications: 2.5  Gb/s error-free transmission at 625  GHz using a narrow-bandwidth 1  mW THz source,” in URSI General Assembly and Scientific Symposium (Turkey, 2011), paper DAF2–7.

Ferguson, B.

X.-X. Yin, B. W.-H. Ng, B. Ferguson, S. P. Mickan, and D. Abbott, “2-D wavelet segmentation in 3-D T-ray tomography,” IEEE Sens. J. 7, 342–343 (2007).
[CrossRef]

Fitzgerald, A. J.

A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thickness using terahertz pulsed imaging,” J. Pharm. Sci. 94, 177–183 (2005).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Fujimoto, Y.

T. Nagatsuma, T. Kumashiro, Y. Fujimoto, K. Taniguchi, K. Ajito, N. Kukutsu, T. Furuta, A. Wakatsuki, and Y. Kado, “Millimeter-wave imaging using photonics-based noise source,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2009), paper M3C05.

Fukada, Y.

S. Hisatake, G. Kitahara, N. Kukutsu, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
[CrossRef]

Furuta, T.

T. Nagatsuma, T. Kumashiro, Y. Fujimoto, K. Taniguchi, K. Ajito, N. Kukutsu, T. Furuta, A. Wakatsuki, and Y. Kado, “Millimeter-wave imaging using photonics-based noise source,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2009), paper M3C05.

Gill, J.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllent, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theor. Tech. 56, 2771–2778 (2008).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Han, S.-P.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hisatake, S.

T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz communications based on photonics technologies,” Opt. Express 21, 23736–23748 (2013).
[CrossRef]

S. Hisatake, G. Kitahara, N. Kukutsu, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
[CrossRef]

Horiguchi, S.

Hoyer, T.

H. Quast, A. Keil, T. Hoyer, and T. Loeffler, “All-electronic 3D terahertz imaging for the NDT of composites,” in Proceedings of the 2nd International Symposium on NDT in Aerospace (Singapore Institute of Manufacturing Technology, 2010), paper We.4.B.3.

Hu, B. B.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Ichino, S.

Iftimia, N.

Ikeo, T.

T. Nagatsuma, T. Ikeo, and H. Nishii, “Terahertz imaging based on optical coherence tomography,” in 21st International Conference on Applied Electromagnetics and Communications (2013).

Ikeou, T.

T. Ikeou, T. Isogawa, K. Ajito, N. Kukutsu, and T. Nagatsuma, “Terahertz imaging using swept source optical-coherence-tomography techniques,” in International Topical Meeting on Microwave Photonics (IEEE, 2012), paper session 8-4.

Imamura, M.

M. Imamura, S. Nishina, A. Irisawa, T. Yamashita, and E. Kato, “3D imaging and analysis system using terahertz waves,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2010), paper We-B3.1.

Irisawa, A.

M. Imamura, S. Nishina, A. Irisawa, T. Yamashita, and E. Kato, “3D imaging and analysis system using terahertz waves,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2010), paper We-B3.1.

Ishibashi, T.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Continuous THz wave generation by photodiodes up to 2.5  THz,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2013), paper We2-5.

Isogawa, T.

T. Isogawa, T. Kumashiro, H.-J. Song, K. Ajito, N. Kukutsu, K. Iwatsuki, and T. Nagatsuma, “Tomographic imaging using photonically generated low-coherence terahertz noise sources,” IEEE. Trans. Terahertz Sci. Technol. 2, 485–492 (2012).
[CrossRef]

T. Ikeou, T. Isogawa, K. Ajito, N. Kukutsu, and T. Nagatsuma, “Terahertz imaging using swept source optical-coherence-tomography techniques,” in International Topical Meeting on Microwave Photonics (IEEE, 2012), paper session 8-4.

Ito, H.

T. Nagatsuma and H. Ito, “High-power RF uni-traveling-carrier photodiodes (UTC-PDs) and their applications,” in Advances in Photodiodes, G. F. Dalla Betta, ed. (InTech, 2011).

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Continuous THz wave generation by photodiodes up to 2.5  THz,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2013), paper We2-5.

Iwatsuki, K.

T. Isogawa, T. Kumashiro, H.-J. Song, K. Ajito, N. Kukutsu, K. Iwatsuki, and T. Nagatsuma, “Tomographic imaging using photonically generated low-coherence terahertz noise sources,” IEEE. Trans. Terahertz Sci. Technol. 2, 485–492 (2012).
[CrossRef]

Jinno, H.

Kado, Y.

T. Nagatsuma, T. Kumashiro, Y. Fujimoto, K. Taniguchi, K. Ajito, N. Kukutsu, T. Furuta, A. Wakatsuki, and Y. Kado, “Millimeter-wave imaging using photonics-based noise source,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2009), paper M3C05.

Kasai, S.

Kato, E.

M. Imamura, S. Nishina, A. Irisawa, T. Yamashita, and E. Kato, “3D imaging and analysis system using terahertz waves,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2010), paper We-B3.1.

Kawase, K.

Keil, A.

H. Quast, A. Keil, T. Hoyer, and T. Loeffler, “All-electronic 3D terahertz imaging for the NDT of composites,” in Proceedings of the 2nd International Symposium on NDT in Aerospace (Singapore Institute of Manufacturing Technology, 2010), paper We.4.B.3.

Kim, N.

Kitahara, G.

S. Hisatake, G. Kitahara, N. Kukutsu, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
[CrossRef]

Ko, H.

Kukutsu, N.

S. Hisatake, G. Kitahara, N. Kukutsu, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
[CrossRef]

T. Isogawa, T. Kumashiro, H.-J. Song, K. Ajito, N. Kukutsu, K. Iwatsuki, and T. Nagatsuma, “Tomographic imaging using photonically generated low-coherence terahertz noise sources,” IEEE. Trans. Terahertz Sci. Technol. 2, 485–492 (2012).
[CrossRef]

T. Nagatsuma, T. Kumashiro, Y. Fujimoto, K. Taniguchi, K. Ajito, N. Kukutsu, T. Furuta, A. Wakatsuki, and Y. Kado, “Millimeter-wave imaging using photonics-based noise source,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2009), paper M3C05.

T. Ikeou, T. Isogawa, K. Ajito, N. Kukutsu, and T. Nagatsuma, “Terahertz imaging using swept source optical-coherence-tomography techniques,” in International Topical Meeting on Microwave Photonics (IEEE, 2012), paper session 8-4.

Kumashiro, T.

T. Isogawa, T. Kumashiro, H.-J. Song, K. Ajito, N. Kukutsu, K. Iwatsuki, and T. Nagatsuma, “Tomographic imaging using photonically generated low-coherence terahertz noise sources,” IEEE. Trans. Terahertz Sci. Technol. 2, 485–492 (2012).
[CrossRef]

T. Nagatsuma, T. Kumashiro, Y. Fujimoto, K. Taniguchi, K. Ajito, N. Kukutsu, T. Furuta, A. Wakatsuki, and Y. Kado, “Millimeter-wave imaging using photonics-based noise source,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2009), paper M3C05.

Kuwano, S.

Lee, C.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllent, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theor. Tech. 56, 2771–2778 (2008).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Llombart, N.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllent, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theor. Tech. 56, 2771–2778 (2008).
[CrossRef]

Loeffler, T.

H. Quast, A. Keil, T. Hoyer, and T. Loeffler, “All-electronic 3D terahertz imaging for the NDT of composites,” in Proceedings of the 2nd International Symposium on NDT in Aerospace (Singapore Institute of Manufacturing Technology, 2010), paper We.4.B.3.

H. Quast and T. Loeffler, “3D-terahertz-tomography for material inspection and security,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2009), paper T3D02.0311.

Mehdi, I.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllent, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theor. Tech. 56, 2771–2778 (2008).
[CrossRef]

Mickan, S. P.

X.-X. Yin, B. W.-H. Ng, B. Ferguson, S. P. Mickan, and D. Abbott, “2-D wavelet segmentation in 3-D T-ray tomography,” IEEE Sens. J. 7, 342–343 (2007).
[CrossRef]

Minamikata, Y.

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Moeller, L.

L. Moeller, J. F. Federici, and K. Su, “THz wireless communications: 2.5  Gb/s error-free transmission at 625  GHz using a narrow-bandwidth 1  mW THz source,” in URSI General Assembly and Scientific Symposium (Turkey, 2011), paper DAF2–7.

Moon, K.

Mounaix, P.

Muramoto, Y.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Continuous THz wave generation by photodiodes up to 2.5  THz,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2013), paper We2-5.

Nagatsuma, T.

T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz communications based on photonics technologies,” Opt. Express 21, 23736–23748 (2013).
[CrossRef]

S. Hisatake, G. Kitahara, N. Kukutsu, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
[CrossRef]

T. Isogawa, T. Kumashiro, H.-J. Song, K. Ajito, N. Kukutsu, K. Iwatsuki, and T. Nagatsuma, “Tomographic imaging using photonically generated low-coherence terahertz noise sources,” IEEE. Trans. Terahertz Sci. Technol. 2, 485–492 (2012).
[CrossRef]

T. Nagatsuma, T. Ikeo, and H. Nishii, “Terahertz imaging based on optical coherence tomography,” in 21st International Conference on Applied Electromagnetics and Communications (2013).

T. Nagatsuma, T. Kumashiro, Y. Fujimoto, K. Taniguchi, K. Ajito, N. Kukutsu, T. Furuta, A. Wakatsuki, and Y. Kado, “Millimeter-wave imaging using photonics-based noise source,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2009), paper M3C05.

T. Ikeou, T. Isogawa, K. Ajito, N. Kukutsu, and T. Nagatsuma, “Terahertz imaging using swept source optical-coherence-tomography techniques,” in International Topical Meeting on Microwave Photonics (IEEE, 2012), paper session 8-4.

T. Nagatsuma and H. Ito, “High-power RF uni-traveling-carrier photodiodes (UTC-PDs) and their applications,” in Advances in Photodiodes, G. F. Dalla Betta, ed. (InTech, 2011).

Ng, B. W.-H.

X.-X. Yin, B. W.-H. Ng, B. Ferguson, S. P. Mickan, and D. Abbott, “2-D wavelet segmentation in 3-D T-ray tomography,” IEEE Sens. J. 7, 342–343 (2007).
[CrossRef]

Nishii, H.

T. Nagatsuma, T. Ikeo, and H. Nishii, “Terahertz imaging based on optical coherence tomography,” in 21st International Conference on Applied Electromagnetics and Communications (2013).

Nishina, S.

M. Imamura, S. Nishina, A. Irisawa, T. Yamashita, and E. Kato, “3D imaging and analysis system using terahertz waves,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2010), paper We-B3.1.

Nishizawa, N.

Nuss, M. C.

Ohtake, H.

Ouchi, T.

Park, J.-W.

Park, K. H.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Quast, H.

H. Quast, A. Keil, T. Hoyer, and T. Loeffler, “All-electronic 3D terahertz imaging for the NDT of composites,” in Proceedings of the 2nd International Symposium on NDT in Aerospace (Singapore Institute of Manufacturing Technology, 2010), paper We.4.B.3.

H. Quast and T. Loeffler, “3D-terahertz-tomography for material inspection and security,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2009), paper T3D02.0311.

Recur, B.

Ryu, H.-C.

Salort, S.

Schlecht, E.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllent, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theor. Tech. 56, 2771–2778 (2008).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Siegel, P. H.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllent, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theor. Tech. 56, 2771–2778 (2008).
[CrossRef]

Skalare, A.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllent, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theor. Tech. 56, 2771–2778 (2008).
[CrossRef]

Song, H.-J.

T. Isogawa, T. Kumashiro, H.-J. Song, K. Ajito, N. Kukutsu, K. Iwatsuki, and T. Nagatsuma, “Tomographic imaging using photonically generated low-coherence terahertz noise sources,” IEEE. Trans. Terahertz Sci. Technol. 2, 485–492 (2012).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Su, K.

L. Moeller, J. F. Federici, and K. Su, “THz wireless communications: 2.5  Gb/s error-free transmission at 625  GHz using a narrow-bandwidth 1  mW THz source,” in URSI General Assembly and Scientific Symposium (Turkey, 2011), paper DAF2–7.

Suizu, K.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Taday, P. F.

A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thickness using terahertz pulsed imaging,” J. Pharm. Sci. 94, 177–183 (2005).
[CrossRef]

Takahashi, H.

Takayanagi, J.

Taniguchi, K.

T. Nagatsuma, T. Kumashiro, Y. Fujimoto, K. Taniguchi, K. Ajito, N. Kukutsu, T. Furuta, A. Wakatsuki, and Y. Kado, “Millimeter-wave imaging using photonics-based noise source,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2009), paper M3C05.

Tearney, G. J.

Terada, J.

Uchida, H.

Ueno, Y.

K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. Terahertz Sci. Technol. 1, 293–300 (2011).

Wakatsuki, A.

T. Nagatsuma, T. Kumashiro, Y. Fujimoto, K. Taniguchi, K. Ajito, N. Kukutsu, T. Furuta, A. Wakatsuki, and Y. Kado, “Millimeter-wave imaging using photonics-based noise source,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2009), paper M3C05.

Yamashita, M.

Yamashita, T.

M. Imamura, S. Nishina, A. Irisawa, T. Yamashita, and E. Kato, “3D imaging and analysis system using terahertz waves,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2010), paper We-B3.1.

Yin, X.-X.

X.-X. Yin, B. W.-H. Ng, B. Ferguson, S. P. Mickan, and D. Abbott, “2-D wavelet segmentation in 3-D T-ray tomography,” IEEE Sens. J. 7, 342–343 (2007).
[CrossRef]

Yoshimatsu, T.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Continuous THz wave generation by photodiodes up to 2.5  THz,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2013), paper We2-5.

Yoshimizu, Y.

Yoshimoto, N.

T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz communications based on photonics technologies,” Opt. Express 21, 23736–23748 (2013).
[CrossRef]

S. Hisatake, G. Kitahara, N. Kukutsu, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
[CrossRef]

Younus, A.

Yun, S. H.

IEEE Sens. J. (2)

S. Hisatake, G. Kitahara, N. Kukutsu, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
[CrossRef]

X.-X. Yin, B. W.-H. Ng, B. Ferguson, S. P. Mickan, and D. Abbott, “2-D wavelet segmentation in 3-D T-ray tomography,” IEEE Sens. J. 7, 342–343 (2007).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllent, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theor. Tech. 56, 2771–2778 (2008).
[CrossRef]

IEEE Trans. Terahertz Sci. Technol. (1)

K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. Terahertz Sci. Technol. 1, 293–300 (2011).

IEEE. Trans. Terahertz Sci. Technol. (1)

T. Isogawa, T. Kumashiro, H.-J. Song, K. Ajito, N. Kukutsu, K. Iwatsuki, and T. Nagatsuma, “Tomographic imaging using photonically generated low-coherence terahertz noise sources,” IEEE. Trans. Terahertz Sci. Technol. 2, 485–492 (2012).
[CrossRef]

J. Pharm. Sci. (1)

A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thickness using terahertz pulsed imaging,” J. Pharm. Sci. 94, 177–183 (2005).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Other (10)

M. Imamura, S. Nishina, A. Irisawa, T. Yamashita, and E. Kato, “3D imaging and analysis system using terahertz waves,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2010), paper We-B3.1.

H. Quast and T. Loeffler, “3D-terahertz-tomography for material inspection and security,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2009), paper T3D02.0311.

H. Quast, A. Keil, T. Hoyer, and T. Loeffler, “All-electronic 3D terahertz imaging for the NDT of composites,” in Proceedings of the 2nd International Symposium on NDT in Aerospace (Singapore Institute of Manufacturing Technology, 2010), paper We.4.B.3.

T. Nagatsuma, T. Kumashiro, Y. Fujimoto, K. Taniguchi, K. Ajito, N. Kukutsu, T. Furuta, A. Wakatsuki, and Y. Kado, “Millimeter-wave imaging using photonics-based noise source,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2009), paper M3C05.

T. Ikeou, T. Isogawa, K. Ajito, N. Kukutsu, and T. Nagatsuma, “Terahertz imaging using swept source optical-coherence-tomography techniques,” in International Topical Meeting on Microwave Photonics (IEEE, 2012), paper session 8-4.

T. Nagatsuma, T. Ikeo, and H. Nishii, “Terahertz imaging based on optical coherence tomography,” in 21st International Conference on Applied Electromagnetics and Communications (2013).

T. Nagatsuma and H. Ito, “High-power RF uni-traveling-carrier photodiodes (UTC-PDs) and their applications,” in Advances in Photodiodes, G. F. Dalla Betta, ed. (InTech, 2011).

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Continuous THz wave generation by photodiodes up to 2.5  THz,” in International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2013), paper We2-5.

http://vadiodes.com/index.php/en/products/vector-network-analyzer .

L. Moeller, J. F. Federici, and K. Su, “THz wireless communications: 2.5  Gb/s error-free transmission at 625  GHz using a narrow-bandwidth 1  mW THz source,” in URSI General Assembly and Scientific Symposium (Turkey, 2011), paper DAF2–7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Block diagram of the THz SS-OCT system.

Fig. 2.
Fig. 2.

(a) Frequency spectrum of detected signal power (solid line) detected by the SBD detector at 600 GHz band. Dotted line shows calculated reflection characteristic of the beam splitter used in the experiment. (b) Interference signal with plane mirror as an object. (c) Point spread function of (b).

Fig. 3.
Fig. 3.

Repetitive measurement of peak distance performed for the same mirror position.

Fig. 4.
Fig. 4.

(a) Object under test to evaluate the depth resolution of the system. Point spread function for the plastic plate with thickness of (b) 0.5 and (c) 0.37 mm. (d) Relationship between peak distance and actual thickness of plastic plate, t.

Fig. 5.
Fig. 5.

(a) Plastic bottle half-filled with water. (b) Point spread function for measured point A. (c) Point spread function for measured point B.

Fig. 6.
Fig. 6.

(a) Structure of a USB cable; (b) cross-sectional image; (c) point spread function along with the dashed line in (b).

Fig. 7.
Fig. 7.

(a) Block diagram of frequency-multiplier-based THz signal generation at frequencies from 400 to 780 GHz. (b) Frequency characteristics of the output power from frequency-multiplier-based and photonics-based Block diagram of frequency-multiplier-based THz signal generation at frequencies from 400 to 780 GHz.

Fig. 8.
Fig. 8.

(a) Frequency spectrum of signal power (solid line) detected by the SBD detector at the 600 GHz band. Dotted line shows calculated reflection characteristics of the beam splitter used in the experiment. (b) Point spread function for the plastic plate with thickness of 0.57 mm.

Fig. 9.
Fig. 9.

Block diagram of THz SS-OCT system using a frequency-multiplier-based THz source and beam scanner.

Fig. 10.
Fig. 10.

(a) Photo of driver’s license card to be measured. (b), (d) Internal structure of the card consisting of electronic components made of metals. (c) Cross-sectional images taken for each line indicated in (b). (e) Planar image taken for the dotted-line area with the THz-OCT system (0.4 mm under the top surface).

Tables (1)

Tables Icon

Table 1. Comparison of THz 3D or Tomographic Imaging Techniques

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δz=2ln2πλ02nΔλ,

Metrics