Abstract

We review the emergence and development of integrated photonics and its status today. The treatise is focused on information and communications technology (ICT) applications, but the technology is generically employable for a wealth of other applications, such as sensors. General properties of the waveguides that form the basis of integrated photonics are reviewed, and several examples of integrated photonics based on silicon and plasmonics are presented. The all-important development of integrated low-power nanophotonics is discussed and current challenges and prospects of the field are elucidated. The treatment is focused on the photonic fabric between source and detector.

© 2014 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
InP photonic circuits using generic integration [Invited]

K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, X. J. M. Leijtens, J. J. G. M. van der Tol, and M. K. Smit
Photon. Res. 3(5) B60-B68 (2015)

Linear programmable nanophotonic processors

Nicholas C. Harris, Jacques Carolan, Darius Bunandar, Mihika Prabhu, Michael Hochberg, Tom Baehr-Jones, Michael L. Fanto, A. Matthew Smith, Christopher C. Tison, Paul M. Alsing, and Dirk Englund
Optica 5(12) 1623-1631 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. E.  Moore, “Cramming more components onto integrated circuits,” Electronics 38, 114–117 (1965).
  2. The observation made in 1965 by Gordon Moore, cofounder of Intel, that the number of transistors per square inch on integrated circuits had doubled every year since the integrated circuit was invented. Moore predicted that this trend would continue for the foreseeable future. In subsequent years, the pace slowed down a bit, but data density has doubled approximately every 18 months, and this is the current definition of Moore’s law—Webopedia, http://www.webopedia.com/TERM/M/Moores_Law.html.
  3. L.  Thylén, S.  He, L.  Wosinski, D.  Dai, “The Moore’s law for photonic integrated circuits,” J. Zhejiang Univ. Sci. A 7, 1961–1967 (2006).
    [Crossref]
  4. M. K.  Smit, C.  van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
    [Crossref]
  5. K.  Okamoto, “Fundamentals, technology and applications of AWGs,” Proceedings of 24th European Conference on Optical Communication, Madrid, Spain, Sept.20–24, 1998.
  6. L.  Thylén, P.  Holmstrom, L.  Wosinski, B.  Jaskorzynska, M.  Naruse, T.  Kawazoe, M.  Ohtsu, M.  Yan, M.  Fiorentino, U.  Westergren, “Nanophotonics for low-power switches,” in Optical Fiber Telecommunications VI, I. P.  Kaminow, T.  Li, A. E.  Willner, eds. (Elsevier, 2013).
  7. G.-L.  Bona, R.  German, B. J.  Offrein, “SiON high-reffractive-index waveguide and planar lightwave circuits,” IBM J. Res. Dev. 47, 239–249 (2003).
    [Crossref]
  8. L.  Liu, Z.  Han, S.  He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
    [Crossref]
  9. S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J.-Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [Crossref]
  10. P.  Holmström, L.  Thylén, A.  Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
    [Crossref]
  11. A.  Bratkovsky, E.  Ponizovskaya, S. Y.  Wang, P.  Holmstrom, L.  Thylén, Y.  Fu, H.  Agren, “A metal-wire/quantum-dot composite metamaterial with negative and compensated optical loss,” Appl. Phys. Lett. 93, 193106 (2008).
    [Crossref]
  12. M. Z.  Alam, J.  Meier, J. S.  Aitchison, M.  Mojahedi, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JThD112.
  13. R. F.  Oulton, V. J.  Sorger, D. A.  Genov, D. F. P.  Pile, X.  Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
    [Crossref]
  14. D.  Dai, S.  He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
    [Crossref]
  15. Z.  Wang, Z.  Wang, D.  Dai, Y.  Shi, G.  Somesfalean, P.  Holmstrom, L.  Thylén, S.  He, L.  Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA017.
  16. F.  Lou, Z.  Wang, D.  Dai, L.  Thylén, L.  Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100, 241105 (2012).
    [Crossref]
  17. F.  Lou, L.  Thylén, L.  Wosinski, “Hybrid plasmonic microdisk resonators for optical interconnect applications,” Proc. SPIE 8781, 87810X (2013).
    [Crossref]
  18. F.  Lou, D.  Dai, L.  Wosinski, “Ultracompact polarization beam splitter based on a dielectric–hybrid plasmonic–dielectric coupler,” Opt. Lett. 37, 3372–3374 (2012).
    [Crossref]
  19. F.  Lou, D.  Dai, L.  Thylén, L.  Wosinski, “Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators,” Opt. Express 21, 20041–20051 (2013).
    [Crossref]
  20. Q.  Xu, V. R.  Almeida, R. R.  Panepucci, M.  Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004).
    [Crossref]
  21. R.  Sun, P.  Dong, N.  Feng, C.  Hong, J.  Michel, M.  Lipson, L.  Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550  nm,” Opt. Express 15, 17967–17972 (2007).
    [Crossref]
  22. M.  Yan, L.  Thylén, M.  Qiu, “Layered metal-dielectric waveguide: subwavelength guidance, leveraged modulation sensitivity in mode index, and reversed mode ordering,” Opt. Express 19, 3818–3824 (2011).
    [Crossref]
  23. M.  Chacinski, U.  Westergren, B.  Stoltz, L.  Thylén, “Monolithically integrated DFB-EA for 100  Gb/s Ethernet,” IEEE Electron Device Lett. 29, 1312–1314 (2008).
    [Crossref]
  24. K.  Debnath, L.  O’Faolain, F. Y.  Gardes, A. G.  Steffan, G. T.  Reed, T. F.  Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20, 27420–27428 (2012).
    [Crossref]
  25. M.  Ohtsu, Dressed Photons: Concepts of Light–Matter Fusion Technology (Springer-Verlag, 2014).
  26. Y.  Kubota, K.  Nobusada, “Exciton–polariton transmission in quantum dot waveguides and a new transmission path due to thermal relaxation,” J. Chem. Phys. 134, 044108 (2011).
    [Crossref]
  27. P.  Holmström, L.  Thylén, “Electro-optic switch based on near-field-coupled quantum dots,” Opt. Express (submitted).
  28. F.  Wang, Y. R.  Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
    [Crossref]
  29. L.  Thylén, “A comparison of optically and electronically controlled optical switches,” Appl. Phys. A 113, 249–256 (2013).
    [Crossref]

2013 (3)

F.  Lou, L.  Thylén, L.  Wosinski, “Hybrid plasmonic microdisk resonators for optical interconnect applications,” Proc. SPIE 8781, 87810X (2013).
[Crossref]

F.  Lou, D.  Dai, L.  Thylén, L.  Wosinski, “Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators,” Opt. Express 21, 20041–20051 (2013).
[Crossref]

L.  Thylén, “A comparison of optically and electronically controlled optical switches,” Appl. Phys. A 113, 249–256 (2013).
[Crossref]

2012 (3)

2011 (2)

M.  Yan, L.  Thylén, M.  Qiu, “Layered metal-dielectric waveguide: subwavelength guidance, leveraged modulation sensitivity in mode index, and reversed mode ordering,” Opt. Express 19, 3818–3824 (2011).
[Crossref]

Y.  Kubota, K.  Nobusada, “Exciton–polariton transmission in quantum dot waveguides and a new transmission path due to thermal relaxation,” J. Chem. Phys. 134, 044108 (2011).
[Crossref]

2010 (1)

P.  Holmström, L.  Thylén, A.  Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
[Crossref]

2009 (1)

2008 (3)

M.  Chacinski, U.  Westergren, B.  Stoltz, L.  Thylén, “Monolithically integrated DFB-EA for 100  Gb/s Ethernet,” IEEE Electron Device Lett. 29, 1312–1314 (2008).
[Crossref]

A.  Bratkovsky, E.  Ponizovskaya, S. Y.  Wang, P.  Holmstrom, L.  Thylén, Y.  Fu, H.  Agren, “A metal-wire/quantum-dot composite metamaterial with negative and compensated optical loss,” Appl. Phys. Lett. 93, 193106 (2008).
[Crossref]

R. F.  Oulton, V. J.  Sorger, D. A.  Genov, D. F. P.  Pile, X.  Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

2007 (1)

2006 (3)

F.  Wang, Y. R.  Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[Crossref]

S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J.-Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

L.  Thylén, S.  He, L.  Wosinski, D.  Dai, “The Moore’s law for photonic integrated circuits,” J. Zhejiang Univ. Sci. A 7, 1961–1967 (2006).
[Crossref]

2005 (1)

2004 (1)

2003 (1)

G.-L.  Bona, R.  German, B. J.  Offrein, “SiON high-reffractive-index waveguide and planar lightwave circuits,” IBM J. Res. Dev. 47, 239–249 (2003).
[Crossref]

1996 (1)

M. K.  Smit, C.  van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

1965 (1)

G. E.  Moore, “Cramming more components onto integrated circuits,” Electronics 38, 114–117 (1965).

Agren, H.

A.  Bratkovsky, E.  Ponizovskaya, S. Y.  Wang, P.  Holmstrom, L.  Thylén, Y.  Fu, H.  Agren, “A metal-wire/quantum-dot composite metamaterial with negative and compensated optical loss,” Appl. Phys. Lett. 93, 193106 (2008).
[Crossref]

Aitchison, J. S.

M. Z.  Alam, J.  Meier, J. S.  Aitchison, M.  Mojahedi, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JThD112.

Alam, M. Z.

M. Z.  Alam, J.  Meier, J. S.  Aitchison, M.  Mojahedi, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JThD112.

Almeida, V. R.

Bona, G.-L.

G.-L.  Bona, R.  German, B. J.  Offrein, “SiON high-reffractive-index waveguide and planar lightwave circuits,” IBM J. Res. Dev. 47, 239–249 (2003).
[Crossref]

Bozhevolnyi, S. I.

S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J.-Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Bratkovsky, A.

P.  Holmström, L.  Thylén, A.  Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
[Crossref]

A.  Bratkovsky, E.  Ponizovskaya, S. Y.  Wang, P.  Holmstrom, L.  Thylén, Y.  Fu, H.  Agren, “A metal-wire/quantum-dot composite metamaterial with negative and compensated optical loss,” Appl. Phys. Lett. 93, 193106 (2008).
[Crossref]

Chacinski, M.

M.  Chacinski, U.  Westergren, B.  Stoltz, L.  Thylén, “Monolithically integrated DFB-EA for 100  Gb/s Ethernet,” IEEE Electron Device Lett. 29, 1312–1314 (2008).
[Crossref]

Dai, D.

F.  Lou, D.  Dai, L.  Thylén, L.  Wosinski, “Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators,” Opt. Express 21, 20041–20051 (2013).
[Crossref]

F.  Lou, D.  Dai, L.  Wosinski, “Ultracompact polarization beam splitter based on a dielectric–hybrid plasmonic–dielectric coupler,” Opt. Lett. 37, 3372–3374 (2012).
[Crossref]

F.  Lou, Z.  Wang, D.  Dai, L.  Thylén, L.  Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100, 241105 (2012).
[Crossref]

D.  Dai, S.  He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[Crossref]

L.  Thylén, S.  He, L.  Wosinski, D.  Dai, “The Moore’s law for photonic integrated circuits,” J. Zhejiang Univ. Sci. A 7, 1961–1967 (2006).
[Crossref]

Z.  Wang, Z.  Wang, D.  Dai, Y.  Shi, G.  Somesfalean, P.  Holmstrom, L.  Thylén, S.  He, L.  Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA017.

Debnath, K.

Devaux, E.

S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J.-Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Dong, P.

Ebbesen, T. W.

S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J.-Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Feng, N.

Fiorentino, M.

L.  Thylén, P.  Holmstrom, L.  Wosinski, B.  Jaskorzynska, M.  Naruse, T.  Kawazoe, M.  Ohtsu, M.  Yan, M.  Fiorentino, U.  Westergren, “Nanophotonics for low-power switches,” in Optical Fiber Telecommunications VI, I. P.  Kaminow, T.  Li, A. E.  Willner, eds. (Elsevier, 2013).

Fu, Y.

A.  Bratkovsky, E.  Ponizovskaya, S. Y.  Wang, P.  Holmstrom, L.  Thylén, Y.  Fu, H.  Agren, “A metal-wire/quantum-dot composite metamaterial with negative and compensated optical loss,” Appl. Phys. Lett. 93, 193106 (2008).
[Crossref]

Gardes, F. Y.

Genov, D. A.

R. F.  Oulton, V. J.  Sorger, D. A.  Genov, D. F. P.  Pile, X.  Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

German, R.

G.-L.  Bona, R.  German, B. J.  Offrein, “SiON high-reffractive-index waveguide and planar lightwave circuits,” IBM J. Res. Dev. 47, 239–249 (2003).
[Crossref]

Han, Z.

He, S.

D.  Dai, S.  He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[Crossref]

L.  Thylén, S.  He, L.  Wosinski, D.  Dai, “The Moore’s law for photonic integrated circuits,” J. Zhejiang Univ. Sci. A 7, 1961–1967 (2006).
[Crossref]

L.  Liu, Z.  Han, S.  He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[Crossref]

Z.  Wang, Z.  Wang, D.  Dai, Y.  Shi, G.  Somesfalean, P.  Holmstrom, L.  Thylén, S.  He, L.  Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA017.

Holmstrom, P.

A.  Bratkovsky, E.  Ponizovskaya, S. Y.  Wang, P.  Holmstrom, L.  Thylén, Y.  Fu, H.  Agren, “A metal-wire/quantum-dot composite metamaterial with negative and compensated optical loss,” Appl. Phys. Lett. 93, 193106 (2008).
[Crossref]

L.  Thylén, P.  Holmstrom, L.  Wosinski, B.  Jaskorzynska, M.  Naruse, T.  Kawazoe, M.  Ohtsu, M.  Yan, M.  Fiorentino, U.  Westergren, “Nanophotonics for low-power switches,” in Optical Fiber Telecommunications VI, I. P.  Kaminow, T.  Li, A. E.  Willner, eds. (Elsevier, 2013).

Z.  Wang, Z.  Wang, D.  Dai, Y.  Shi, G.  Somesfalean, P.  Holmstrom, L.  Thylén, S.  He, L.  Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA017.

Holmström, P.

P.  Holmström, L.  Thylén, A.  Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
[Crossref]

P.  Holmström, L.  Thylén, “Electro-optic switch based on near-field-coupled quantum dots,” Opt. Express (submitted).

Hong, C.

Jaskorzynska, B.

L.  Thylén, P.  Holmstrom, L.  Wosinski, B.  Jaskorzynska, M.  Naruse, T.  Kawazoe, M.  Ohtsu, M.  Yan, M.  Fiorentino, U.  Westergren, “Nanophotonics for low-power switches,” in Optical Fiber Telecommunications VI, I. P.  Kaminow, T.  Li, A. E.  Willner, eds. (Elsevier, 2013).

Kawazoe, T.

L.  Thylén, P.  Holmstrom, L.  Wosinski, B.  Jaskorzynska, M.  Naruse, T.  Kawazoe, M.  Ohtsu, M.  Yan, M.  Fiorentino, U.  Westergren, “Nanophotonics for low-power switches,” in Optical Fiber Telecommunications VI, I. P.  Kaminow, T.  Li, A. E.  Willner, eds. (Elsevier, 2013).

Kimerling, L.

Krauss, T. F.

Kubota, Y.

Y.  Kubota, K.  Nobusada, “Exciton–polariton transmission in quantum dot waveguides and a new transmission path due to thermal relaxation,” J. Chem. Phys. 134, 044108 (2011).
[Crossref]

Laluet, J.-Y.

S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J.-Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Lipson, M.

Liu, L.

Lou, F.

F.  Lou, D.  Dai, L.  Thylén, L.  Wosinski, “Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators,” Opt. Express 21, 20041–20051 (2013).
[Crossref]

F.  Lou, L.  Thylén, L.  Wosinski, “Hybrid plasmonic microdisk resonators for optical interconnect applications,” Proc. SPIE 8781, 87810X (2013).
[Crossref]

F.  Lou, Z.  Wang, D.  Dai, L.  Thylén, L.  Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100, 241105 (2012).
[Crossref]

F.  Lou, D.  Dai, L.  Wosinski, “Ultracompact polarization beam splitter based on a dielectric–hybrid plasmonic–dielectric coupler,” Opt. Lett. 37, 3372–3374 (2012).
[Crossref]

Meier, J.

M. Z.  Alam, J.  Meier, J. S.  Aitchison, M.  Mojahedi, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JThD112.

Michel, J.

Mojahedi, M.

M. Z.  Alam, J.  Meier, J. S.  Aitchison, M.  Mojahedi, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JThD112.

Moore, G. E.

G. E.  Moore, “Cramming more components onto integrated circuits,” Electronics 38, 114–117 (1965).

Naruse, M.

L.  Thylén, P.  Holmstrom, L.  Wosinski, B.  Jaskorzynska, M.  Naruse, T.  Kawazoe, M.  Ohtsu, M.  Yan, M.  Fiorentino, U.  Westergren, “Nanophotonics for low-power switches,” in Optical Fiber Telecommunications VI, I. P.  Kaminow, T.  Li, A. E.  Willner, eds. (Elsevier, 2013).

Nobusada, K.

Y.  Kubota, K.  Nobusada, “Exciton–polariton transmission in quantum dot waveguides and a new transmission path due to thermal relaxation,” J. Chem. Phys. 134, 044108 (2011).
[Crossref]

O’Faolain, L.

Offrein, B. J.

G.-L.  Bona, R.  German, B. J.  Offrein, “SiON high-reffractive-index waveguide and planar lightwave circuits,” IBM J. Res. Dev. 47, 239–249 (2003).
[Crossref]

Ohtsu, M.

L.  Thylén, P.  Holmstrom, L.  Wosinski, B.  Jaskorzynska, M.  Naruse, T.  Kawazoe, M.  Ohtsu, M.  Yan, M.  Fiorentino, U.  Westergren, “Nanophotonics for low-power switches,” in Optical Fiber Telecommunications VI, I. P.  Kaminow, T.  Li, A. E.  Willner, eds. (Elsevier, 2013).

M.  Ohtsu, Dressed Photons: Concepts of Light–Matter Fusion Technology (Springer-Verlag, 2014).

Okamoto, K.

K.  Okamoto, “Fundamentals, technology and applications of AWGs,” Proceedings of 24th European Conference on Optical Communication, Madrid, Spain, Sept.20–24, 1998.

Oulton, R. F.

R. F.  Oulton, V. J.  Sorger, D. A.  Genov, D. F. P.  Pile, X.  Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Panepucci, R. R.

Pile, D. F. P.

R. F.  Oulton, V. J.  Sorger, D. A.  Genov, D. F. P.  Pile, X.  Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Ponizovskaya, E.

A.  Bratkovsky, E.  Ponizovskaya, S. Y.  Wang, P.  Holmstrom, L.  Thylén, Y.  Fu, H.  Agren, “A metal-wire/quantum-dot composite metamaterial with negative and compensated optical loss,” Appl. Phys. Lett. 93, 193106 (2008).
[Crossref]

Qiu, M.

Reed, G. T.

Shen, Y. R.

F.  Wang, Y. R.  Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[Crossref]

Shi, Y.

Z.  Wang, Z.  Wang, D.  Dai, Y.  Shi, G.  Somesfalean, P.  Holmstrom, L.  Thylén, S.  He, L.  Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA017.

Smit, M. K.

M. K.  Smit, C.  van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

Somesfalean, G.

Z.  Wang, Z.  Wang, D.  Dai, Y.  Shi, G.  Somesfalean, P.  Holmstrom, L.  Thylén, S.  He, L.  Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA017.

Sorger, V. J.

R. F.  Oulton, V. J.  Sorger, D. A.  Genov, D. F. P.  Pile, X.  Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Steffan, A. G.

Stoltz, B.

M.  Chacinski, U.  Westergren, B.  Stoltz, L.  Thylén, “Monolithically integrated DFB-EA for 100  Gb/s Ethernet,” IEEE Electron Device Lett. 29, 1312–1314 (2008).
[Crossref]

Sun, R.

Thylén, L.

F.  Lou, D.  Dai, L.  Thylén, L.  Wosinski, “Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators,” Opt. Express 21, 20041–20051 (2013).
[Crossref]

F.  Lou, L.  Thylén, L.  Wosinski, “Hybrid plasmonic microdisk resonators for optical interconnect applications,” Proc. SPIE 8781, 87810X (2013).
[Crossref]

L.  Thylén, “A comparison of optically and electronically controlled optical switches,” Appl. Phys. A 113, 249–256 (2013).
[Crossref]

F.  Lou, Z.  Wang, D.  Dai, L.  Thylén, L.  Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100, 241105 (2012).
[Crossref]

M.  Yan, L.  Thylén, M.  Qiu, “Layered metal-dielectric waveguide: subwavelength guidance, leveraged modulation sensitivity in mode index, and reversed mode ordering,” Opt. Express 19, 3818–3824 (2011).
[Crossref]

P.  Holmström, L.  Thylén, A.  Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
[Crossref]

A.  Bratkovsky, E.  Ponizovskaya, S. Y.  Wang, P.  Holmstrom, L.  Thylén, Y.  Fu, H.  Agren, “A metal-wire/quantum-dot composite metamaterial with negative and compensated optical loss,” Appl. Phys. Lett. 93, 193106 (2008).
[Crossref]

M.  Chacinski, U.  Westergren, B.  Stoltz, L.  Thylén, “Monolithically integrated DFB-EA for 100  Gb/s Ethernet,” IEEE Electron Device Lett. 29, 1312–1314 (2008).
[Crossref]

L.  Thylén, S.  He, L.  Wosinski, D.  Dai, “The Moore’s law for photonic integrated circuits,” J. Zhejiang Univ. Sci. A 7, 1961–1967 (2006).
[Crossref]

L.  Thylén, P.  Holmstrom, L.  Wosinski, B.  Jaskorzynska, M.  Naruse, T.  Kawazoe, M.  Ohtsu, M.  Yan, M.  Fiorentino, U.  Westergren, “Nanophotonics for low-power switches,” in Optical Fiber Telecommunications VI, I. P.  Kaminow, T.  Li, A. E.  Willner, eds. (Elsevier, 2013).

P.  Holmström, L.  Thylén, “Electro-optic switch based on near-field-coupled quantum dots,” Opt. Express (submitted).

Z.  Wang, Z.  Wang, D.  Dai, Y.  Shi, G.  Somesfalean, P.  Holmstrom, L.  Thylén, S.  He, L.  Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA017.

van Dam, C.

M. K.  Smit, C.  van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

Volkov, V. S.

S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J.-Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Wang, F.

F.  Wang, Y. R.  Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[Crossref]

Wang, S. Y.

A.  Bratkovsky, E.  Ponizovskaya, S. Y.  Wang, P.  Holmstrom, L.  Thylén, Y.  Fu, H.  Agren, “A metal-wire/quantum-dot composite metamaterial with negative and compensated optical loss,” Appl. Phys. Lett. 93, 193106 (2008).
[Crossref]

Wang, Z.

F.  Lou, Z.  Wang, D.  Dai, L.  Thylén, L.  Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100, 241105 (2012).
[Crossref]

Z.  Wang, Z.  Wang, D.  Dai, Y.  Shi, G.  Somesfalean, P.  Holmstrom, L.  Thylén, S.  He, L.  Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA017.

Z.  Wang, Z.  Wang, D.  Dai, Y.  Shi, G.  Somesfalean, P.  Holmstrom, L.  Thylén, S.  He, L.  Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA017.

Westergren, U.

M.  Chacinski, U.  Westergren, B.  Stoltz, L.  Thylén, “Monolithically integrated DFB-EA for 100  Gb/s Ethernet,” IEEE Electron Device Lett. 29, 1312–1314 (2008).
[Crossref]

L.  Thylén, P.  Holmstrom, L.  Wosinski, B.  Jaskorzynska, M.  Naruse, T.  Kawazoe, M.  Ohtsu, M.  Yan, M.  Fiorentino, U.  Westergren, “Nanophotonics for low-power switches,” in Optical Fiber Telecommunications VI, I. P.  Kaminow, T.  Li, A. E.  Willner, eds. (Elsevier, 2013).

Wosinski, L.

F.  Lou, L.  Thylén, L.  Wosinski, “Hybrid plasmonic microdisk resonators for optical interconnect applications,” Proc. SPIE 8781, 87810X (2013).
[Crossref]

F.  Lou, D.  Dai, L.  Thylén, L.  Wosinski, “Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators,” Opt. Express 21, 20041–20051 (2013).
[Crossref]

F.  Lou, D.  Dai, L.  Wosinski, “Ultracompact polarization beam splitter based on a dielectric–hybrid plasmonic–dielectric coupler,” Opt. Lett. 37, 3372–3374 (2012).
[Crossref]

F.  Lou, Z.  Wang, D.  Dai, L.  Thylén, L.  Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100, 241105 (2012).
[Crossref]

L.  Thylén, S.  He, L.  Wosinski, D.  Dai, “The Moore’s law for photonic integrated circuits,” J. Zhejiang Univ. Sci. A 7, 1961–1967 (2006).
[Crossref]

L.  Thylén, P.  Holmstrom, L.  Wosinski, B.  Jaskorzynska, M.  Naruse, T.  Kawazoe, M.  Ohtsu, M.  Yan, M.  Fiorentino, U.  Westergren, “Nanophotonics for low-power switches,” in Optical Fiber Telecommunications VI, I. P.  Kaminow, T.  Li, A. E.  Willner, eds. (Elsevier, 2013).

Z.  Wang, Z.  Wang, D.  Dai, Y.  Shi, G.  Somesfalean, P.  Holmstrom, L.  Thylén, S.  He, L.  Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA017.

Xu, Q.

Yan, M.

M.  Yan, L.  Thylén, M.  Qiu, “Layered metal-dielectric waveguide: subwavelength guidance, leveraged modulation sensitivity in mode index, and reversed mode ordering,” Opt. Express 19, 3818–3824 (2011).
[Crossref]

L.  Thylén, P.  Holmstrom, L.  Wosinski, B.  Jaskorzynska, M.  Naruse, T.  Kawazoe, M.  Ohtsu, M.  Yan, M.  Fiorentino, U.  Westergren, “Nanophotonics for low-power switches,” in Optical Fiber Telecommunications VI, I. P.  Kaminow, T.  Li, A. E.  Willner, eds. (Elsevier, 2013).

Zhang, X.

R. F.  Oulton, V. J.  Sorger, D. A.  Genov, D. F. P.  Pile, X.  Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Appl. Phys. A (1)

L.  Thylén, “A comparison of optically and electronically controlled optical switches,” Appl. Phys. A 113, 249–256 (2013).
[Crossref]

Appl. Phys. Lett. (3)

P.  Holmström, L.  Thylén, A.  Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
[Crossref]

A.  Bratkovsky, E.  Ponizovskaya, S. Y.  Wang, P.  Holmstrom, L.  Thylén, Y.  Fu, H.  Agren, “A metal-wire/quantum-dot composite metamaterial with negative and compensated optical loss,” Appl. Phys. Lett. 93, 193106 (2008).
[Crossref]

F.  Lou, Z.  Wang, D.  Dai, L.  Thylén, L.  Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100, 241105 (2012).
[Crossref]

Electronics (1)

G. E.  Moore, “Cramming more components onto integrated circuits,” Electronics 38, 114–117 (1965).

IBM J. Res. Dev. (1)

G.-L.  Bona, R.  German, B. J.  Offrein, “SiON high-reffractive-index waveguide and planar lightwave circuits,” IBM J. Res. Dev. 47, 239–249 (2003).
[Crossref]

IEEE Electron Device Lett. (1)

M.  Chacinski, U.  Westergren, B.  Stoltz, L.  Thylén, “Monolithically integrated DFB-EA for 100  Gb/s Ethernet,” IEEE Electron Device Lett. 29, 1312–1314 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. K.  Smit, C.  van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

J. Chem. Phys. (1)

Y.  Kubota, K.  Nobusada, “Exciton–polariton transmission in quantum dot waveguides and a new transmission path due to thermal relaxation,” J. Chem. Phys. 134, 044108 (2011).
[Crossref]

J. Zhejiang Univ. Sci. A (1)

L.  Thylén, S.  He, L.  Wosinski, D.  Dai, “The Moore’s law for photonic integrated circuits,” J. Zhejiang Univ. Sci. A 7, 1961–1967 (2006).
[Crossref]

Nat. Photonics (1)

R. F.  Oulton, V. J.  Sorger, D. A.  Genov, D. F. P.  Pile, X.  Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Nature (1)

S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J.-Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

F.  Wang, Y. R.  Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[Crossref]

Proc. SPIE (1)

F.  Lou, L.  Thylén, L.  Wosinski, “Hybrid plasmonic microdisk resonators for optical interconnect applications,” Proc. SPIE 8781, 87810X (2013).
[Crossref]

Other (7)

Z.  Wang, Z.  Wang, D.  Dai, Y.  Shi, G.  Somesfalean, P.  Holmstrom, L.  Thylén, S.  He, L.  Wosinski, “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA017.

M. Z.  Alam, J.  Meier, J. S.  Aitchison, M.  Mojahedi, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JThD112.

K.  Okamoto, “Fundamentals, technology and applications of AWGs,” Proceedings of 24th European Conference on Optical Communication, Madrid, Spain, Sept.20–24, 1998.

L.  Thylén, P.  Holmstrom, L.  Wosinski, B.  Jaskorzynska, M.  Naruse, T.  Kawazoe, M.  Ohtsu, M.  Yan, M.  Fiorentino, U.  Westergren, “Nanophotonics for low-power switches,” in Optical Fiber Telecommunications VI, I. P.  Kaminow, T.  Li, A. E.  Willner, eds. (Elsevier, 2013).

The observation made in 1965 by Gordon Moore, cofounder of Intel, that the number of transistors per square inch on integrated circuits had doubled every year since the integrated circuit was invented. Moore predicted that this trend would continue for the foreseeable future. In subsequent years, the pace slowed down a bit, but data density has doubled approximately every 18 months, and this is the current definition of Moore’s law—Webopedia, http://www.webopedia.com/TERM/M/Moores_Law.html.

P.  Holmström, L.  Thylén, “Electro-optic switch based on near-field-coupled quantum dots,” Opt. Express (submitted).

M.  Ohtsu, Dressed Photons: Concepts of Light–Matter Fusion Technology (Springer-Verlag, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Moore’s law for integration density in terms of equivalent number of elements per square micrometer of integrated photonics devices, showing a growth faster than the IC Moorés law, adapted from [3]. The figure covers, in time order, a lithium niobate 4 × 4 polarization-independent switch array, a 4 × 4 InP-based integrated gated amplifier switch array, an SOI AWG, and a hybrid plasmonic (passive) directional coupler. All these are experimentally demonstrated. At the top is a simulation of two coupled metal nanoparticle arrays, forming a directional coupler, each array being a resonantly operated array of silver nanoparticles. If loss requirements of, e.g., 3 dB / cm were invoked, the latter two would occupy significantly lower places in the figure.
Fig. 2.
Fig. 2. Electric field distribution of TE mode in a silicon channel dielectric waveguide. The yellow and red curves express the amplitude distribution in the x and y directions, respectively; the substrate material is SiO 2 , and the cladding is air. The guiding light core is made of silicon material with the geometry parameters height = 200 nm and width = 450 nm . The operating wavelength is 1550 nm. Channel dielectric waveguides, similarly to optical fibers, utilize total internal reflection, guiding light in higher refractive index core surrounded by lower index cladding material.
Fig. 3.
Fig. 3. Ultrasmall subwavelength hybrid plasmonic microdisk. (a) Schematic diagram and (b) SEM image of the fabricated device with radius around 525 nm. At this radius the cavity has a resonance at about 1550 nm and the intrinsic quality factor Q is about 200. The thicknesses of the Au, SiO 2 , and Si layers are 100, 56, and 400 nm, respectively. The access waveguide width is 170 nm and the gap between the straight waveguide and the microdisk is 56 nm. The measured propagation losses of the access waveguide are 0.08 dB / μm .
Fig. 4.
Fig. 4. (a) Schematic diagram of the hybrid plasmonic microring modulator. (b) Cross-sectional view along the x–y plane of the Ez field distributions of a resonant mode at 1550 nm with an azimuthal number of 6. The modulator consists of an EOP ring with radius R and a width W sandwiched between a silver ring and a silicon ring with the same radii and widths. A microwave field is applied between the Ag cap and the bottom Si layer, and the refractive index of the EOP can be changed using the ultrafast EO (Pockels) effect; correspondingly, the cavity can be switched between on- and off-resonance modes at a given frequency, resulting in the modulation of transmission power if an access waveguide is placed aside.

Tables (2)

Tables Icon

Table 1. Waveguide Parameters for Different Materials

Tables Icon

Table 2. Comparison of Performance of Some Electronically Controlled Modulators a, b, c

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q = ω · d ε metal / d ω 2 ε metal ,

Metrics