Abstract

In this paper, the Goos–Hänchen shift (GHS) at the interface between air and the aluminum zinc oxide (AZO)/ZnO hyperbolic metamaterial (AZO-HMM) is theoretically examined. The results herein show that AZO-HMM can enhance the GHS at the interface to a value at 3 orders of the incident wavelength under special conditions, which is much larger than conventional GHS values. Moreover, the GHS can be tuned to be negative or positive by changing the incident wavelength or the volume fraction of AZO.

© 2013 Chinese Laser Press

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
    [CrossRef]
  2. X. J. Ni, S. Ishii, M. D. Thoreson, and V. M. Shalaev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19, 25242–25254 (2011).
    [CrossRef]
  3. K. Artmann, “Calculation of the lateral displacement of a totally reflected ray,” Ann. Phys. 2, 87 (1948).
  4. Y. H. Wan, Z. Zheng, and W. J. Kong, “Nearly three orders of magnitude enhancement of Goos-Hänchen shift by exciting Bloch surface wave,” Opt. Express 20, 8998–9003 (2012).
    [CrossRef]
  5. K. Y. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
    [CrossRef]
  6. M. Ornigotti and A. Aiello, “Goos-Hänchen and Imbert-Fedorov shifts for bounded wavepackets of light,” J. Opt. 15, 014004 (2013).
    [CrossRef]
  7. X. P. Wang, C. Yin, and J. J. Sun, “Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect,” J. Opt. 15, 014007 (2013).
    [CrossRef]
  8. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
    [CrossRef]
  9. X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 (2006).
    [CrossRef]
  10. G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5, 1–7 (2011).
    [CrossRef]
  11. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: strengths and limitations,” Phys. Rev. A 85, 053842 (2012).
    [CrossRef]
  12. S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110, 111–131 (2010).
    [CrossRef]
  13. G. N. Parsons, S. M. George, and M. Knez, “Progress and future directions for atomic layer deposition and ALD-based chemistry,” MRS Bull. 36, 865–871 (2011).
    [CrossRef]
  14. G. V. Naik, J. J. Liu, and A. V. Kildishev, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
    [CrossRef]
  15. L. Y. He, Z. Q. Biao, and Z. Yan, “Opposite Goos-Hanchen displacement for TE- and TM-polarized beams transmitting through a slab of indefinite metamaterial,” Chin. Phys. Lett. 27, 074210 (2010).
    [CrossRef]
  16. Y. M. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011).
    [CrossRef]

2013

K. Y. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
[CrossRef]

M. Ornigotti and A. Aiello, “Goos-Hänchen and Imbert-Fedorov shifts for bounded wavepackets of light,” J. Opt. 15, 014004 (2013).
[CrossRef]

X. P. Wang, C. Yin, and J. J. Sun, “Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect,” J. Opt. 15, 014007 (2013).
[CrossRef]

2012

Y. H. Wan, Z. Zheng, and W. J. Kong, “Nearly three orders of magnitude enhancement of Goos-Hänchen shift by exciting Bloch surface wave,” Opt. Express 20, 8998–9003 (2012).
[CrossRef]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: strengths and limitations,” Phys. Rev. A 85, 053842 (2012).
[CrossRef]

G. V. Naik, J. J. Liu, and A. V. Kildishev, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[CrossRef]

2011

Y. M. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011).
[CrossRef]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5, 1–7 (2011).
[CrossRef]

G. N. Parsons, S. M. George, and M. Knez, “Progress and future directions for atomic layer deposition and ALD-based chemistry,” MRS Bull. 36, 865–871 (2011).
[CrossRef]

X. J. Ni, S. Ishii, M. D. Thoreson, and V. M. Shalaev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19, 25242–25254 (2011).
[CrossRef]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[CrossRef]

2010

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110, 111–131 (2010).
[CrossRef]

L. Y. He, Z. Q. Biao, and Z. Yan, “Opposite Goos-Hanchen displacement for TE- and TM-polarized beams transmitting through a slab of indefinite metamaterial,” Chin. Phys. Lett. 27, 074210 (2010).
[CrossRef]

2007

H. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

2006

X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 (2006).
[CrossRef]

1948

K. Artmann, “Calculation of the lateral displacement of a totally reflected ray,” Ann. Phys. 2, 87 (1948).

Aiello, A.

M. Ornigotti and A. Aiello, “Goos-Hänchen and Imbert-Fedorov shifts for bounded wavepackets of light,” J. Opt. 15, 014004 (2013).
[CrossRef]

K. Y. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
[CrossRef]

Artmann, K.

K. Artmann, “Calculation of the lateral displacement of a totally reflected ray,” Ann. Phys. 2, 87 (1948).

Biao, Z. Q.

L. Y. He, Z. Q. Biao, and Z. Yan, “Opposite Goos-Hanchen displacement for TE- and TM-polarized beams transmitting through a slab of indefinite metamaterial,” Chin. Phys. Lett. 27, 074210 (2010).
[CrossRef]

Bliokh, K. Y.

K. Y. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
[CrossRef]

Boltasseva, A.

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[CrossRef]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5, 1–7 (2011).
[CrossRef]

Cao, Z. Q.

X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 (2006).
[CrossRef]

George, S. M.

G. N. Parsons, S. M. George, and M. Knez, “Progress and future directions for atomic layer deposition and ALD-based chemistry,” MRS Bull. 36, 865–871 (2011).
[CrossRef]

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110, 111–131 (2010).
[CrossRef]

He, L. Y.

L. Y. He, Z. Q. Biao, and Z. Yan, “Opposite Goos-Hanchen displacement for TE- and TM-polarized beams transmitting through a slab of indefinite metamaterial,” Chin. Phys. Lett. 27, 074210 (2010).
[CrossRef]

Ishii, S.

Kidwai, O.

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: strengths and limitations,” Phys. Rev. A 85, 053842 (2012).
[CrossRef]

Kildishev, A. V.

G. V. Naik, J. J. Liu, and A. V. Kildishev, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[CrossRef]

Kim, J.

Knez, M.

G. N. Parsons, S. M. George, and M. Knez, “Progress and future directions for atomic layer deposition and ALD-based chemistry,” MRS Bull. 36, 865–871 (2011).
[CrossRef]

Kong, W. J.

Lee, H.

H. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

Liu, H. W.

H. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

Liu, J. J.

G. V. Naik, J. J. Liu, and A. V. Kildishev, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[CrossRef]

Liu, X. B.

X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 (2006).
[CrossRef]

Liu, X. M.

X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 (2006).
[CrossRef]

Liu, Y. M.

Y. M. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011).
[CrossRef]

Naik, G. V.

G. V. Naik, J. J. Liu, and A. V. Kildishev, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[CrossRef]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5, 1–7 (2011).
[CrossRef]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[CrossRef]

Ni, X. J.

Ornigotti, M.

M. Ornigotti and A. Aiello, “Goos-Hänchen and Imbert-Fedorov shifts for bounded wavepackets of light,” J. Opt. 15, 014004 (2013).
[CrossRef]

Parsons, G. N.

G. N. Parsons, S. M. George, and M. Knez, “Progress and future directions for atomic layer deposition and ALD-based chemistry,” MRS Bull. 36, 865–871 (2011).
[CrossRef]

Shalaev, V. M.

Shen, Q. S.

X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 (2006).
[CrossRef]

Sipe, J. E.

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: strengths and limitations,” Phys. Rev. A 85, 053842 (2012).
[CrossRef]

Sun, C.

H. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

Sun, J. J.

X. P. Wang, C. Yin, and J. J. Sun, “Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect,” J. Opt. 15, 014007 (2013).
[CrossRef]

Thoreson, M. D.

Wan, Y. H.

Wang, X. P.

X. P. Wang, C. Yin, and J. J. Sun, “Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect,” J. Opt. 15, 014007 (2013).
[CrossRef]

Xiong, Y.

H. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

Yan, Z.

L. Y. He, Z. Q. Biao, and Z. Yan, “Opposite Goos-Hanchen displacement for TE- and TM-polarized beams transmitting through a slab of indefinite metamaterial,” Chin. Phys. Lett. 27, 074210 (2010).
[CrossRef]

Yin, C.

X. P. Wang, C. Yin, and J. J. Sun, “Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect,” J. Opt. 15, 014007 (2013).
[CrossRef]

Zhang, X.

Y. M. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011).
[CrossRef]

H. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

Zheng, Z.

Zhu, P. F.

X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 (2006).
[CrossRef]

Zhukovsky, S. V.

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: strengths and limitations,” Phys. Rev. A 85, 053842 (2012).
[CrossRef]

Ann. Phys.

K. Artmann, “Calculation of the lateral displacement of a totally reflected ray,” Ann. Phys. 2, 87 (1948).

Chem. Rev.

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110, 111–131 (2010).
[CrossRef]

Chem. Soc. Rev.

Y. M. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011).
[CrossRef]

Chin. Phys. Lett.

L. Y. He, Z. Q. Biao, and Z. Yan, “Opposite Goos-Hanchen displacement for TE- and TM-polarized beams transmitting through a slab of indefinite metamaterial,” Chin. Phys. Lett. 27, 074210 (2010).
[CrossRef]

J. Opt.

K. Y. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
[CrossRef]

M. Ornigotti and A. Aiello, “Goos-Hänchen and Imbert-Fedorov shifts for bounded wavepackets of light,” J. Opt. 15, 014004 (2013).
[CrossRef]

X. P. Wang, C. Yin, and J. J. Sun, “Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect,” J. Opt. 15, 014007 (2013).
[CrossRef]

Metamaterials

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5, 1–7 (2011).
[CrossRef]

MRS Bull.

G. N. Parsons, S. M. George, and M. Knez, “Progress and future directions for atomic layer deposition and ALD-based chemistry,” MRS Bull. 36, 865–871 (2011).
[CrossRef]

Opt. Express

Opt. Mater. Express

Phys. Rev. A

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: strengths and limitations,” Phys. Rev. A 85, 053842 (2012).
[CrossRef]

Phys. Rev. E

X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 (2006).
[CrossRef]

Proc. Natl. Acad. Sci. USA

G. V. Naik, J. J. Liu, and A. V. Kildishev, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[CrossRef]

Science

H. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics