Abstract

Energy-saving photodetector (PD) with fast response speed is a key component of the next-generation photonic systems. In this work, self-powered photoelectrochemical (PEC) PD based on vertical (In,Ga)N nanowires (NWs) has been proposed and demonstrated successfully. With deionized water solution, the (In,Ga)N NWs are stable and the PEC PD is eco-friendly. The PEC PD has a good stability in terms of good on/off switching behaviors after continuously working for a few hours. The PD exhibits a high sensitivity under very low light illumination intensity of 6.4 μW/cm2. A fast rise/fall time of ∼54/55 ms with good symmetry can also be achieved. Moreover, the NW core-shell structure is proposed to provide an additional way for electron-hole carrier transport, which could play a key role in accelerating the response speed. This work paves a way to develop high-performance PEC PDs for the wide applications in wireless visible photodetection and communication.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Self-powered device can work independently and sustainably, which is one of the most effective approaches for the development of next-generation electronic systems [15]. As an indispensable part of a high-efficiency photoelectric sensing system, self-powered photodetectors (PDs) have attracted enormous attention [6,7]. Thanks to the ability to convert photons into electrical signals, photoelectrochemical (PEC) PDs are crucial to be utilized as the signal receivers for optoelectronic systems, such as the medical system [8], communication system and environmental monitoring system, etc [9,10]. With the advantages of simple equipment and low cost [1114], PEC PDs are promising to construct a system without an external energy supply. In recent years, some materials have been utilized in the PEC field, such as silicon (Si) and III-V semiconductors [1517]. Due to the advantages of tunable bandgap (0.7–3.4 eV), being non-toxic, long lifetime and superior stability against radiation, indium gallium nitride [(In,Ga)N] is emerging as an excellent candidate material for making PEC devices [1820]. Thus, (In,Ga)N is suitable for fabricating an efficient and sustainable PDs, which can expand their applications in wireless visible photodetection and communication [21].

Compared with conventional planar films, nanowires (NWs) have a larger surface-to-volume ratio, which will increase optical absorption and photogenerated carrier density [21]. By relaxing strain and reducing defects, NWs are beneficial to achieve high In compositions [22], which are good for engineering the visible detection range of PDs. However, very few works have been reported to utilize (In,Ga)N NWs for PEC PDs. In our previous work, (In,Ga)N NWs have been applied in the electrochemical (EC) reaction [23,24]. After a very short time (<10 min), (In,Ga)N NWs can be detached from the epitaxial wafers. The EC solution can penetrate into the space among NWs to accelerate the etching process. In other words, when fabricating (In,Ga)N NWs for PEC PDs as that way shown in Ref. [25], the PD lifetime should be very short, resulting in the very low stability. Furthermore, the acid and alkaline etching solutions have potential safety hazards, which can hinder the applications of PEC PDs based on (In,Ga)N NWs. Therefore, an effective approach to fabricate self-powered (In,Ga)N NW PDs with high stability and safety is still very challenging but pretty attractive and promising.

In this work, we demonstrate a self-powered PEC PD based on (In,Ga)N NWs structure grown by molecular beam epitaxy. The environmental-friendly PD exhibits high stability and fast response speed. The underlying mechanism contributing to the fast response speed has also been studied.

2. Experimental section

Prior to the molecular beam epitaxy (MBE, Vecco G20) growth, the Si (111) substrates in the growth chamber should be heated up to about 900 °C for 15 min to eliminate native oxides by observing the 7×7 reconstruction. Then the substrate temperature was set to be 830 °C. Initially, GaN NWs were grown with a Ga flux of ∼7.5 × 10−9 Torr for 100 min. After the growth of the GaN section, the (In,Ga)N section was grown for about 50 min with an In/Ga flux ratio of ∼1.1. For the better In incorporation, the substrate temperature was decreased from 830 °C to 650 °C. When starting and finishing growing the (In,Ga)N segment, the shutters of In and Ga cells were opened and closed simultaneously controlled by the software. To increase the NW uniformity, samples were rotated with a rate of 120 °/s during the growth process.

A typical PEC system was used to evaluate the detector performance by an H-type electrolytic cell, which was made from quartz with high transparency in the visible range. The NW samples were used as the working electrode (anode). Cu plate was utilized as the counter electrode (cathode). A piece of In/Au/Al alloys was melted on the Si backside via a welding torch to form an ohmic contact. Then a conducting wire was used to connect the alloys and the electric source. Except the NW surface, these electric contacts were coated by epoxy resin to avoid the current leakage and EC corrosion. The cost for making a PEC PD (except MBE epitaxial cost) was estimated to be less than ${\$}$0.5, including In/Au/Al alloys and conducting wires. Such an inexpensive fabrication procedure should be beneficial for wide applications [23].

NW samples were characterized by scanning electron microscopy (SEM, S-4800, Hitachi). The scanning transmission electron microscopy (STEM) and high-resolution energy dispersive X-ray (EDX) mapping were utilized to measure the morphology and element distribution of NWs. Atomic force microscopy (AFM) was utilized to study the surface roughness. A photoluminescence (PL, PLE-2355, PI-Acton) system was also conducted to study the optical properties by using a 405 nm laser as the excitation source.

3. Results and discussion

As discussed in Refs. [23] and [24], the acid or alkaline solutions can accelerate the EC etching progress, and a thin AlN buffer layer can act as the sacrificial layer (Fig. 1(a)). In other words, the acid or alkaline solutions, as well as the AlN buffer layer can play the key roles in detaching (In,Ga)N NWs, which makes the NWs unstable to be lifted off during the EC processes. As a result, in this work, deionized water was used as the electrolyte instead of the acid and alkaline solutions to slow down the etching rate. Furthermore, to make the PD more stable, (In,Ga)N NWs were designed to be grown by MBE without AlN buffer layer (Fig. 1(b)).

 figure: Fig. 1.

Fig. 1. Schematic diagram of vertical (In,Ga)N NWs (a) with and (b) without AlN buffer layer. (c) Experimental PL spectra of (In,Ga)N NWs. (d) Schematic illustration of a self-powered PEC PD based on (In,Ga)N NWs.

Download Full Size | PPT Slide | PDF

To characterize the content of the In component, the PL measurement was performed. As shown in Fig. 1(c), the PL spectrum is centered at ∼680 nm. According to the physical properties with Vegard’s law [25,30], the PL peak corresponds to about 47% In composition. Figure 1(d) illustrates the working processes of self-powered PEC PD. The (In,Ga)N NW sample acts as the photoelectrode and the H-type reaction cell undertakes the photoelectric detection.

As illustrated in Figs. 2(a) and 2(b), NWs are vertically formed and aligned on the Si substrate. The NW diameters are in a range of 40∼80 nm and the lengths vary from 160 to 200 nm. The STEM images in Fig. S1 (Supporting content) prove that the top thick NWs are (In,Ga)N sections, indicating that the NW structure agrees well with the epitaxial design. The weak In signal (Fig. S1b) indicates the existence of (In,Ga)N core-shell structure. As illustrated in Fig. S2, the root-mean-square roughness (RMS) result of the top NW surface is 18.5 nm. Moreover, Figs. 2(c) and 2(d) show the NW morphology after the 3 h measurement of PEC detection. Compared to the etching results of lift-off NWs in Refs [23] and [25], the NWs within the PD are not lifted off and they remain on the wafer. Thus, the etching effect is limited and the PD is still stable after 3 h EC etching.

 figure: Fig. 2.

Fig. 2. (a) Top-view and (b) side-view SEM images of as-grown (In,Ga)N NWs before PEC detection. (c) Top-view and (d) side-view SEM images of (In,Ga)N NWs after 3 h PEC detection.

Download Full Size | PPT Slide | PDF

As illustrated in Fig. 3(a), the current-voltage (I-V) curve under dark condition avoids the obvious rectification effect, indicating the formation of ohmic contact and an open-circuit potential between the electrodes [26]. The current under 630 nm illumination exhibits an overall upward shift due to the photogenerated carriers. Moreover, the key parameters of the rise time (trise, defined as the time required for photocurrent increases from 10% to 90% of the maximum value) and fall time (tfall, defined as the time required for the photocurrent falls from 90% to 10% of the maximum value) are shown in Fig. 3(b) and Table 1. According to the enlarged curves in Fig. 3(b), trise is around 54 ms and tfall is about 55 ms. The nearly equal trise and tfall indicate the almost same carrier separation/recombination rates and the similar response speeds of PEC PD. To better compare this work with the recent results, Table 1 lists some data of PD response time and PD responsivity. By comparison, our PEC PD has advantages in the transient response, as well as the symmetrical characteristic of trise/tfall.

 figure: Fig. 3.

Fig. 3. (a) I-V curves of the PD in the dark and under the 630 nm illumination. (b) Transient response of the PD under 630 nm illumination and an open-circuit potential. Insets are the enlarged curves of rise time and fall time, respectively.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Comparison of response time and responsivity between this work and some recent reports.

Figure 4(a) shows the photo-switching behaviors of the PEC PD under different illumination power. Fig. S3 and Eq. S1 illustrate the method of calibrating the light power density illuminating on the PD during the detection experiments. The current curves show sharp positive and negative spikes when the power density is stronger than 92 μW/cm2, while the spikes are not obvious under lower light power density. At the power density of about 92 μW/cm2, a light/dark current ratio of ∼22.8 can be achieved. To gain further insight into the photocarrier trapping and recombination processes of PEC PD, a critical relationship between the photocurrent and the light power density has been measured and shown in Fig. 4(b). Photoelectric current with incident illumination displays a well linear relationship with increasing light power. Responsivity (R) is another critical index for PDs, which is calculated from the following equation [13,41]:

$$R = \frac{{{I_{ph}}}}{{{P_{inc}}}}, $$
where Iph is the photocurrent density and Pinc is the incident light power density. The effective area of our incident light is around 0.25 cm2. The calculated $R$ values under different light powers are summarized in Fig. 4(b). R of PEC PD can reach 0.75 mA/W with an illumination power of 6.4 µW/cm2.

 figure: Fig. 4.

Fig. 4. (a) Photo-switching behaviors of the self-powered PEC PD under illuminations with different powers and an open-circuit potential. The unit of incident light power density is μW/cm2. (b) Photocurrent density and responsivity as a function of incident light power density.

Download Full Size | PPT Slide | PDF

As illustrated in Fig. 5(a), 50 on/off light cycles have almost no effects on the I-V curve of PEC PD, while the 100 on/off light cycles have a very limited effect. Figure 5(b) presents that the photocurrent density can be effectively switched by controlling the on/off processes of the light source. The periodic on/off illumination can result in a periodic charge and discharge cycle. To further evaluate the stability of the PEC PD, the additional long-time response measurements are carried out under open-circuit potentials for 2 h and 3 h. Figures 2(c), 2(d), 5(c) and 5(d) confirm that this PEC PD has a good stability, including the on/off switching behaviors.

 figure: Fig. 5.

Fig. 5. (a) Photocurrent stability of PEC PD based on (In,Ga)N NWs. Photocurrent response measurement of PEC PD under open-circuit potential when continuously working (b) 300 s, (c) 2 h and (d) 3 h.

Download Full Size | PPT Slide | PDF

To better study the underlying mechanism of the PEC PD, the schematic illustrations are plotted in Fig. 6. Compared with planar films, NWs could absorb photons and generate carriers more easily because of the larger surface-to-volume ratio. As the (In,Ga)N/GaN NWs grown by MBE are normal core-shell structures, which are possible to provide two ways for carrier transports (Fig. 6(a)). The top NW surfaces can absorb photons and the photogenerated electron-hole (e--h+) carriers can transport in the vertical direction as the common way (Way I in Fig. 6(a)). Apart from the top NW surfaces, the (In,Ga)N shell (sidewall) can also absorb photons and generate e--h+ carriers. Such carriers can transport in both the vertical (sidewall) and horizontal (core/shell heterojunction) directions (Way II). Furthermore, due to the light trapping in the NW assembly, the core/shell NWs could potentially optimize the light absorption and carrier transfer [40,42]. Therefore, the core-shell structure could allow a more efficient and faster carrier separation and collection [4244], leading to the fast response speed of the PD (Table 1).

 figure: Fig. 6.

Fig. 6. Schematic illustrations of (a) the NW structure and (b) the corresponding energy band diagram under 630 nm illumination.

Download Full Size | PPT Slide | PDF

Figure 6(b) shows the electronic energy levels. When the (In,Ga)N section is in contact with the electrolyte, an EC equilibrium is established by conveying electrons from the NWs to the electrolyte, resulting in an upward band bend at the (In,Ga)N NW/electrolyte interface [45]. In dark conditions, the band bending at the interfaces acts as energy barriers to block the carrier transport, leading to a low dark current of the PEC PD (Fig. 3(b)). When the PEC PD is under illumination, the strong built-in electric field caused by band bends may lead to the rapid separation of electrons and holes in the (In,Ga)N section. The production of photoelectric current is likely to promote the water splitting into hydrogen and oxygen via the following reactions [46,47]:

$${\textrm{H}^ + } + 4{\textrm{e}^ - } = 2{\textrm{H}_2},$$
$$4{\textrm{h}^ + } + 2{\textrm{H}_2}\textrm{O } = {\textrm{O}_2} + 4{\textrm{H}^ + }.$$
The whole circuit with both light harvest and carrier transport can be completed in the absence of external bias. As shown in Fig. 3(b), the current shifts positively when the light is on (Process I). This positive current indicates that photogenerated holes transfer to the top NW surface while the electrons transfer to bottom NWs (Fig. 6(b)). However, the junction barrier at the interface obstructs the electrons passing through. These electrons are blocked and accumulated around the surface of the NWs. Thus, the flow of electrons through the external circuit is possible to be detected as an electrical pulse in Fig. 4(a) [2]. As time goes on, the current density gradually decreases to a new steady state under continuous illumination (Process II). When the light is off, electrons transfer to the top NW surface (Process III), which is the opposite direction of process I, leading to the recovery of dark state (Process IV). On the other hand, strong light intensity causes a large number of carrier accumulation, the width of the interface depletion area and the internal electric field may be affected by the light intensity [48,49]. From Fig. 4(a), the peak value of the positive charge is slightly larger than the negative one, which indicates that the separation of electron-hole pairs in the depletion layer plays a more significant role under illuminations.

In the further study, the NW density, NW morphology and NW energy band can be engineered and optimized to enhance the photocurrent and responsivity densities based on this work. It is beneficial to further improve the PD performance and promote its applications.

4. Conclusion

In conclusion, an environmentally-friendly PEC PD based on (In,Ga)N NWs has been fabricated successfully with a low cost. Due to the band bend at the NW/electrolyte water interface, the PD can operate with a fast response speed of ∼54/55 ms. The NW core-shell structures could allow an efficient and fast carrier transfer. The on/off light behaviors of this PEC PD are stable. A responsivity of around 0.75 mA/W under 630 nm illumination can be achieved. In addition, the stabilities of on/off light cycles and photocurrent have also been demonstrated. Therefore, the proposed PEC PD is promising for wide applications requiring low cost, low power consumption, eco-friendly and excellent stability, such as the self-powered detection and communication systems, etc.

Funding

National Key Research and Development Program of China(2018YFB0406900, 2018YFB0406902); Natural Science Foundation of Jiangsu Province (BK20180252); Jiangsu Provincial Key Research and Development Program (BE2018005);Key Research Program of Frontier Science, Chinese Academy of Sciences (ZDBS-LY-JSC034); National Natural Science Foundation of China (61804163, 61827823, 61875224); Natural Science Foundation of Jiangxi Province (20192BBEL50033); National Key Scientific Instrument and Equipment Development Projects of China CAS (YJKYYQ20200073); National Key Scientific Instrument and Equipment Development Projects of China SINANO (Y8AAQ21001); Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics (B2006).

Acknowledgments

We are thankful for the technical support from Platform for Characterization & Test of SINANO, CAS.

Disclosures

The authors declare no conflict of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Supplemental document

See Supplement 1 for supporting content.

References

1. S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018). [CrossRef]  

2. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5(5), 366–373 (2010). [CrossRef]  

3. X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, T. Fu, J. Chen, D. R. Lovley, and J. Yao, “Power generation from ambient humidity using protein nanowires,” Nature 578(7796), 550–554 (2020). [CrossRef]  

4. S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017). [CrossRef]  

5. C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang, and J. Zhu, “Nanowire-based high-performance “micro fuel cells": one nanowire, one fuel cell,” Adv. Mater. 20(9), 1644–1648 (2008). [CrossRef]  

6. H. Sun, W. Tian, F. Cao, J. Xiong, and L. Li, “Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector,” Adv. Mater. 30(21), 1706986 (2018). [CrossRef]  

7. D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W. P. Hu, and W. Chen, “Surface transfer doping-induced, high-performance graphene/silicon schottky junction-based, self-powered photodetector,” Small 11(37), 4829–4836 (2015). [CrossRef]  

8. R. Atchudan, N. Muthuchamy, T. N. J. I. Edison, S. Perumal, R. Vinodh, K. H. Park, and Y. R. Lee, “An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles,” Biosens. Bioelectron. 126, 160–169 (2019). [CrossRef]  

9. F. P. G. de Arquer, A. Armin, P. Meredith, and E. H. Sargent, “Solution-processed semiconductors for next-generation photodetectors,” Nat. Rev. Mater. 2(3), 16100 (2017). [CrossRef]  

10. C. Zhu, D. Liu, Y. Li, X. Shen, L. Li, Y. Liu, and T. You, “Ratiometric electrochemical, electrochemiluminescent, and photoelectrochemical strategies for environmental contaminant detection,” Curr Opin Electrochem 17, 47–55 (2019). [CrossRef]  

11. W. Tian, Y. Wang, L. Chen, and L. Li, “Self-powered nanoscale photodetectors,” Small 13(45), 1701848 (2017). [CrossRef]  

12. J. Zhou, L. Chen, Y. Wang, Y. He, X. Pan, and E. Xie, “An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors,” Nanoscale 8(1), 50–73 (2016). [CrossRef]  

13. Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018). [CrossRef]  

14. Y. Zhou, H. Wang, Y. Zhuo, Y. Chai, and R. Yuan, “Highly efficient electrochemiluminescent silver nanoclusters/titanium oxide nanomaterials as a signal probe for ferrocene-driven light switch bioanalysis,” Anal. Chem. 89(6), 3732–3738 (2017). [CrossRef]  

15. H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016). [CrossRef]  

16. M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Gratzel, “A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017). [CrossRef]  

17. M. M. May, H.-J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6(1), 8286 (2015). [CrossRef]  

18. M. Riedel, S. Hoelzel, P. Hille, J. Schoermann, M. Eickhoff, and F. Lisdat, “InGaN/GaN nanowires as a new platform for photoelectrochemical sensors-detection of NADH,” Biosens. Bioelectron. 94, 298–304 (2017). [CrossRef]  

19. N. Ul Hassan Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. Jesus Gomez, A. U. H. Alvi, W. ul Hassan, M. Willander, and R. Noetzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015). [CrossRef]  

20. M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-step overall water wplitting under visible light using multiband InGaN/GaN nanowire heterostructures,” ACS Nano 7(9), 7886–7893 (2013). [CrossRef]  

21. J. Zhang, M. Zhou, D. Wu, L. Bian, Y. Zhao, H. Qin, W. Yang, Y. Wu, Z. Xing, and S. Lu, “Dual-wavelength visible photodetector based on vertical (In,Ga)N nanowires grown by molecular beam epitaxy,” RSC Adv. 11(26), 15632–15638 (2021). [CrossRef]  

22. M. Zhou, H. Qiu, T. He, J. Zhang, W. Yang, S. Lu, L. Bian, and Y. Zhao, “UV photodetector based on vertical (Al, Ga)N nanowires with graphene electrode and Si substrate,” Phys. Status Solidi A 217(15), 2000061 (2020). [CrossRef]  

23. Y. Zhao, Z. Xing, L. Geelhaar, J. Zhang, W. Yang, T. Auzelle, Y. Wu, L. Bian, and S. Lu, “Detaching (In,Ga)N nanowire films for devices requiring high flexibility and transmittance,” ACS Appl. Nano Mater. 3(10), 9943–9950 (2020). [CrossRef]  

24. Z. Xing, Y. Zhao, L. Bian, J. Zhang, M. Zhou, W. Yang, Y. Wu, M. Jiang, J. Long, and S. Lu, “Economically detaching transparent and flexible (Al,Ga)N nanowire films with improved photoelectric response in view of ultraviolet photodetectors,” Mater. Adv. 2(3), 1006–1015 (2021). [CrossRef]  

25. J. Zhang, Z. Xing, D. Wu, L. Bian, Y. Zhao, W. Yang, Y. Wu, M. Zhou, M. Jiang, and S. Lu, “Mechanism study of photoluminescence peak shift of transparent (In,Ga)N nanowire films detached by acid solution,” J. Cryst. Growth 562, 126066 (2021). [CrossRef]  

26. J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “P-type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017). [CrossRef]  

27. Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, and L. Mei, “ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector,” Nanoscale Res. Lett. 8(1), 415 (2013). [CrossRef]  

28. Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013). [CrossRef]  

29. M. Zhang, Y. Liu, M. Yang, W. Zhang, J. Zhou, Z. Zhang, E. Xie, X. Pan, and S. Li, “High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires,” Appl. Surf. Sci. 452, 43–48 (2018). [CrossRef]  

30. D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021). [CrossRef]  

31. J. Zhang, S. Jiao, D. Wang, S. Ni, S. Gao, and J. Wang, “Solar-blind ultraviolet photodetection of an α-Ga2O3 nanorod array based on photoelectrochemical self-powered detectors with a simple, newly-designed structure,” J. Mater. Chem. C 7(23), 6867–6871 (2019). [CrossRef]  

32. M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020). [CrossRef]  

33. D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019). [CrossRef]  

34. N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, X. Dou Shi, and Y. Du, “Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector,” Small 16(23), 2000283 (2020). [CrossRef]  

35. X. Ren, B. Wang, Z. Huang, H. Qiao, C. Duan, Y. Zhou, J. Zhong, Z. Wang, and X. Qi, “Flexible self-powered photoelectrochemical-type photodetector based on 2D WS2-graphene heterojunction,” FlatChem 25, 100215 (2021). [CrossRef]  

36. X. Ren, W. Zheng, H. Qiao, L. Ren, S. Liu, Z. Huang, X. Qi, Z. Wang, J. Zhong, and H. Zhang, “Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface,” Mater. Today Energy 16, 100401 (2020). [CrossRef]  

37. B. Wang, Y. Zhou, Z. Huang, H. Qiao, C. Duan, X. Ren, Z. Wang, J. Zhong, and X. Qi, “Photoelectrochemical self-powered photodetector based on 2D liquid-exfoliated bismuth nanosheets: with novel structures for portability and flexibility,” Mater. Today Nano 14, 100109 (2021). [CrossRef]  

38. H. Qiao, Z. Li, Z. Huang, X. Ren, J. Kang, M. Qiu, Y. Liu, X. Qi, J. Zhong, and H. Zhang, “Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters,” Appl. Mater. Today 20, 100765 (2020). [CrossRef]  

39. M. Tchernycheva, A. Messanvi, A. d, L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014). [CrossRef]  

40. H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017). [CrossRef]  

41. C. Xing, X. Chen, W. Huang, Y. Song, J. Li, S. Chen, Y. Zhou, B. Dong, D. Fan, X. Zhu, and H. Zhang, “Two-dimensional lead monoxide: facile liquid phase exfoliation, excellent photoresponse performance, and theoretical investigation,” ACS Photonics 5(12), 5055–5067 (2018). [CrossRef]  

42. Y. Zheng, Y. Li, X. Tang, W. Wang, and G. Li, “A self-powered high-performance UV photodetector based on core-shell GaN/MoO3-x nanorod array heterojunction,” Adv. Opt. Mater. 8(15), 2000197 (2020). [CrossRef]  

43. P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan, A. L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, and A. Vomiero, “ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors,” Nano Energy 51, 308–316 (2018). [CrossRef]  

44. P. Ghamgosar, F. Rigoni, M. G. Kohan, S. You, E. A. Morales, R. Mazzaro, V. Morandi, N. Almqvist, I. Concina, and A. Vomiero, “Self-powered photodetectors based on core shell ZnO-Co3O4 nanowire heterojunctions,” ACS Appl. Mater. Interfaces 11(26), 23454–23462 (2019). [CrossRef]  

45. M. Gratzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001). [CrossRef]  

46. A. G. Wallace and M. D. Symes, “Decoupling strategies in electrochemical water splitting and beyond,” Joule 2(8), 1390–1395 (2018). [CrossRef]  

47. K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016). [CrossRef]  

48. B. Shan, M. K. Brenneman, L. Troian-Gautier, Y. Liu, A. Nayak, C. M. Klug, T.-T. Li, R. M. Bullock, and T. J. Meyer, “A silicon-based heterojunction integrated with a molecular excited state in a water-splitting tandem cell,” J. Am. Chem. Soc. 141(26), 10390–10398 (2019). [CrossRef]  

49. C. Decavoli, C. L. Boldrini, N. Manfredi, and A. Abbotto, “Molecular organic sensitizers for photoelectrochemical water splitting,” Eur. J. Inorg. Chem. 2020(11-12), 978–999 (2020). [CrossRef]  

References

  • View by:

  1. S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
    [Crossref]
  2. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5(5), 366–373 (2010).
    [Crossref]
  3. X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, T. Fu, J. Chen, D. R. Lovley, and J. Yao, “Power generation from ambient humidity using protein nanowires,” Nature 578(7796), 550–554 (2020).
    [Crossref]
  4. S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
    [Crossref]
  5. C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang, and J. Zhu, “Nanowire-based high-performance “micro fuel cells": one nanowire, one fuel cell,” Adv. Mater. 20(9), 1644–1648 (2008).
    [Crossref]
  6. H. Sun, W. Tian, F. Cao, J. Xiong, and L. Li, “Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector,” Adv. Mater. 30(21), 1706986 (2018).
    [Crossref]
  7. D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W. P. Hu, and W. Chen, “Surface transfer doping-induced, high-performance graphene/silicon schottky junction-based, self-powered photodetector,” Small 11(37), 4829–4836 (2015).
    [Crossref]
  8. R. Atchudan, N. Muthuchamy, T. N. J. I. Edison, S. Perumal, R. Vinodh, K. H. Park, and Y. R. Lee, “An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles,” Biosens. Bioelectron. 126, 160–169 (2019).
    [Crossref]
  9. F. P. G. de Arquer, A. Armin, P. Meredith, and E. H. Sargent, “Solution-processed semiconductors for next-generation photodetectors,” Nat. Rev. Mater. 2(3), 16100 (2017).
    [Crossref]
  10. C. Zhu, D. Liu, Y. Li, X. Shen, L. Li, Y. Liu, and T. You, “Ratiometric electrochemical, electrochemiluminescent, and photoelectrochemical strategies for environmental contaminant detection,” Curr Opin Electrochem 17, 47–55 (2019).
    [Crossref]
  11. W. Tian, Y. Wang, L. Chen, and L. Li, “Self-powered nanoscale photodetectors,” Small 13(45), 1701848 (2017).
    [Crossref]
  12. J. Zhou, L. Chen, Y. Wang, Y. He, X. Pan, and E. Xie, “An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors,” Nanoscale 8(1), 50–73 (2016).
    [Crossref]
  13. Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
    [Crossref]
  14. Y. Zhou, H. Wang, Y. Zhuo, Y. Chai, and R. Yuan, “Highly efficient electrochemiluminescent silver nanoclusters/titanium oxide nanomaterials as a signal probe for ferrocene-driven light switch bioanalysis,” Anal. Chem. 89(6), 3732–3738 (2017).
    [Crossref]
  15. H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
    [Crossref]
  16. M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Gratzel, “A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
    [Crossref]
  17. M. M. May, H.-J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6(1), 8286 (2015).
    [Crossref]
  18. M. Riedel, S. Hoelzel, P. Hille, J. Schoermann, M. Eickhoff, and F. Lisdat, “InGaN/GaN nanowires as a new platform for photoelectrochemical sensors-detection of NADH,” Biosens. Bioelectron. 94, 298–304 (2017).
    [Crossref]
  19. N. Ul Hassan Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. Jesus Gomez, A. U. H. Alvi, W. ul Hassan, M. Willander, and R. Noetzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
    [Crossref]
  20. M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-step overall water wplitting under visible light using multiband InGaN/GaN nanowire heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
    [Crossref]
  21. J. Zhang, M. Zhou, D. Wu, L. Bian, Y. Zhao, H. Qin, W. Yang, Y. Wu, Z. Xing, and S. Lu, “Dual-wavelength visible photodetector based on vertical (In,Ga)N nanowires grown by molecular beam epitaxy,” RSC Adv. 11(26), 15632–15638 (2021).
    [Crossref]
  22. M. Zhou, H. Qiu, T. He, J. Zhang, W. Yang, S. Lu, L. Bian, and Y. Zhao, “UV photodetector based on vertical (Al, Ga)N nanowires with graphene electrode and Si substrate,” Phys. Status Solidi A 217(15), 2000061 (2020).
    [Crossref]
  23. Y. Zhao, Z. Xing, L. Geelhaar, J. Zhang, W. Yang, T. Auzelle, Y. Wu, L. Bian, and S. Lu, “Detaching (In,Ga)N nanowire films for devices requiring high flexibility and transmittance,” ACS Appl. Nano Mater. 3(10), 9943–9950 (2020).
    [Crossref]
  24. Z. Xing, Y. Zhao, L. Bian, J. Zhang, M. Zhou, W. Yang, Y. Wu, M. Jiang, J. Long, and S. Lu, “Economically detaching transparent and flexible (Al,Ga)N nanowire films with improved photoelectric response in view of ultraviolet photodetectors,” Mater. Adv. 2(3), 1006–1015 (2021).
    [Crossref]
  25. J. Zhang, Z. Xing, D. Wu, L. Bian, Y. Zhao, W. Yang, Y. Wu, M. Zhou, M. Jiang, and S. Lu, “Mechanism study of photoluminescence peak shift of transparent (In,Ga)N nanowire films detached by acid solution,” J. Cryst. Growth 562, 126066 (2021).
    [Crossref]
  26. J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “P-type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
    [Crossref]
  27. Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, and L. Mei, “ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector,” Nanoscale Res. Lett. 8(1), 415 (2013).
    [Crossref]
  28. Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
    [Crossref]
  29. M. Zhang, Y. Liu, M. Yang, W. Zhang, J. Zhou, Z. Zhang, E. Xie, X. Pan, and S. Li, “High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires,” Appl. Surf. Sci. 452, 43–48 (2018).
    [Crossref]
  30. D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
    [Crossref]
  31. J. Zhang, S. Jiao, D. Wang, S. Ni, S. Gao, and J. Wang, “Solar-blind ultraviolet photodetection of an α-Ga2O3 nanorod array based on photoelectrochemical self-powered detectors with a simple, newly-designed structure,” J. Mater. Chem. C 7(23), 6867–6871 (2019).
    [Crossref]
  32. M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020).
    [Crossref]
  33. D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
    [Crossref]
  34. N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, X. Dou Shi, and Y. Du, “Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector,” Small 16(23), 2000283 (2020).
    [Crossref]
  35. X. Ren, B. Wang, Z. Huang, H. Qiao, C. Duan, Y. Zhou, J. Zhong, Z. Wang, and X. Qi, “Flexible self-powered photoelectrochemical-type photodetector based on 2D WS2-graphene heterojunction,” FlatChem 25, 100215 (2021).
    [Crossref]
  36. X. Ren, W. Zheng, H. Qiao, L. Ren, S. Liu, Z. Huang, X. Qi, Z. Wang, J. Zhong, and H. Zhang, “Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface,” Mater. Today Energy 16, 100401 (2020).
    [Crossref]
  37. B. Wang, Y. Zhou, Z. Huang, H. Qiao, C. Duan, X. Ren, Z. Wang, J. Zhong, and X. Qi, “Photoelectrochemical self-powered photodetector based on 2D liquid-exfoliated bismuth nanosheets: with novel structures for portability and flexibility,” Mater. Today Nano 14, 100109 (2021).
    [Crossref]
  38. H. Qiao, Z. Li, Z. Huang, X. Ren, J. Kang, M. Qiu, Y. Liu, X. Qi, J. Zhong, and H. Zhang, “Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters,” Appl. Mater. Today 20, 100765 (2020).
    [Crossref]
  39. M. Tchernycheva, A. Messanvi, A. d, L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
    [Crossref]
  40. H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
    [Crossref]
  41. C. Xing, X. Chen, W. Huang, Y. Song, J. Li, S. Chen, Y. Zhou, B. Dong, D. Fan, X. Zhu, and H. Zhang, “Two-dimensional lead monoxide: facile liquid phase exfoliation, excellent photoresponse performance, and theoretical investigation,” ACS Photonics 5(12), 5055–5067 (2018).
    [Crossref]
  42. Y. Zheng, Y. Li, X. Tang, W. Wang, and G. Li, “A self-powered high-performance UV photodetector based on core-shell GaN/MoO3-x nanorod array heterojunction,” Adv. Opt. Mater. 8(15), 2000197 (2020).
    [Crossref]
  43. P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan, A. L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, and A. Vomiero, “ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors,” Nano Energy 51, 308–316 (2018).
    [Crossref]
  44. P. Ghamgosar, F. Rigoni, M. G. Kohan, S. You, E. A. Morales, R. Mazzaro, V. Morandi, N. Almqvist, I. Concina, and A. Vomiero, “Self-powered photodetectors based on core shell ZnO-Co3O4 nanowire heterojunctions,” ACS Appl. Mater. Interfaces 11(26), 23454–23462 (2019).
    [Crossref]
  45. M. Gratzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
    [Crossref]
  46. A. G. Wallace and M. D. Symes, “Decoupling strategies in electrochemical water splitting and beyond,” Joule 2(8), 1390–1395 (2018).
    [Crossref]
  47. K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
    [Crossref]
  48. B. Shan, M. K. Brenneman, L. Troian-Gautier, Y. Liu, A. Nayak, C. M. Klug, T.-T. Li, R. M. Bullock, and T. J. Meyer, “A silicon-based heterojunction integrated with a molecular excited state in a water-splitting tandem cell,” J. Am. Chem. Soc. 141(26), 10390–10398 (2019).
    [Crossref]
  49. C. Decavoli, C. L. Boldrini, N. Manfredi, and A. Abbotto, “Molecular organic sensitizers for photoelectrochemical water splitting,” Eur. J. Inorg. Chem. 2020(11-12), 978–999 (2020).
    [Crossref]

2021 (6)

Z. Xing, Y. Zhao, L. Bian, J. Zhang, M. Zhou, W. Yang, Y. Wu, M. Jiang, J. Long, and S. Lu, “Economically detaching transparent and flexible (Al,Ga)N nanowire films with improved photoelectric response in view of ultraviolet photodetectors,” Mater. Adv. 2(3), 1006–1015 (2021).
[Crossref]

J. Zhang, Z. Xing, D. Wu, L. Bian, Y. Zhao, W. Yang, Y. Wu, M. Zhou, M. Jiang, and S. Lu, “Mechanism study of photoluminescence peak shift of transparent (In,Ga)N nanowire films detached by acid solution,” J. Cryst. Growth 562, 126066 (2021).
[Crossref]

J. Zhang, M. Zhou, D. Wu, L. Bian, Y. Zhao, H. Qin, W. Yang, Y. Wu, Z. Xing, and S. Lu, “Dual-wavelength visible photodetector based on vertical (In,Ga)N nanowires grown by molecular beam epitaxy,” RSC Adv. 11(26), 15632–15638 (2021).
[Crossref]

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

X. Ren, B. Wang, Z. Huang, H. Qiao, C. Duan, Y. Zhou, J. Zhong, Z. Wang, and X. Qi, “Flexible self-powered photoelectrochemical-type photodetector based on 2D WS2-graphene heterojunction,” FlatChem 25, 100215 (2021).
[Crossref]

B. Wang, Y. Zhou, Z. Huang, H. Qiao, C. Duan, X. Ren, Z. Wang, J. Zhong, and X. Qi, “Photoelectrochemical self-powered photodetector based on 2D liquid-exfoliated bismuth nanosheets: with novel structures for portability and flexibility,” Mater. Today Nano 14, 100109 (2021).
[Crossref]

2020 (9)

H. Qiao, Z. Li, Z. Huang, X. Ren, J. Kang, M. Qiu, Y. Liu, X. Qi, J. Zhong, and H. Zhang, “Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters,” Appl. Mater. Today 20, 100765 (2020).
[Crossref]

X. Ren, W. Zheng, H. Qiao, L. Ren, S. Liu, Z. Huang, X. Qi, Z. Wang, J. Zhong, and H. Zhang, “Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface,” Mater. Today Energy 16, 100401 (2020).
[Crossref]

M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020).
[Crossref]

N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, X. Dou Shi, and Y. Du, “Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector,” Small 16(23), 2000283 (2020).
[Crossref]

M. Zhou, H. Qiu, T. He, J. Zhang, W. Yang, S. Lu, L. Bian, and Y. Zhao, “UV photodetector based on vertical (Al, Ga)N nanowires with graphene electrode and Si substrate,” Phys. Status Solidi A 217(15), 2000061 (2020).
[Crossref]

Y. Zhao, Z. Xing, L. Geelhaar, J. Zhang, W. Yang, T. Auzelle, Y. Wu, L. Bian, and S. Lu, “Detaching (In,Ga)N nanowire films for devices requiring high flexibility and transmittance,” ACS Appl. Nano Mater. 3(10), 9943–9950 (2020).
[Crossref]

X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, T. Fu, J. Chen, D. R. Lovley, and J. Yao, “Power generation from ambient humidity using protein nanowires,” Nature 578(7796), 550–554 (2020).
[Crossref]

Y. Zheng, Y. Li, X. Tang, W. Wang, and G. Li, “A self-powered high-performance UV photodetector based on core-shell GaN/MoO3-x nanorod array heterojunction,” Adv. Opt. Mater. 8(15), 2000197 (2020).
[Crossref]

C. Decavoli, C. L. Boldrini, N. Manfredi, and A. Abbotto, “Molecular organic sensitizers for photoelectrochemical water splitting,” Eur. J. Inorg. Chem. 2020(11-12), 978–999 (2020).
[Crossref]

2019 (6)

B. Shan, M. K. Brenneman, L. Troian-Gautier, Y. Liu, A. Nayak, C. M. Klug, T.-T. Li, R. M. Bullock, and T. J. Meyer, “A silicon-based heterojunction integrated with a molecular excited state in a water-splitting tandem cell,” J. Am. Chem. Soc. 141(26), 10390–10398 (2019).
[Crossref]

P. Ghamgosar, F. Rigoni, M. G. Kohan, S. You, E. A. Morales, R. Mazzaro, V. Morandi, N. Almqvist, I. Concina, and A. Vomiero, “Self-powered photodetectors based on core shell ZnO-Co3O4 nanowire heterojunctions,” ACS Appl. Mater. Interfaces 11(26), 23454–23462 (2019).
[Crossref]

R. Atchudan, N. Muthuchamy, T. N. J. I. Edison, S. Perumal, R. Vinodh, K. H. Park, and Y. R. Lee, “An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles,” Biosens. Bioelectron. 126, 160–169 (2019).
[Crossref]

C. Zhu, D. Liu, Y. Li, X. Shen, L. Li, Y. Liu, and T. You, “Ratiometric electrochemical, electrochemiluminescent, and photoelectrochemical strategies for environmental contaminant detection,” Curr Opin Electrochem 17, 47–55 (2019).
[Crossref]

J. Zhang, S. Jiao, D. Wang, S. Ni, S. Gao, and J. Wang, “Solar-blind ultraviolet photodetection of an α-Ga2O3 nanorod array based on photoelectrochemical self-powered detectors with a simple, newly-designed structure,” J. Mater. Chem. C 7(23), 6867–6871 (2019).
[Crossref]

D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
[Crossref]

2018 (7)

M. Zhang, Y. Liu, M. Yang, W. Zhang, J. Zhou, Z. Zhang, E. Xie, X. Pan, and S. Li, “High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires,” Appl. Surf. Sci. 452, 43–48 (2018).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

H. Sun, W. Tian, F. Cao, J. Xiong, and L. Li, “Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector,” Adv. Mater. 30(21), 1706986 (2018).
[Crossref]

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

A. G. Wallace and M. D. Symes, “Decoupling strategies in electrochemical water splitting and beyond,” Joule 2(8), 1390–1395 (2018).
[Crossref]

P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan, A. L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, and A. Vomiero, “ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors,” Nano Energy 51, 308–316 (2018).
[Crossref]

C. Xing, X. Chen, W. Huang, Y. Song, J. Li, S. Chen, Y. Zhou, B. Dong, D. Fan, X. Zhu, and H. Zhang, “Two-dimensional lead monoxide: facile liquid phase exfoliation, excellent photoresponse performance, and theoretical investigation,” ACS Photonics 5(12), 5055–5067 (2018).
[Crossref]

2017 (8)

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

F. P. G. de Arquer, A. Armin, P. Meredith, and E. H. Sargent, “Solution-processed semiconductors for next-generation photodetectors,” Nat. Rev. Mater. 2(3), 16100 (2017).
[Crossref]

Y. Zhou, H. Wang, Y. Zhuo, Y. Chai, and R. Yuan, “Highly efficient electrochemiluminescent silver nanoclusters/titanium oxide nanomaterials as a signal probe for ferrocene-driven light switch bioanalysis,” Anal. Chem. 89(6), 3732–3738 (2017).
[Crossref]

W. Tian, Y. Wang, L. Chen, and L. Li, “Self-powered nanoscale photodetectors,” Small 13(45), 1701848 (2017).
[Crossref]

M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Gratzel, “A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
[Crossref]

M. Riedel, S. Hoelzel, P. Hille, J. Schoermann, M. Eickhoff, and F. Lisdat, “InGaN/GaN nanowires as a new platform for photoelectrochemical sensors-detection of NADH,” Biosens. Bioelectron. 94, 298–304 (2017).
[Crossref]

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “P-type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref]

2016 (3)

J. Zhou, L. Chen, Y. Wang, Y. He, X. Pan, and E. Xie, “An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors,” Nanoscale 8(1), 50–73 (2016).
[Crossref]

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

2015 (3)

N. Ul Hassan Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. Jesus Gomez, A. U. H. Alvi, W. ul Hassan, M. Willander, and R. Noetzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

M. M. May, H.-J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6(1), 8286 (2015).
[Crossref]

D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W. P. Hu, and W. Chen, “Surface transfer doping-induced, high-performance graphene/silicon schottky junction-based, self-powered photodetector,” Small 11(37), 4829–4836 (2015).
[Crossref]

2014 (1)

M. Tchernycheva, A. Messanvi, A. d, L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref]

2013 (3)

Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, and L. Mei, “ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector,” Nanoscale Res. Lett. 8(1), 415 (2013).
[Crossref]

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref]

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-step overall water wplitting under visible light using multiband InGaN/GaN nanowire heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref]

2010 (1)

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5(5), 366–373 (2010).
[Crossref]

2008 (1)

C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang, and J. Zhu, “Nanowire-based high-performance “micro fuel cells": one nanowire, one fuel cell,” Adv. Mater. 20(9), 1644–1648 (2008).
[Crossref]

2001 (1)

M. Gratzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[Crossref]

Abbotto, A.

C. Decavoli, C. L. Boldrini, N. Manfredi, and A. Abbotto, “Molecular organic sensitizers for photoelectrochemical water splitting,” Eur. J. Inorg. Chem. 2020(11-12), 978–999 (2020).
[Crossref]

Albarq, D.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Almqvist, N.

P. Ghamgosar, F. Rigoni, M. G. Kohan, S. You, E. A. Morales, R. Mazzaro, V. Morandi, N. Almqvist, I. Concina, and A. Vomiero, “Self-powered photodetectors based on core shell ZnO-Co3O4 nanowire heterojunctions,” ACS Appl. Mater. Interfaces 11(26), 23454–23462 (2019).
[Crossref]

P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan, A. L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, and A. Vomiero, “ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors,” Nano Energy 51, 308–316 (2018).
[Crossref]

Alvi, A. U. H.

N. Ul Hassan Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. Jesus Gomez, A. U. H. Alvi, W. ul Hassan, M. Willander, and R. Noetzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Armin, A.

F. P. G. de Arquer, A. Armin, P. Meredith, and E. H. Sargent, “Solution-processed semiconductors for next-generation photodetectors,” Nat. Rev. Mater. 2(3), 16100 (2017).
[Crossref]

Aseev, P.

N. Ul Hassan Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. Jesus Gomez, A. U. H. Alvi, W. ul Hassan, M. Willander, and R. Noetzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Atchudan, R.

R. Atchudan, N. Muthuchamy, T. N. J. I. Edison, S. Perumal, R. Vinodh, K. H. Park, and Y. R. Lee, “An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles,” Biosens. Bioelectron. 126, 160–169 (2019).
[Crossref]

Auzelle, T.

Y. Zhao, Z. Xing, L. Geelhaar, J. Zhang, W. Yang, T. Auzelle, Y. Wu, L. Bian, and S. Lu, “Detaching (In,Ga)N nanowire films for devices requiring high flexibility and transmittance,” ACS Appl. Nano Mater. 3(10), 9943–9950 (2020).
[Crossref]

Babichev, A. V.

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

Bao, Z.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Baughman, R. H.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Bellani, S.

M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020).
[Crossref]

Bescond, M.

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

Bian, L.

Z. Xing, Y. Zhao, L. Bian, J. Zhang, M. Zhou, W. Yang, Y. Wu, M. Jiang, J. Long, and S. Lu, “Economically detaching transparent and flexible (Al,Ga)N nanowire films with improved photoelectric response in view of ultraviolet photodetectors,” Mater. Adv. 2(3), 1006–1015 (2021).
[Crossref]

J. Zhang, M. Zhou, D. Wu, L. Bian, Y. Zhao, H. Qin, W. Yang, Y. Wu, Z. Xing, and S. Lu, “Dual-wavelength visible photodetector based on vertical (In,Ga)N nanowires grown by molecular beam epitaxy,” RSC Adv. 11(26), 15632–15638 (2021).
[Crossref]

J. Zhang, Z. Xing, D. Wu, L. Bian, Y. Zhao, W. Yang, Y. Wu, M. Zhou, M. Jiang, and S. Lu, “Mechanism study of photoluminescence peak shift of transparent (In,Ga)N nanowire films detached by acid solution,” J. Cryst. Growth 562, 126066 (2021).
[Crossref]

Y. Zhao, Z. Xing, L. Geelhaar, J. Zhang, W. Yang, T. Auzelle, Y. Wu, L. Bian, and S. Lu, “Detaching (In,Ga)N nanowire films for devices requiring high flexibility and transmittance,” ACS Appl. Nano Mater. 3(10), 9943–9950 (2020).
[Crossref]

M. Zhou, H. Qiu, T. He, J. Zhang, W. Yang, S. Lu, L. Bian, and Y. Zhao, “UV photodetector based on vertical (Al, Ga)N nanowires with graphene electrode and Si substrate,” Phys. Status Solidi A 217(15), 2000061 (2020).
[Crossref]

Bianca, G.

M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020).
[Crossref]

Bogdanoff, P.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “P-type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref]

Boldrini, C. L.

C. Decavoli, C. L. Boldrini, N. Manfredi, and A. Abbotto, “Molecular organic sensitizers for photoelectrochemical water splitting,” Eur. J. Inorg. Chem. 2020(11-12), 978–999 (2020).
[Crossref]

Bonaccorso, F.

M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020).
[Crossref]

Bougerol, C.

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

Bousa, D.

M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020).
[Crossref]

Brenneman, M. K.

B. Shan, M. K. Brenneman, L. Troian-Gautier, Y. Liu, A. Nayak, C. M. Klug, T.-T. Li, R. M. Bullock, and T. J. Meyer, “A silicon-based heterojunction integrated with a molecular excited state in a water-splitting tandem cell,” J. Am. Chem. Soc. 141(26), 10390–10398 (2019).
[Crossref]

Bugallo, L.

M. Tchernycheva, A. Messanvi, A. d, L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref]

Bullock, R. M.

B. Shan, M. K. Brenneman, L. Troian-Gautier, Y. Liu, A. Nayak, C. M. Klug, T.-T. Li, R. M. Bullock, and T. J. Meyer, “A silicon-based heterojunction integrated with a molecular excited state in a water-splitting tandem cell,” J. Am. Chem. Soc. 141(26), 10390–10398 (2019).
[Crossref]

Bykova, J.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Cao, F.

H. Sun, W. Tian, F. Cao, J. Xiong, and L. Li, “Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector,” Adv. Mater. 30(21), 1706986 (2018).
[Crossref]

Cavassilas, N.

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

Chai, Y.

Y. Zhou, H. Wang, Y. Zhuo, Y. Chai, and R. Yuan, “Highly efficient electrochemiluminescent silver nanoclusters/titanium oxide nanomaterials as a signal probe for ferrocene-driven light switch bioanalysis,” Anal. Chem. 89(6), 3732–3738 (2017).
[Crossref]

Chen, J.

X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, T. Fu, J. Chen, D. R. Lovley, and J. Yao, “Power generation from ambient humidity using protein nanowires,” Nature 578(7796), 550–554 (2020).
[Crossref]

Chen, L.

W. Tian, Y. Wang, L. Chen, and L. Li, “Self-powered nanoscale photodetectors,” Small 13(45), 1701848 (2017).
[Crossref]

J. Zhou, L. Chen, Y. Wang, Y. He, X. Pan, and E. Xie, “An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors,” Nanoscale 8(1), 50–73 (2016).
[Crossref]

Chen, S.

C. Xing, X. Chen, W. Huang, Y. Song, J. Li, S. Chen, Y. Zhou, B. Dong, D. Fan, X. Zhu, and H. Zhang, “Two-dimensional lead monoxide: facile liquid phase exfoliation, excellent photoresponse performance, and theoretical investigation,” ACS Photonics 5(12), 5055–5067 (2018).
[Crossref]

Chen, W.

D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W. P. Hu, and W. Chen, “Surface transfer doping-induced, high-performance graphene/silicon schottky junction-based, self-powered photodetector,” Small 11(37), 4829–4836 (2015).
[Crossref]

Chen, X.

C. Xing, X. Chen, W. Huang, Y. Song, J. Li, S. Chen, Y. Zhou, B. Dong, D. Fan, X. Zhu, and H. Zhang, “Two-dimensional lead monoxide: facile liquid phase exfoliation, excellent photoresponse performance, and theoretical investigation,” ACS Photonics 5(12), 5055–5067 (2018).
[Crossref]

Chen, Y.

Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, and L. Mei, “ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector,” Nanoscale Res. Lett. 8(1), 415 (2013).
[Crossref]

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref]

Cheng, N.

N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, X. Dou Shi, and Y. Du, “Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector,” Small 16(23), 2000283 (2020).
[Crossref]

Cheng, Z.

C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang, and J. Zhu, “Nanowire-based high-performance “micro fuel cells": one nanowire, one fuel cell,” Adv. Mater. 20(9), 1644–1648 (2008).
[Crossref]

Cho, K.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Choi, C.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Chung, J. W.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Concina, I.

P. Ghamgosar, F. Rigoni, M. G. Kohan, S. You, E. A. Morales, R. Mazzaro, V. Morandi, N. Almqvist, I. Concina, and A. Vomiero, “Self-powered photodetectors based on core shell ZnO-Co3O4 nanowire heterojunctions,” ACS Appl. Mater. Interfaces 11(26), 23454–23462 (2019).
[Crossref]

P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan, A. L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, and A. Vomiero, “ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors,” Nano Energy 51, 308–316 (2018).
[Crossref]

Corfdir, P.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “P-type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref]

Cui, D.

N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, X. Dou Shi, and Y. Du, “Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector,” Small 16(23), 2000283 (2020).
[Crossref]

Cui, K.

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-step overall water wplitting under visible light using multiband InGaN/GaN nanowire heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref]

Cupolillo, A.

M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020).
[Crossref]

d, A.

M. Tchernycheva, A. Messanvi, A. d, L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref]

de Arquer, F. P. G.

F. P. G. de Arquer, A. Armin, P. Meredith, and E. H. Sargent, “Solution-processed semiconductors for next-generation photodetectors,” Nat. Rev. Mater. 2(3), 16100 (2017).
[Crossref]

Decavoli, C.

C. Decavoli, C. L. Boldrini, N. Manfredi, and A. Abbotto, “Molecular organic sensitizers for photoelectrochemical water splitting,” Eur. J. Inorg. Chem. 2020(11-12), 978–999 (2020).
[Crossref]

Di, J.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Dimroth, F.

M. M. May, H.-J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6(1), 8286 (2015).
[Crossref]

Ding, Q.

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

Dobryden, I.

P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan, A. L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, and A. Vomiero, “ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors,” Nano Energy 51, 308–316 (2018).
[Crossref]

Dong, B.

C. Xing, X. Chen, W. Huang, Y. Song, J. Li, S. Chen, Y. Zhou, B. Dong, D. Fan, X. Zhu, and H. Zhang, “Two-dimensional lead monoxide: facile liquid phase exfoliation, excellent photoresponse performance, and theoretical investigation,” ACS Photonics 5(12), 5055–5067 (2018).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Dou Shi, X.

N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, X. Dou Shi, and Y. Du, “Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector,” Small 16(23), 2000283 (2020).
[Crossref]

Drummy, L. F.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Du, Y.

N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, X. Dou Shi, and Y. Du, “Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector,” Small 16(23), 2000283 (2020).
[Crossref]

Duan, C.

X. Ren, B. Wang, Z. Huang, H. Qiao, C. Duan, Y. Zhou, J. Zhong, Z. Wang, and X. Qi, “Flexible self-powered photoelectrochemical-type photodetector based on 2D WS2-graphene heterojunction,” FlatChem 25, 100215 (2021).
[Crossref]

B. Wang, Y. Zhou, Z. Huang, H. Qiao, C. Duan, X. Ren, Z. Wang, J. Zhong, and X. Qi, “Photoelectrochemical self-powered photodetector based on 2D liquid-exfoliated bismuth nanosheets: with novel structures for portability and flexibility,” Mater. Today Nano 14, 100109 (2021).
[Crossref]

Durand, C.

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

M. Tchernycheva, A. Messanvi, A. d, L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref]

Edison, T. N. J. I.

R. Atchudan, N. Muthuchamy, T. N. J. I. Edison, S. Perumal, R. Vinodh, K. H. Park, and Y. R. Lee, “An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles,” Biosens. Bioelectron. 126, 160–169 (2019).
[Crossref]

Ehrlich, A.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Eickhoff, M.

M. Riedel, S. Hoelzel, P. Hille, J. Schoermann, M. Eickhoff, and F. Lisdat, “InGaN/GaN nanowires as a new platform for photoelectrochemical sensors-detection of NADH,” Biosens. Bioelectron. 94, 298–304 (2017).
[Crossref]

Eymery, J.

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

M. Tchernycheva, A. Messanvi, A. d, L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref]

Fan, D.

C. Xing, X. Chen, W. Huang, Y. Song, J. Li, S. Chen, Y. Zhou, B. Dong, D. Fan, X. Zhu, and H. Zhang, “Two-dimensional lead monoxide: facile liquid phase exfoliation, excellent photoresponse performance, and theoretical investigation,” ACS Photonics 5(12), 5055–5067 (2018).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Fan, T.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Fang, S.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Feig, V. R.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Feix, F.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “P-type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref]

Foldyna, M.

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

Foudeh, A. M.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Fu, T.

X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, T. Fu, J. Chen, D. R. Lovley, and J. Yao, “Power generation from ambient humidity using protein nanowires,” Nature 578(7796), 550–554 (2020).
[Crossref]

Gao, E.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Gao, H.

X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, T. Fu, J. Chen, D. R. Lovley, and J. Yao, “Power generation from ambient humidity using protein nanowires,” Nature 578(7796), 550–554 (2020).
[Crossref]

Gao, S.

J. Zhang, S. Jiao, D. Wang, S. Ni, S. Gao, and J. Wang, “Solar-blind ultraviolet photodetection of an α-Ga2O3 nanorod array based on photoelectrochemical self-powered detectors with a simple, newly-designed structure,” J. Mater. Chem. C 7(23), 6867–6871 (2019).
[Crossref]

Gasperini, A.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Gautier, E.

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

Ge, B.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

Geelhaar, L.

Y. Zhao, Z. Xing, L. Geelhaar, J. Zhang, W. Yang, T. Auzelle, Y. Wu, L. Bian, and S. Lu, “Detaching (In,Ga)N nanowire films for devices requiring high flexibility and transmittance,” ACS Appl. Nano Mater. 3(10), 9943–9950 (2020).
[Crossref]

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “P-type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref]

Ghamgosar, P.

P. Ghamgosar, F. Rigoni, M. G. Kohan, S. You, E. A. Morales, R. Mazzaro, V. Morandi, N. Almqvist, I. Concina, and A. Vomiero, “Self-powered photodetectors based on core shell ZnO-Co3O4 nanowire heterojunctions,” ACS Appl. Mater. Interfaces 11(26), 23454–23462 (2019).
[Crossref]

P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan, A. L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, and A. Vomiero, “ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors,” Nano Energy 51, 308–316 (2018).
[Crossref]

Gratzel, M.

M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Gratzel, “A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
[Crossref]

M. Gratzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[Crossref]

Guan, N.

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

Guo, H.

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-step overall water wplitting under visible light using multiband InGaN/GaN nanowire heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref]

Guo, Z.

D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Haines, C. S.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Hakima, A.-R.

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-step overall water wplitting under visible light using multiband InGaN/GaN nanowire heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref]

Halioua, Y.

M. Tchernycheva, A. Messanvi, A. d, L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref]

Han, C.

D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W. P. Hu, and W. Chen, “Surface transfer doping-induced, high-performance graphene/silicon schottky junction-based, self-powered photodetector,” Small 11(37), 4829–4836 (2015).
[Crossref]

Hannappel, T.

M. M. May, H.-J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6(1), 8286 (2015).
[Crossref]

Hao, W.

N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, X. Dou Shi, and Y. Du, “Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector,” Small 16(23), 2000283 (2020).
[Crossref]

He, D.

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

He, J.-H.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

He, T.

M. Zhou, H. Qiu, T. He, J. Zhang, W. Yang, S. Lu, L. Bian, and Y. Zhao, “UV photodetector based on vertical (Al, Ga)N nanowires with graphene electrode and Si substrate,” Phys. Status Solidi A 217(15), 2000061 (2020).
[Crossref]

He, Y.

J. Zhou, L. Chen, Y. Wang, Y. He, X. Pan, and E. Xie, “An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors,” Nanoscale 8(1), 50–73 (2016).
[Crossref]

Hille, P.

M. Riedel, S. Hoelzel, P. Hille, J. Schoermann, M. Eickhoff, and F. Lisdat, “InGaN/GaN nanowires as a new platform for photoelectrochemical sensors-detection of NADH,” Biosens. Bioelectron. 94, 298–304 (2017).
[Crossref]

Hoelzel, S.

M. Riedel, S. Hoelzel, P. Hille, J. Schoermann, M. Eickhoff, and F. Lisdat, “InGaN/GaN nanowires as a new platform for photoelectrochemical sensors-detection of NADH,” Biosens. Bioelectron. 94, 298–304 (2017).
[Crossref]

Hu, P.

C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang, and J. Zhu, “Nanowire-based high-performance “micro fuel cells": one nanowire, one fuel cell,” Adv. Mater. 20(9), 1644–1648 (2008).
[Crossref]

Hu, W. P.

D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W. P. Hu, and W. Chen, “Surface transfer doping-induced, high-performance graphene/silicon schottky junction-based, self-powered photodetector,” Small 11(37), 4829–4836 (2015).
[Crossref]

Hu, Z.

D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W. P. Hu, and W. Chen, “Surface transfer doping-induced, high-performance graphene/silicon schottky junction-based, self-powered photodetector,” Small 11(37), 4829–4836 (2015).
[Crossref]

Huang, C.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

Huang, W.

D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
[Crossref]

C. Xing, X. Chen, W. Huang, Y. Song, J. Li, S. Chen, Y. Zhou, B. Dong, D. Fan, X. Zhu, and H. Zhang, “Two-dimensional lead monoxide: facile liquid phase exfoliation, excellent photoresponse performance, and theoretical investigation,” ACS Photonics 5(12), 5055–5067 (2018).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Huang, Z.

B. Wang, Y. Zhou, Z. Huang, H. Qiao, C. Duan, X. Ren, Z. Wang, J. Zhong, and X. Qi, “Photoelectrochemical self-powered photodetector based on 2D liquid-exfoliated bismuth nanosheets: with novel structures for portability and flexibility,” Mater. Today Nano 14, 100109 (2021).
[Crossref]

X. Ren, B. Wang, Z. Huang, H. Qiao, C. Duan, Y. Zhou, J. Zhong, Z. Wang, and X. Qi, “Flexible self-powered photoelectrochemical-type photodetector based on 2D WS2-graphene heterojunction,” FlatChem 25, 100215 (2021).
[Crossref]

X. Ren, W. Zheng, H. Qiao, L. Ren, S. Liu, Z. Huang, X. Qi, Z. Wang, J. Zhong, and H. Zhang, “Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface,” Mater. Today Energy 16, 100401 (2020).
[Crossref]

H. Qiao, Z. Li, Z. Huang, X. Ren, J. Kang, M. Qiu, Y. Liu, X. Qi, J. Zhong, and H. Zhang, “Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters,” Appl. Mater. Today 20, 100765 (2020).
[Crossref]

Jacopin, G.

M. Tchernycheva, A. Messanvi, A. d, L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref]

Jesus Gomez, V.

N. Ul Hassan Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. Jesus Gomez, A. U. H. Alvi, W. ul Hassan, M. Willander, and R. Noetzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Jiang, M.

J. Zhang, Z. Xing, D. Wu, L. Bian, Y. Zhao, W. Yang, Y. Wu, M. Zhou, M. Jiang, and S. Lu, “Mechanism study of photoluminescence peak shift of transparent (In,Ga)N nanowire films detached by acid solution,” J. Cryst. Growth 562, 126066 (2021).
[Crossref]

Z. Xing, Y. Zhao, L. Bian, J. Zhang, M. Zhou, W. Yang, Y. Wu, M. Jiang, J. Long, and S. Lu, “Economically detaching transparent and flexible (Al,Ga)N nanowire films with improved photoelectric response in view of ultraviolet photodetectors,” Mater. Adv. 2(3), 1006–1015 (2021).
[Crossref]

Jiang, N.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Jiang, X.

D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
[Crossref]

Jiao, J.

Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, and L. Mei, “ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector,” Nanoscale Res. Lett. 8(1), 415 (2013).
[Crossref]

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref]

Jiao, S.

J. Zhang, S. Jiao, D. Wang, S. Ni, S. Gao, and J. Wang, “Solar-blind ultraviolet photodetection of an α-Ga2O3 nanorod array based on photoelectrochemical self-powered detectors with a simple, newly-designed structure,” J. Mater. Chem. C 7(23), 6867–6871 (2019).
[Crossref]

Jin, S.

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

Julien, F. H.

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

M. Tchernycheva, A. Messanvi, A. d, L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref]

Kamimura, J.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “P-type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref]

Kang, J.

H. Qiao, Z. Li, Z. Huang, X. Ren, J. Kang, M. Qiu, Y. Liu, X. Qi, J. Zhong, and H. Zhang, “Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters,” Appl. Mater. Today 20, 100765 (2020).
[Crossref]

Kang, Y.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

Kapoor, A.

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

Kibria, M. G.

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-step overall water wplitting under visible light using multiband InGaN/GaN nanowire heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref]

Kim, K. J.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Kim, M.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Kim, S. H.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Kim, S. J.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Kim, Y.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Klug, C. M.

B. Shan, M. K. Brenneman, L. Troian-Gautier, Y. Liu, A. Nayak, C. M. Klug, T.-T. Li, R. M. Bullock, and T. J. Meyer, “A silicon-based heterojunction integrated with a molecular excited state in a water-splitting tandem cell,” J. Am. Chem. Soc. 141(26), 10390–10398 (2019).
[Crossref]

Kohan, M. G.

P. Ghamgosar, F. Rigoni, M. G. Kohan, S. You, E. A. Morales, R. Mazzaro, V. Morandi, N. Almqvist, I. Concina, and A. Vomiero, “Self-powered photodetectors based on core shell ZnO-Co3O4 nanowire heterojunctions,” ACS Appl. Mater. Interfaces 11(26), 23454–23462 (2019).
[Crossref]

P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan, A. L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, and A. Vomiero, “ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors,” Nano Energy 51, 308–316 (2018).
[Crossref]

Kumar, P.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Kwon, S.-K.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Lackner, D.

M. M. May, H.-J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6(1), 8286 (2015).
[Crossref]

Lavenus, P.

M. Tchernycheva, A. Messanvi, A. d, L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref]

Lee, D. Y.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Lee, Y. R.

R. Atchudan, N. Muthuchamy, T. N. J. I. Edison, S. Perumal, R. Vinodh, K. H. Park, and Y. R. Lee, “An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles,” Biosens. Bioelectron. 126, 160–169 (2019).
[Crossref]

Lei, B.

D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W. P. Hu, and W. Chen, “Surface transfer doping-induced, high-performance graphene/silicon schottky junction-based, self-powered photodetector,” Small 11(37), 4829–4836 (2015).
[Crossref]

Lei, L.

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

Lei, T.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Lepro, X.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Lewerenz, H.-J.

M. M. May, H.-J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6(1), 8286 (2015).
[Crossref]

Li, G.

Y. Zheng, Y. Li, X. Tang, W. Wang, and G. Li, “A self-powered high-performance UV photodetector based on core-shell GaN/MoO3-x nanorod array heterojunction,” Adv. Opt. Mater. 8(15), 2000197 (2020).
[Crossref]

Li, J.

D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
[Crossref]

C. Xing, X. Chen, W. Huang, Y. Song, J. Li, S. Chen, Y. Zhou, B. Dong, D. Fan, X. Zhu, and H. Zhang, “Two-dimensional lead monoxide: facile liquid phase exfoliation, excellent photoresponse performance, and theoretical investigation,” ACS Photonics 5(12), 5055–5067 (2018).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Li, L.

C. Zhu, D. Liu, Y. Li, X. Shen, L. Li, Y. Liu, and T. You, “Ratiometric electrochemical, electrochemiluminescent, and photoelectrochemical strategies for environmental contaminant detection,” Curr Opin Electrochem 17, 47–55 (2019).
[Crossref]

H. Sun, W. Tian, F. Cao, J. Xiong, and L. Li, “Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector,” Adv. Mater. 30(21), 1706986 (2018).
[Crossref]

W. Tian, Y. Wang, L. Chen, and L. Li, “Self-powered nanoscale photodetectors,” Small 13(45), 1701848 (2017).
[Crossref]

Li, N.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Li, P.

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

Li, Q.

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref]

Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, and L. Mei, “ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector,” Nanoscale Res. Lett. 8(1), 415 (2013).
[Crossref]

Li, S.

M. Zhang, Y. Liu, M. Yang, W. Zhang, J. Zhou, Z. Zhang, E. Xie, X. Pan, and S. Li, “High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires,” Appl. Surf. Sci. 452, 43–48 (2018).
[Crossref]

Li, T.-T.

B. Shan, M. K. Brenneman, L. Troian-Gautier, Y. Liu, A. Nayak, C. M. Klug, T.-T. Li, R. M. Bullock, and T. J. Meyer, “A silicon-based heterojunction integrated with a molecular excited state in a water-splitting tandem cell,” J. Am. Chem. Soc. 141(26), 10390–10398 (2019).
[Crossref]

Li, Y.

Y. Zheng, Y. Li, X. Tang, W. Wang, and G. Li, “A self-powered high-performance UV photodetector based on core-shell GaN/MoO3-x nanorod array heterojunction,” Adv. Opt. Mater. 8(15), 2000197 (2020).
[Crossref]

D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
[Crossref]

C. Zhu, D. Liu, Y. Li, X. Shen, L. Li, Y. Liu, and T. You, “Ratiometric electrochemical, electrochemiluminescent, and photoelectrochemical strategies for environmental contaminant detection,” Curr Opin Electrochem 17, 47–55 (2019).
[Crossref]

Li, Z.

H. Qiao, Z. Li, Z. Huang, X. Ren, J. Kang, M. Qiu, Y. Liu, X. Qi, J. Zhong, and H. Zhang, “Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters,” Appl. Mater. Today 20, 100765 (2020).
[Crossref]

D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

Lin, Y.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

Lisdat, F.

M. Riedel, S. Hoelzel, P. Hille, J. Schoermann, M. Eickhoff, and F. Lisdat, “InGaN/GaN nanowires as a new platform for photoelectrochemical sensors-detection of NADH,” Biosens. Bioelectron. 94, 298–304 (2017).
[Crossref]

Liu, D.

C. Zhu, D. Liu, Y. Li, X. Shen, L. Li, Y. Liu, and T. You, “Ratiometric electrochemical, electrochemiluminescent, and photoelectrochemical strategies for environmental contaminant detection,” Curr Opin Electrochem 17, 47–55 (2019).
[Crossref]

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-step overall water wplitting under visible light using multiband InGaN/GaN nanowire heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref]

Liu, G.

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref]

Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, and L. Mei, “ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector,” Nanoscale Res. Lett. 8(1), 415 (2013).
[Crossref]

Liu, H.

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

Liu, L.

Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, and L. Mei, “ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector,” Nanoscale Res. Lett. 8(1), 415 (2013).
[Crossref]

Liu, N.

N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, X. Dou Shi, and Y. Du, “Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector,” Small 16(23), 2000283 (2020).
[Crossref]

Liu, S.

X. Ren, W. Zheng, H. Qiao, L. Ren, S. Liu, Z. Huang, X. Qi, Z. Wang, J. Zhong, and H. Zhang, “Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface,” Mater. Today Energy 16, 100401 (2020).
[Crossref]

Liu, W.

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

Liu, X.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, T. Fu, J. Chen, D. R. Lovley, and J. Yao, “Power generation from ambient humidity using protein nanowires,” Nature 578(7796), 550–554 (2020).
[Crossref]

X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, T. Fu, J. Chen, D. R. Lovley, and J. Yao, “Power generation from ambient humidity using protein nanowires,” Nature 578(7796), 550–554 (2020).
[Crossref]

Liu, Y.

H. Qiao, Z. Li, Z. Huang, X. Ren, J. Kang, M. Qiu, Y. Liu, X. Qi, J. Zhong, and H. Zhang, “Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters,” Appl. Mater. Today 20, 100765 (2020).
[Crossref]

B. Shan, M. K. Brenneman, L. Troian-Gautier, Y. Liu, A. Nayak, C. M. Klug, T.-T. Li, R. M. Bullock, and T. J. Meyer, “A silicon-based heterojunction integrated with a molecular excited state in a water-splitting tandem cell,” J. Am. Chem. Soc. 141(26), 10390–10398 (2019).
[Crossref]

C. Zhu, D. Liu, Y. Li, X. Shen, L. Li, Y. Liu, and T. You, “Ratiometric electrochemical, electrochemiluminescent, and photoelectrochemical strategies for environmental contaminant detection,” Curr Opin Electrochem 17, 47–55 (2019).
[Crossref]

M. Zhang, Y. Liu, M. Yang, W. Zhang, J. Zhou, Z. Zhang, E. Xie, X. Pan, and S. Li, “High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires,” Appl. Surf. Sci. 452, 43–48 (2018).
[Crossref]

D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W. P. Hu, and W. Chen, “Surface transfer doping-induced, high-performance graphene/silicon schottky junction-based, self-powered photodetector,” Small 11(37), 4829–4836 (2015).
[Crossref]

Liu, Z.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Long, J.

Z. Xing, Y. Zhao, L. Bian, J. Zhang, M. Zhou, W. Yang, Y. Wu, M. Jiang, J. Long, and S. Lu, “Economically detaching transparent and flexible (Al,Ga)N nanowire films with improved photoelectric response in view of ultraviolet photodetectors,” Mater. Adv. 2(3), 1006–1015 (2021).
[Crossref]

Long, R.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

Lopez, J.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Lovley, D. R.

X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, T. Fu, J. Chen, D. R. Lovley, and J. Yao, “Power generation from ambient humidity using protein nanowires,” Nature 578(7796), 550–554 (2020).
[Crossref]

Lu, S.

Z. Xing, Y. Zhao, L. Bian, J. Zhang, M. Zhou, W. Yang, Y. Wu, M. Jiang, J. Long, and S. Lu, “Economically detaching transparent and flexible (Al,Ga)N nanowire films with improved photoelectric response in view of ultraviolet photodetectors,” Mater. Adv. 2(3), 1006–1015 (2021).
[Crossref]

J. Zhang, Z. Xing, D. Wu, L. Bian, Y. Zhao, W. Yang, Y. Wu, M. Zhou, M. Jiang, and S. Lu, “Mechanism study of photoluminescence peak shift of transparent (In,Ga)N nanowire films detached by acid solution,” J. Cryst. Growth 562, 126066 (2021).
[Crossref]

J. Zhang, M. Zhou, D. Wu, L. Bian, Y. Zhao, H. Qin, W. Yang, Y. Wu, Z. Xing, and S. Lu, “Dual-wavelength visible photodetector based on vertical (In,Ga)N nanowires grown by molecular beam epitaxy,” RSC Adv. 11(26), 15632–15638 (2021).
[Crossref]

M. Zhou, H. Qiu, T. He, J. Zhang, W. Yang, S. Lu, L. Bian, and Y. Zhao, “UV photodetector based on vertical (Al, Ga)N nanowires with graphene electrode and Si substrate,” Phys. Status Solidi A 217(15), 2000061 (2020).
[Crossref]

Y. Zhao, Z. Xing, L. Geelhaar, J. Zhang, W. Yang, T. Auzelle, Y. Wu, L. Bian, and S. Lu, “Detaching (In,Ga)N nanowire films for devices requiring high flexibility and transmittance,” ACS Appl. Nano Mater. 3(10), 9943–9950 (2020).
[Crossref]

Lucas, M. S.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Luo, J.

M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Gratzel, “A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
[Crossref]

Luo, S.

D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
[Crossref]

Luo, Z.

D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
[Crossref]

Ma, D.

D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
[Crossref]

Ma, M.

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

Malandrino, G.

P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan, A. L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, and A. Vomiero, “ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors,” Nano Energy 51, 308–316 (2018).
[Crossref]

Manfredi, N.

C. Decavoli, C. L. Boldrini, N. Manfredi, and A. Abbotto, “Molecular organic sensitizers for photoelectrochemical water splitting,” Eur. J. Inorg. Chem. 2020(11-12), 978–999 (2020).
[Crossref]

Martin-Garcia, B.

M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020).
[Crossref]

Maruyama, B.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

May, M. M.

M. M. May, H.-J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6(1), 8286 (2015).
[Crossref]

Mayer, M. T.

M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Gratzel, “A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
[Crossref]

Mazzaro, R.

P. Ghamgosar, F. Rigoni, M. G. Kohan, S. You, E. A. Morales, R. Mazzaro, V. Morandi, N. Almqvist, I. Concina, and A. Vomiero, “Self-powered photodetectors based on core shell ZnO-Co3O4 nanowire heterojunctions,” ACS Appl. Mater. Interfaces 11(26), 23454–23462 (2019).
[Crossref]

Mei, L.

Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, and L. Mei, “ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector,” Nanoscale Res. Lett. 8(1), 415 (2013).
[Crossref]

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref]

Meredith, P.

F. P. G. de Arquer, A. Armin, P. Meredith, and E. H. Sargent, “Solution-processed semiconductors for next-generation photodetectors,” Nat. Rev. Mater. 2(3), 16100 (2017).
[Crossref]

Messanvi, A.

M. Tchernycheva, A. Messanvi, A. d, L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref]

Meyer, T. J.

B. Shan, M. K. Brenneman, L. Troian-Gautier, Y. Liu, A. Nayak, C. M. Klug, T.-T. Li, R. M. Bullock, and T. J. Meyer, “A silicon-based heterojunction integrated with a molecular excited state in a water-splitting tandem cell,” J. Am. Chem. Soc. 141(26), 10390–10398 (2019).
[Crossref]

Mi, Z.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-step overall water wplitting under visible light using multiband InGaN/GaN nanowire heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref]

Michelini, F.

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

Molina-Lopez, F.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Morales, E. A.

P. Ghamgosar, F. Rigoni, M. G. Kohan, S. You, E. A. Morales, R. Mazzaro, V. Morandi, N. Almqvist, I. Concina, and A. Vomiero, “Self-powered photodetectors based on core shell ZnO-Co3O4 nanowire heterojunctions,” ACS Appl. Mater. Interfaces 11(26), 23454–23462 (2019).
[Crossref]

Morandi, V.

P. Ghamgosar, F. Rigoni, M. G. Kohan, S. You, E. A. Morales, R. Mazzaro, V. Morandi, N. Almqvist, I. Concina, and A. Vomiero, “Self-powered photodetectors based on core shell ZnO-Co3O4 nanowire heterojunctions,” ACS Appl. Mater. Interfaces 11(26), 23454–23462 (2019).
[Crossref]

Mun, T. J.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Murmann, B.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Muthuchamy, N.

R. Atchudan, N. Muthuchamy, T. N. J. I. Edison, S. Perumal, R. Vinodh, K. H. Park, and Y. R. Lee, “An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles,” Biosens. Bioelectron. 126, 160–169 (2019).
[Crossref]

Najafi, L.

M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020).
[Crossref]

Nayak, A.

B. Shan, M. K. Brenneman, L. Troian-Gautier, Y. Liu, A. Nayak, C. M. Klug, T.-T. Li, R. M. Bullock, and T. J. Meyer, “A silicon-based heterojunction integrated with a molecular excited state in a water-splitting tandem cell,” J. Am. Chem. Soc. 141(26), 10390–10398 (2019).
[Crossref]

Ng, T. K.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

Nguyen, H. P. T.

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-step overall water wplitting under visible light using multiband InGaN/GaN nanowire heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref]

Ni, S.

J. Zhang, S. Jiao, D. Wang, S. Ni, S. Gao, and J. Wang, “Solar-blind ultraviolet photodetection of an α-Ga2O3 nanorod array based on photoelectrochemical self-powered detectors with a simple, newly-designed structure,” J. Mater. Chem. C 7(23), 6867–6871 (2019).
[Crossref]

Niu, S.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Noetzel, R.

N. Ul Hassan Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. Jesus Gomez, A. U. H. Alvi, W. ul Hassan, M. Willander, and R. Noetzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Oh, Y. J.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Ooi, B. S.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

Oropesa-Nunez, R.

M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020).
[Crossref]

Ovalle-Robles, R.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Oviedo, J. P.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Pan, C.

C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang, and J. Zhu, “Nanowire-based high-performance “micro fuel cells": one nanowire, one fuel cell,” Adv. Mater. 20(9), 1644–1648 (2008).
[Crossref]

Pan, W.

C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang, and J. Zhu, “Nanowire-based high-performance “micro fuel cells": one nanowire, one fuel cell,” Adv. Mater. 20(9), 1644–1648 (2008).
[Crossref]

Pan, X.

M. Zhang, Y. Liu, M. Yang, W. Zhang, J. Zhou, Z. Zhang, E. Xie, X. Pan, and S. Li, “High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires,” Appl. Surf. Sci. 452, 43–48 (2018).
[Crossref]

J. Zhou, L. Chen, Y. Wang, Y. He, X. Pan, and E. Xie, “An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors,” Nanoscale 8(1), 50–73 (2016).
[Crossref]

Paradis, S.

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-step overall water wplitting under visible light using multiband InGaN/GaN nanowire heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref]

Park, J. H.

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

Park, K. H.

R. Atchudan, N. Muthuchamy, T. N. J. I. Edison, S. Perumal, R. Vinodh, K. H. Park, and Y. R. Lee, “An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles,” Biosens. Bioelectron. 126, 160–169 (2019).
[Crossref]

Pellegrini, V.

M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020).
[Crossref]

Pellegrino, A. L.

P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan, A. L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, and A. Vomiero, “ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors,” Nano Energy 51, 308–316 (2018).
[Crossref]

Perumal, S.

R. Atchudan, N. Muthuchamy, T. N. J. I. Edison, S. Perumal, R. Vinodh, K. H. Park, and Y. R. Lee, “An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles,” Biosens. Bioelectron. 126, 160–169 (2019).
[Crossref]

Piazza, V.

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

Priya, S.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Qi, X.

B. Wang, Y. Zhou, Z. Huang, H. Qiao, C. Duan, X. Ren, Z. Wang, J. Zhong, and X. Qi, “Photoelectrochemical self-powered photodetector based on 2D liquid-exfoliated bismuth nanosheets: with novel structures for portability and flexibility,” Mater. Today Nano 14, 100109 (2021).
[Crossref]

X. Ren, B. Wang, Z. Huang, H. Qiao, C. Duan, Y. Zhou, J. Zhong, Z. Wang, and X. Qi, “Flexible self-powered photoelectrochemical-type photodetector based on 2D WS2-graphene heterojunction,” FlatChem 25, 100215 (2021).
[Crossref]

X. Ren, W. Zheng, H. Qiao, L. Ren, S. Liu, Z. Huang, X. Qi, Z. Wang, J. Zhong, and H. Zhang, “Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface,” Mater. Today Energy 16, 100401 (2020).
[Crossref]

N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, X. Dou Shi, and Y. Du, “Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector,” Small 16(23), 2000283 (2020).
[Crossref]

H. Qiao, Z. Li, Z. Huang, X. Ren, J. Kang, M. Qiu, Y. Liu, X. Qi, J. Zhong, and H. Zhang, “Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters,” Appl. Mater. Today 20, 100765 (2020).
[Crossref]

Qiao, H.

X. Ren, B. Wang, Z. Huang, H. Qiao, C. Duan, Y. Zhou, J. Zhong, Z. Wang, and X. Qi, “Flexible self-powered photoelectrochemical-type photodetector based on 2D WS2-graphene heterojunction,” FlatChem 25, 100215 (2021).
[Crossref]

B. Wang, Y. Zhou, Z. Huang, H. Qiao, C. Duan, X. Ren, Z. Wang, J. Zhong, and X. Qi, “Photoelectrochemical self-powered photodetector based on 2D liquid-exfoliated bismuth nanosheets: with novel structures for portability and flexibility,” Mater. Today Nano 14, 100109 (2021).
[Crossref]

X. Ren, W. Zheng, H. Qiao, L. Ren, S. Liu, Z. Huang, X. Qi, Z. Wang, J. Zhong, and H. Zhang, “Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface,” Mater. Today Energy 16, 100401 (2020).
[Crossref]

N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, X. Dou Shi, and Y. Du, “Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector,” Small 16(23), 2000283 (2020).
[Crossref]

H. Qiao, Z. Li, Z. Huang, X. Ren, J. Kang, M. Qiu, Y. Liu, X. Qi, J. Zhong, and H. Zhang, “Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters,” Appl. Mater. Today 20, 100765 (2020).
[Crossref]

Qiao, R.

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Qin, H.

J. Zhang, M. Zhou, D. Wu, L. Bian, Y. Zhao, H. Qin, W. Yang, Y. Wu, Z. Xing, and S. Lu, “Dual-wavelength visible photodetector based on vertical (In,Ga)N nanowires grown by molecular beam epitaxy,” RSC Adv. 11(26), 15632–15638 (2021).
[Crossref]

Qin, Y.

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5(5), 366–373 (2010).
[Crossref]

Qiu, H.

M. Zhou, H. Qiu, T. He, J. Zhang, W. Yang, S. Lu, L. Bian, and Y. Zhao, “UV photodetector based on vertical (Al, Ga)N nanowires with graphene electrode and Si substrate,” Phys. Status Solidi A 217(15), 2000061 (2020).
[Crossref]

Qiu, M.

H. Qiao, Z. Li, Z. Huang, X. Ren, J. Kang, M. Qiu, Y. Liu, X. Qi, J. Zhong, and H. Zhang, “Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters,” Appl. Mater. Today 20, 100765 (2020).
[Crossref]

Qu, J.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Ramsteiner, M.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “P-type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref]

Rastak, R.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Ren, L.

N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, X. Dou Shi, and Y. Du, “Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector,” Small 16(23), 2000283 (2020).
[Crossref]

X. Ren, W. Zheng, H. Qiao, L. Ren, S. Liu, Z. Huang, X. Qi, Z. Wang, J. Zhong, and H. Zhang, “Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface,” Mater. Today Energy 16, 100401 (2020).
[Crossref]

Ren, X.

X. Ren, B. Wang, Z. Huang, H. Qiao, C. Duan, Y. Zhou, J. Zhong, Z. Wang, and X. Qi, “Flexible self-powered photoelectrochemical-type photodetector based on 2D WS2-graphene heterojunction,” FlatChem 25, 100215 (2021).
[Crossref]

B. Wang, Y. Zhou, Z. Huang, H. Qiao, C. Duan, X. Ren, Z. Wang, J. Zhong, and X. Qi, “Photoelectrochemical self-powered photodetector based on 2D liquid-exfoliated bismuth nanosheets: with novel structures for portability and flexibility,” Mater. Today Nano 14, 100109 (2021).
[Crossref]

H. Qiao, Z. Li, Z. Huang, X. Ren, J. Kang, M. Qiu, Y. Liu, X. Qi, J. Zhong, and H. Zhang, “Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters,” Appl. Mater. Today 20, 100765 (2020).
[Crossref]

X. Ren, W. Zheng, H. Qiao, L. Ren, S. Liu, Z. Huang, X. Qi, Z. Wang, J. Zhong, and H. Zhang, “Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface,” Mater. Today Energy 16, 100401 (2020).
[Crossref]

Riechert, H.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “P-type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref]

Riedel, M.

M. Riedel, S. Hoelzel, P. Hille, J. Schoermann, M. Eickhoff, and F. Lisdat, “InGaN/GaN nanowires as a new platform for photoelectrochemical sensors-detection of NADH,” Biosens. Bioelectron. 94, 298–304 (2017).
[Crossref]

Rigoni, F.

P. Ghamgosar, F. Rigoni, M. G. Kohan, S. You, E. A. Morales, R. Mazzaro, V. Morandi, N. Almqvist, I. Concina, and A. Vomiero, “Self-powered photodetectors based on core shell ZnO-Co3O4 nanowire heterojunctions,” ACS Appl. Mater. Interfaces 11(26), 23454–23462 (2019).
[Crossref]

P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan, A. L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, and A. Vomiero, “ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors,” Nano Energy 51, 308–316 (2018).
[Crossref]

Rigutti, L.

M. Tchernycheva, A. Messanvi, A. d, L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref]

Sargent, E. H.

F. P. G. de Arquer, A. Armin, P. Meredith, and E. H. Sargent, “Solution-processed semiconductors for next-generation photodetectors,” Nat. Rev. Mater. 2(3), 16100 (2017).
[Crossref]

Schoermann, J.

M. Riedel, S. Hoelzel, P. Hille, J. Schoermann, M. Eickhoff, and F. Lisdat, “InGaN/GaN nanowires as a new platform for photoelectrochemical sensors-detection of NADH,” Biosens. Bioelectron. 94, 298–304 (2017).
[Crossref]

Schreier, M.

M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Gratzel, “A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
[Crossref]

Sedmidubsky, D.

M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020).
[Crossref]

Serri, M.

M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020).
[Crossref]

Shan, B.

B. Shan, M. K. Brenneman, L. Troian-Gautier, Y. Liu, A. Nayak, C. M. Klug, T.-T. Li, R. M. Bullock, and T. J. Meyer, “A silicon-based heterojunction integrated with a molecular excited state in a water-splitting tandem cell,” J. Am. Chem. Soc. 141(26), 10390–10398 (2019).
[Crossref]

Shen, X.

C. Zhu, D. Liu, Y. Li, X. Shen, L. Li, Y. Liu, and T. You, “Ratiometric electrochemical, electrochemiluminescent, and photoelectrochemical strategies for environmental contaminant detection,” Curr Opin Electrochem 17, 47–55 (2019).
[Crossref]

Sofer, Z.

M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020).
[Crossref]

Son, M.-K.

M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Gratzel, “A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
[Crossref]

Song, Y.

C. Xing, X. Chen, W. Huang, Y. Song, J. Li, S. Chen, Y. Zhou, B. Dong, D. Fan, X. Zhu, and H. Zhang, “Two-dimensional lead monoxide: facile liquid phase exfoliation, excellent photoresponse performance, and theoretical investigation,” ACS Photonics 5(12), 5055–5067 (2018).
[Crossref]

Soto Rodriguez, P. E. D.

N. Ul Hassan Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. Jesus Gomez, A. U. H. Alvi, W. ul Hassan, M. Willander, and R. Noetzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Steier, L.

M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Gratzel, “A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
[Crossref]

Sun, H.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

H. Sun, W. Tian, F. Cao, J. Xiong, and L. Li, “Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector,” Adv. Mater. 30(21), 1706986 (2018).
[Crossref]

Symes, M. D.

A. G. Wallace and M. D. Symes, “Decoupling strategies in electrochemical water splitting and beyond,” Joule 2(8), 1390–1395 (2018).
[Crossref]

Tang, X.

Y. Zheng, Y. Li, X. Tang, W. Wang, and G. Li, “A self-powered high-performance UV photodetector based on core-shell GaN/MoO3-x nanorod array heterojunction,” Adv. Opt. Mater. 8(15), 2000197 (2020).
[Crossref]

Tchernycheva, M.

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

M. Tchernycheva, A. Messanvi, A. d, L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref]

Tian, W.

H. Sun, W. Tian, F. Cao, J. Xiong, and L. Li, “Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector,” Adv. Mater. 30(21), 1706986 (2018).
[Crossref]

W. Tian, Y. Wang, L. Chen, and L. Li, “Self-powered nanoscale photodetectors,” Small 13(45), 1701848 (2017).
[Crossref]

Tok, J. B. H.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Troian-Gautier, L.

B. Shan, M. K. Brenneman, L. Troian-Gautier, Y. Liu, A. Nayak, C. M. Klug, T.-T. Li, R. M. Bullock, and T. J. Meyer, “A silicon-based heterojunction integrated with a molecular excited state in a water-splitting tandem cell,” J. Am. Chem. Soc. 141(26), 10390–10398 (2019).
[Crossref]

Trudeau, M. L.

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-step overall water wplitting under visible light using multiband InGaN/GaN nanowire heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref]

ul Hassan, W.

N. Ul Hassan Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. Jesus Gomez, A. U. H. Alvi, W. ul Hassan, M. Willander, and R. Noetzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Ul Hassan Alvi, N.

N. Ul Hassan Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. Jesus Gomez, A. U. H. Alvi, W. ul Hassan, M. Willander, and R. Noetzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Vinodh, R.

R. Atchudan, N. Muthuchamy, T. N. J. I. Edison, S. Perumal, R. Vinodh, K. H. Park, and Y. R. Lee, “An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles,” Biosens. Bioelectron. 126, 160–169 (2019).
[Crossref]

Vomiero, A.

P. Ghamgosar, F. Rigoni, M. G. Kohan, S. You, E. A. Morales, R. Mazzaro, V. Morandi, N. Almqvist, I. Concina, and A. Vomiero, “Self-powered photodetectors based on core shell ZnO-Co3O4 nanowire heterojunctions,” ACS Appl. Mater. Interfaces 11(26), 23454–23462 (2019).
[Crossref]

P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan, A. L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, and A. Vomiero, “ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors,” Nano Energy 51, 308–316 (2018).
[Crossref]

Wallace, A. G.

A. G. Wallace and M. D. Symes, “Decoupling strategies in electrochemical water splitting and beyond,” Joule 2(8), 1390–1395 (2018).
[Crossref]

Wang, B.

B. Wang, Y. Zhou, Z. Huang, H. Qiao, C. Duan, X. Ren, Z. Wang, J. Zhong, and X. Qi, “Photoelectrochemical self-powered photodetector based on 2D liquid-exfoliated bismuth nanosheets: with novel structures for portability and flexibility,” Mater. Today Nano 14, 100109 (2021).
[Crossref]

X. Ren, B. Wang, Z. Huang, H. Qiao, C. Duan, Y. Zhou, J. Zhong, Z. Wang, and X. Qi, “Flexible self-powered photoelectrochemical-type photodetector based on 2D WS2-graphene heterojunction,” FlatChem 25, 100215 (2021).
[Crossref]

C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang, and J. Zhu, “Nanowire-based high-performance “micro fuel cells": one nanowire, one fuel cell,” Adv. Mater. 20(9), 1644–1648 (2008).
[Crossref]

Wang, C.

C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang, and J. Zhu, “Nanowire-based high-performance “micro fuel cells": one nanowire, one fuel cell,” Adv. Mater. 20(9), 1644–1648 (2008).
[Crossref]

Wang, D.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

J. Zhang, S. Jiao, D. Wang, S. Ni, S. Gao, and J. Wang, “Solar-blind ultraviolet photodetection of an α-Ga2O3 nanorod array based on photoelectrochemical self-powered detectors with a simple, newly-designed structure,” J. Mater. Chem. C 7(23), 6867–6871 (2019).
[Crossref]

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref]

Wang, D. H.

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

Wang, G.-J. N.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Wang, H.

Y. Zhou, H. Wang, Y. Zhuo, Y. Chai, and R. Yuan, “Highly efficient electrochemiluminescent silver nanoclusters/titanium oxide nanomaterials as a signal probe for ferrocene-driven light switch bioanalysis,” Anal. Chem. 89(6), 3732–3738 (2017).
[Crossref]

Wang, J.

J. Zhang, S. Jiao, D. Wang, S. Ni, S. Gao, and J. Wang, “Solar-blind ultraviolet photodetection of an α-Ga2O3 nanorod array based on photoelectrochemical self-powered detectors with a simple, newly-designed structure,” J. Mater. Chem. C 7(23), 6867–6871 (2019).
[Crossref]

Wang, L.

D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W. P. Hu, and W. Chen, “Surface transfer doping-induced, high-performance graphene/silicon schottky junction-based, self-powered photodetector,” Small 11(37), 4829–4836 (2015).
[Crossref]

Wang, R.

D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
[Crossref]

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Wang, S.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Wang, W.

Y. Zheng, Y. Li, X. Tang, W. Wang, and G. Li, “A self-powered high-performance UV photodetector based on core-shell GaN/MoO3-x nanorod array heterojunction,” Adv. Opt. Mater. 8(15), 2000197 (2020).
[Crossref]

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Wang, Y.

W. Tian, Y. Wang, L. Chen, and L. Li, “Self-powered nanoscale photodetectors,” Small 13(45), 1701848 (2017).
[Crossref]

J. Zhou, L. Chen, Y. Wang, Y. He, X. Pan, and E. Xie, “An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors,” Nanoscale 8(1), 50–73 (2016).
[Crossref]

Wang, Z.

B. Wang, Y. Zhou, Z. Huang, H. Qiao, C. Duan, X. Ren, Z. Wang, J. Zhong, and X. Qi, “Photoelectrochemical self-powered photodetector based on 2D liquid-exfoliated bismuth nanosheets: with novel structures for portability and flexibility,” Mater. Today Nano 14, 100109 (2021).
[Crossref]

X. Ren, B. Wang, Z. Huang, H. Qiao, C. Duan, Y. Zhou, J. Zhong, Z. Wang, and X. Qi, “Flexible self-powered photoelectrochemical-type photodetector based on 2D WS2-graphene heterojunction,” FlatChem 25, 100215 (2021).
[Crossref]

X. Ren, W. Zheng, H. Qiao, L. Ren, S. Liu, Z. Huang, X. Qi, Z. Wang, J. Zhong, and H. Zhang, “Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface,” Mater. Today Energy 16, 100401 (2020).
[Crossref]

Wang, Z. L.

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5(5), 366–373 (2010).
[Crossref]

Ward, J. E.

X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, T. Fu, J. Chen, D. R. Lovley, and J. Yao, “Power generation from ambient humidity using protein nanowires,” Nature 578(7796), 550–554 (2020).
[Crossref]

Wei, G.

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref]

Wei, L.

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref]

Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, and L. Mei, “ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector,” Nanoscale Res. Lett. 8(1), 415 (2013).
[Crossref]

Wei, Y.

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5(5), 366–373 (2010).
[Crossref]

Willander, M.

N. Ul Hassan Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. Jesus Gomez, A. U. H. Alvi, W. ul Hassan, M. Willander, and R. Noetzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Wu, D.

J. Zhang, M. Zhou, D. Wu, L. Bian, Y. Zhao, H. Qin, W. Yang, Y. Wu, Z. Xing, and S. Lu, “Dual-wavelength visible photodetector based on vertical (In,Ga)N nanowires grown by molecular beam epitaxy,” RSC Adv. 11(26), 15632–15638 (2021).
[Crossref]

J. Zhang, Z. Xing, D. Wu, L. Bian, Y. Zhao, W. Yang, Y. Wu, M. Zhou, M. Jiang, and S. Lu, “Mechanism study of photoluminescence peak shift of transparent (In,Ga)N nanowire films detached by acid solution,” J. Cryst. Growth 562, 126066 (2021).
[Crossref]

Wu, H.

C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang, and J. Zhu, “Nanowire-based high-performance “micro fuel cells": one nanowire, one fuel cell,” Adv. Mater. 20(9), 1644–1648 (2008).
[Crossref]

Wu, Y.

J. Zhang, Z. Xing, D. Wu, L. Bian, Y. Zhao, W. Yang, Y. Wu, M. Zhou, M. Jiang, and S. Lu, “Mechanism study of photoluminescence peak shift of transparent (In,Ga)N nanowire films detached by acid solution,” J. Cryst. Growth 562, 126066 (2021).
[Crossref]

Z. Xing, Y. Zhao, L. Bian, J. Zhang, M. Zhou, W. Yang, Y. Wu, M. Jiang, J. Long, and S. Lu, “Economically detaching transparent and flexible (Al,Ga)N nanowire films with improved photoelectric response in view of ultraviolet photodetectors,” Mater. Adv. 2(3), 1006–1015 (2021).
[Crossref]

J. Zhang, M. Zhou, D. Wu, L. Bian, Y. Zhao, H. Qin, W. Yang, Y. Wu, Z. Xing, and S. Lu, “Dual-wavelength visible photodetector based on vertical (In,Ga)N nanowires grown by molecular beam epitaxy,” RSC Adv. 11(26), 15632–15638 (2021).
[Crossref]

Y. Zhao, Z. Xing, L. Geelhaar, J. Zhang, W. Yang, T. Auzelle, Y. Wu, L. Bian, and S. Lu, “Detaching (In,Ga)N nanowire films for devices requiring high flexibility and transmittance,” ACS Appl. Nano Mater. 3(10), 9943–9950 (2020).
[Crossref]

Xi, Y.

N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, X. Dou Shi, and Y. Du, “Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector,” Small 16(23), 2000283 (2020).
[Crossref]

Xiang, D.

D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W. P. Hu, and W. Chen, “Surface transfer doping-induced, high-performance graphene/silicon schottky junction-based, self-powered photodetector,” Small 11(37), 4829–4836 (2015).
[Crossref]

Xiang, Y.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Xie, E.

M. Zhang, Y. Liu, M. Yang, W. Zhang, J. Zhou, Z. Zhang, E. Xie, X. Pan, and S. Li, “High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires,” Appl. Surf. Sci. 452, 43–48 (2018).
[Crossref]

J. Zhou, L. Chen, Y. Wang, Y. He, X. Pan, and E. Xie, “An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors,” Nanoscale 8(1), 50–73 (2016).
[Crossref]

Xie, Y.

Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, and L. Mei, “ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector,” Nanoscale Res. Lett. 8(1), 415 (2013).
[Crossref]

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref]

Xie, Z.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Xing, C.

D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
[Crossref]

C. Xing, X. Chen, W. Huang, Y. Song, J. Li, S. Chen, Y. Zhou, B. Dong, D. Fan, X. Zhu, and H. Zhang, “Two-dimensional lead monoxide: facile liquid phase exfoliation, excellent photoresponse performance, and theoretical investigation,” ACS Photonics 5(12), 5055–5067 (2018).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Xing, Z.

J. Zhang, Z. Xing, D. Wu, L. Bian, Y. Zhao, W. Yang, Y. Wu, M. Zhou, M. Jiang, and S. Lu, “Mechanism study of photoluminescence peak shift of transparent (In,Ga)N nanowire films detached by acid solution,” J. Cryst. Growth 562, 126066 (2021).
[Crossref]

Z. Xing, Y. Zhao, L. Bian, J. Zhang, M. Zhou, W. Yang, Y. Wu, M. Jiang, J. Long, and S. Lu, “Economically detaching transparent and flexible (Al,Ga)N nanowire films with improved photoelectric response in view of ultraviolet photodetectors,” Mater. Adv. 2(3), 1006–1015 (2021).
[Crossref]

J. Zhang, M. Zhou, D. Wu, L. Bian, Y. Zhao, H. Qin, W. Yang, Y. Wu, Z. Xing, and S. Lu, “Dual-wavelength visible photodetector based on vertical (In,Ga)N nanowires grown by molecular beam epitaxy,” RSC Adv. 11(26), 15632–15638 (2021).
[Crossref]

Y. Zhao, Z. Xing, L. Geelhaar, J. Zhang, W. Yang, T. Auzelle, Y. Wu, L. Bian, and S. Lu, “Detaching (In,Ga)N nanowire films for devices requiring high flexibility and transmittance,” ACS Appl. Nano Mater. 3(10), 9943–9950 (2020).
[Crossref]

Xiong, J.

H. Sun, W. Tian, F. Cao, J. Xiong, and L. Li, “Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector,” Adv. Mater. 30(21), 1706986 (2018).
[Crossref]

Xiong, Y.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

Xu, C.

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5(5), 366–373 (2010).
[Crossref]

Xu, J.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Xu, K.

N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, X. Dou Shi, and Y. Du, “Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector,” Small 16(23), 2000283 (2020).
[Crossref]

Xu, S.

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5(5), 366–373 (2010).
[Crossref]

Xu, X.

N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, X. Dou Shi, and Y. Du, “Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector,” Small 16(23), 2000283 (2020).
[Crossref]

Yan, S.

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref]

Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, and L. Mei, “ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector,” Nanoscale Res. Lett. 8(1), 415 (2013).
[Crossref]

Yang, B.

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

Yang, M.

M. Zhang, Y. Liu, M. Yang, W. Zhang, J. Zhou, Z. Zhang, E. Xie, X. Pan, and S. Li, “High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires,” Appl. Surf. Sci. 452, 43–48 (2018).
[Crossref]

Yang, R.

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5(5), 366–373 (2010).
[Crossref]

Yang, W.

J. Zhang, Z. Xing, D. Wu, L. Bian, Y. Zhao, W. Yang, Y. Wu, M. Zhou, M. Jiang, and S. Lu, “Mechanism study of photoluminescence peak shift of transparent (In,Ga)N nanowire films detached by acid solution,” J. Cryst. Growth 562, 126066 (2021).
[Crossref]

Z. Xing, Y. Zhao, L. Bian, J. Zhang, M. Zhou, W. Yang, Y. Wu, M. Jiang, J. Long, and S. Lu, “Economically detaching transparent and flexible (Al,Ga)N nanowire films with improved photoelectric response in view of ultraviolet photodetectors,” Mater. Adv. 2(3), 1006–1015 (2021).
[Crossref]

J. Zhang, M. Zhou, D. Wu, L. Bian, Y. Zhao, H. Qin, W. Yang, Y. Wu, Z. Xing, and S. Lu, “Dual-wavelength visible photodetector based on vertical (In,Ga)N nanowires grown by molecular beam epitaxy,” RSC Adv. 11(26), 15632–15638 (2021).
[Crossref]

M. Zhou, H. Qiu, T. He, J. Zhang, W. Yang, S. Lu, L. Bian, and Y. Zhao, “UV photodetector based on vertical (Al, Ga)N nanowires with graphene electrode and Si substrate,” Phys. Status Solidi A 217(15), 2000061 (2020).
[Crossref]

Y. Zhao, Z. Xing, L. Geelhaar, J. Zhang, W. Yang, T. Auzelle, Y. Wu, L. Bian, and S. Lu, “Detaching (In,Ga)N nanowire films for devices requiring high flexibility and transmittance,” ACS Appl. Nano Mater. 3(10), 9943–9950 (2020).
[Crossref]

Yang, X.

C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang, and J. Zhu, “Nanowire-based high-performance “micro fuel cells": one nanowire, one fuel cell,” Adv. Mater. 20(9), 1644–1648 (2008).
[Crossref]

Yang, Z.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Yao, J.

X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, T. Fu, J. Chen, D. R. Lovley, and J. Yao, “Power generation from ambient humidity using protein nanowires,” Nature 578(7796), 550–554 (2020).
[Crossref]

Yin, B.

X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, T. Fu, J. Chen, D. R. Lovley, and J. Yao, “Power generation from ambient humidity using protein nanowires,” Nature 578(7796), 550–554 (2020).
[Crossref]

You, S.

P. Ghamgosar, F. Rigoni, M. G. Kohan, S. You, E. A. Morales, R. Mazzaro, V. Morandi, N. Almqvist, I. Concina, and A. Vomiero, “Self-powered photodetectors based on core shell ZnO-Co3O4 nanowire heterojunctions,” ACS Appl. Mater. Interfaces 11(26), 23454–23462 (2019).
[Crossref]

P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan, A. L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, and A. Vomiero, “ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors,” Nano Energy 51, 308–316 (2018).
[Crossref]

You, T.

C. Zhu, D. Liu, Y. Li, X. Shen, L. Li, Y. Liu, and T. You, “Ratiometric electrochemical, electrochemiluminescent, and photoelectrochemical strategies for environmental contaminant detection,” Curr Opin Electrochem 17, 47–55 (2019).
[Crossref]

Yu, H.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

Yuan, R.

Y. Zhou, H. Wang, Y. Zhuo, Y. Chai, and R. Yuan, “Highly efficient electrochemiluminescent silver nanoclusters/titanium oxide nanomaterials as a signal probe for ferrocene-driven light switch bioanalysis,” Anal. Chem. 89(6), 3732–3738 (2017).
[Crossref]

Yue, Y.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

Yun, Y.

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

Zappia, M. I.

M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020).
[Crossref]

Zhang, H.

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

X. Ren, W. Zheng, H. Qiao, L. Ren, S. Liu, Z. Huang, X. Qi, Z. Wang, J. Zhong, and H. Zhang, “Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface,” Mater. Today Energy 16, 100401 (2020).
[Crossref]

H. Qiao, Z. Li, Z. Huang, X. Ren, J. Kang, M. Qiu, Y. Liu, X. Qi, J. Zhong, and H. Zhang, “Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters,” Appl. Mater. Today 20, 100765 (2020).
[Crossref]

D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
[Crossref]

C. Xing, X. Chen, W. Huang, Y. Song, J. Li, S. Chen, Y. Zhou, B. Dong, D. Fan, X. Zhu, and H. Zhang, “Two-dimensional lead monoxide: facile liquid phase exfoliation, excellent photoresponse performance, and theoretical investigation,” ACS Photonics 5(12), 5055–5067 (2018).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

M. Tchernycheva, A. Messanvi, A. d, L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref]

Zhang, J.

J. Zhang, Z. Xing, D. Wu, L. Bian, Y. Zhao, W. Yang, Y. Wu, M. Zhou, M. Jiang, and S. Lu, “Mechanism study of photoluminescence peak shift of transparent (In,Ga)N nanowire films detached by acid solution,” J. Cryst. Growth 562, 126066 (2021).
[Crossref]

Z. Xing, Y. Zhao, L. Bian, J. Zhang, M. Zhou, W. Yang, Y. Wu, M. Jiang, J. Long, and S. Lu, “Economically detaching transparent and flexible (Al,Ga)N nanowire films with improved photoelectric response in view of ultraviolet photodetectors,” Mater. Adv. 2(3), 1006–1015 (2021).
[Crossref]

J. Zhang, M. Zhou, D. Wu, L. Bian, Y. Zhao, H. Qin, W. Yang, Y. Wu, Z. Xing, and S. Lu, “Dual-wavelength visible photodetector based on vertical (In,Ga)N nanowires grown by molecular beam epitaxy,” RSC Adv. 11(26), 15632–15638 (2021).
[Crossref]

Y. Zhao, Z. Xing, L. Geelhaar, J. Zhang, W. Yang, T. Auzelle, Y. Wu, L. Bian, and S. Lu, “Detaching (In,Ga)N nanowire films for devices requiring high flexibility and transmittance,” ACS Appl. Nano Mater. 3(10), 9943–9950 (2020).
[Crossref]

M. Zhou, H. Qiu, T. He, J. Zhang, W. Yang, S. Lu, L. Bian, and Y. Zhao, “UV photodetector based on vertical (Al, Ga)N nanowires with graphene electrode and Si substrate,” Phys. Status Solidi A 217(15), 2000061 (2020).
[Crossref]

J. Zhang, S. Jiao, D. Wang, S. Ni, S. Gao, and J. Wang, “Solar-blind ultraviolet photodetection of an α-Ga2O3 nanorod array based on photoelectrochemical self-powered detectors with a simple, newly-designed structure,” J. Mater. Chem. C 7(23), 6867–6871 (2019).
[Crossref]

Zhang, K.

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, and L. Mei, “ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector,” Nanoscale Res. Lett. 8(1), 415 (2013).
[Crossref]

Zhang, L.

C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang, and J. Zhu, “Nanowire-based high-performance “micro fuel cells": one nanowire, one fuel cell,” Adv. Mater. 20(9), 1644–1648 (2008).
[Crossref]

Zhang, M.

M. Zhang, Y. Liu, M. Yang, W. Zhang, J. Zhou, Z. Zhang, E. Xie, X. Pan, and S. Li, “High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires,” Appl. Surf. Sci. 452, 43–48 (2018).
[Crossref]

Zhang, W.

M. Zhang, Y. Liu, M. Yang, W. Zhang, J. Zhou, Z. Zhang, E. Xie, X. Pan, and S. Li, “High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires,” Appl. Surf. Sci. 452, 43–48 (2018).
[Crossref]

Zhang, X.

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

Zhang, Y.

D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
[Crossref]

Zhang, Z.

M. Zhang, Y. Liu, M. Yang, W. Zhang, J. Zhou, Z. Zhang, E. Xie, X. Pan, and S. Li, “High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires,” Appl. Surf. Sci. 452, 43–48 (2018).
[Crossref]

Zhao, J.

D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Zhao, S.

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-step overall water wplitting under visible light using multiband InGaN/GaN nanowire heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref]

Zhao, Y.

J. Zhang, M. Zhou, D. Wu, L. Bian, Y. Zhao, H. Qin, W. Yang, Y. Wu, Z. Xing, and S. Lu, “Dual-wavelength visible photodetector based on vertical (In,Ga)N nanowires grown by molecular beam epitaxy,” RSC Adv. 11(26), 15632–15638 (2021).
[Crossref]

Z. Xing, Y. Zhao, L. Bian, J. Zhang, M. Zhou, W. Yang, Y. Wu, M. Jiang, J. Long, and S. Lu, “Economically detaching transparent and flexible (Al,Ga)N nanowire films with improved photoelectric response in view of ultraviolet photodetectors,” Mater. Adv. 2(3), 1006–1015 (2021).
[Crossref]

J. Zhang, Z. Xing, D. Wu, L. Bian, Y. Zhao, W. Yang, Y. Wu, M. Zhou, M. Jiang, and S. Lu, “Mechanism study of photoluminescence peak shift of transparent (In,Ga)N nanowire films detached by acid solution,” J. Cryst. Growth 562, 126066 (2021).
[Crossref]

M. Zhou, H. Qiu, T. He, J. Zhang, W. Yang, S. Lu, L. Bian, and Y. Zhao, “UV photodetector based on vertical (Al, Ga)N nanowires with graphene electrode and Si substrate,” Phys. Status Solidi A 217(15), 2000061 (2020).
[Crossref]

Y. Zhao, Z. Xing, L. Geelhaar, J. Zhang, W. Yang, T. Auzelle, Y. Wu, L. Bian, and S. Lu, “Detaching (In,Ga)N nanowire films for devices requiring high flexibility and transmittance,” ACS Appl. Nano Mater. 3(10), 9943–9950 (2020).
[Crossref]

Zheng, W.

X. Ren, W. Zheng, H. Qiao, L. Ren, S. Liu, Z. Huang, X. Qi, Z. Wang, J. Zhong, and H. Zhang, “Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface,” Mater. Today Energy 16, 100401 (2020).
[Crossref]

Zheng, Y.

Y. Zheng, Y. Li, X. Tang, W. Wang, and G. Li, “A self-powered high-performance UV photodetector based on core-shell GaN/MoO3-x nanorod array heterojunction,” Adv. Opt. Mater. 8(15), 2000197 (2020).
[Crossref]

Zhong, J.

B. Wang, Y. Zhou, Z. Huang, H. Qiao, C. Duan, X. Ren, Z. Wang, J. Zhong, and X. Qi, “Photoelectrochemical self-powered photodetector based on 2D liquid-exfoliated bismuth nanosheets: with novel structures for portability and flexibility,” Mater. Today Nano 14, 100109 (2021).
[Crossref]

X. Ren, B. Wang, Z. Huang, H. Qiao, C. Duan, Y. Zhou, J. Zhong, Z. Wang, and X. Qi, “Flexible self-powered photoelectrochemical-type photodetector based on 2D WS2-graphene heterojunction,” FlatChem 25, 100215 (2021).
[Crossref]

X. Ren, W. Zheng, H. Qiao, L. Ren, S. Liu, Z. Huang, X. Qi, Z. Wang, J. Zhong, and H. Zhang, “Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface,” Mater. Today Energy 16, 100401 (2020).
[Crossref]

H. Qiao, Z. Li, Z. Huang, X. Ren, J. Kang, M. Qiu, Y. Liu, X. Qi, J. Zhong, and H. Zhang, “Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters,” Appl. Mater. Today 20, 100765 (2020).
[Crossref]

Zhou, J.

M. Zhang, Y. Liu, M. Yang, W. Zhang, J. Zhou, Z. Zhang, E. Xie, X. Pan, and S. Li, “High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires,” Appl. Surf. Sci. 452, 43–48 (2018).
[Crossref]

J. Zhou, L. Chen, Y. Wang, Y. He, X. Pan, and E. Xie, “An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors,” Nanoscale 8(1), 50–73 (2016).
[Crossref]

Zhou, M.

J. Zhang, Z. Xing, D. Wu, L. Bian, Y. Zhao, W. Yang, Y. Wu, M. Zhou, M. Jiang, and S. Lu, “Mechanism study of photoluminescence peak shift of transparent (In,Ga)N nanowire films detached by acid solution,” J. Cryst. Growth 562, 126066 (2021).
[Crossref]

Z. Xing, Y. Zhao, L. Bian, J. Zhang, M. Zhou, W. Yang, Y. Wu, M. Jiang, J. Long, and S. Lu, “Economically detaching transparent and flexible (Al,Ga)N nanowire films with improved photoelectric response in view of ultraviolet photodetectors,” Mater. Adv. 2(3), 1006–1015 (2021).
[Crossref]

J. Zhang, M. Zhou, D. Wu, L. Bian, Y. Zhao, H. Qin, W. Yang, Y. Wu, Z. Xing, and S. Lu, “Dual-wavelength visible photodetector based on vertical (In,Ga)N nanowires grown by molecular beam epitaxy,” RSC Adv. 11(26), 15632–15638 (2021).
[Crossref]

M. Zhou, H. Qiu, T. He, J. Zhang, W. Yang, S. Lu, L. Bian, and Y. Zhao, “UV photodetector based on vertical (Al, Ga)N nanowires with graphene electrode and Si substrate,” Phys. Status Solidi A 217(15), 2000061 (2020).
[Crossref]

Zhou, Y.

B. Wang, Y. Zhou, Z. Huang, H. Qiao, C. Duan, X. Ren, Z. Wang, J. Zhong, and X. Qi, “Photoelectrochemical self-powered photodetector based on 2D liquid-exfoliated bismuth nanosheets: with novel structures for portability and flexibility,” Mater. Today Nano 14, 100109 (2021).
[Crossref]

X. Ren, B. Wang, Z. Huang, H. Qiao, C. Duan, Y. Zhou, J. Zhong, Z. Wang, and X. Qi, “Flexible self-powered photoelectrochemical-type photodetector based on 2D WS2-graphene heterojunction,” FlatChem 25, 100215 (2021).
[Crossref]

C. Xing, X. Chen, W. Huang, Y. Song, J. Li, S. Chen, Y. Zhou, B. Dong, D. Fan, X. Zhu, and H. Zhang, “Two-dimensional lead monoxide: facile liquid phase exfoliation, excellent photoresponse performance, and theoretical investigation,” ACS Photonics 5(12), 5055–5067 (2018).
[Crossref]

Y. Zhou, H. Wang, Y. Zhuo, Y. Chai, and R. Yuan, “Highly efficient electrochemiluminescent silver nanoclusters/titanium oxide nanomaterials as a signal probe for ferrocene-driven light switch bioanalysis,” Anal. Chem. 89(6), 3732–3738 (2017).
[Crossref]

Zhou, Z.

C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang, and J. Zhu, “Nanowire-based high-performance “micro fuel cells": one nanowire, one fuel cell,” Adv. Mater. 20(9), 1644–1648 (2008).
[Crossref]

Zhu, C.

C. Zhu, D. Liu, Y. Li, X. Shen, L. Li, Y. Liu, and T. You, “Ratiometric electrochemical, electrochemiluminescent, and photoelectrochemical strategies for environmental contaminant detection,” Curr Opin Electrochem 17, 47–55 (2019).
[Crossref]

Zhu, D.

Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, and L. Mei, “ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector,” Nanoscale Res. Lett. 8(1), 415 (2013).
[Crossref]

Zhu, J.

C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang, and J. Zhu, “Nanowire-based high-performance “micro fuel cells": one nanowire, one fuel cell,” Adv. Mater. 20(9), 1644–1648 (2008).
[Crossref]

Zhu, X.

C. Xing, X. Chen, W. Huang, Y. Song, J. Li, S. Chen, Y. Zhou, B. Dong, D. Fan, X. Zhu, and H. Zhang, “Two-dimensional lead monoxide: facile liquid phase exfoliation, excellent photoresponse performance, and theoretical investigation,” ACS Photonics 5(12), 5055–5067 (2018).
[Crossref]

Zhuo, Y.

Y. Zhou, H. Wang, Y. Zhuo, Y. Chai, and R. Yuan, “Highly efficient electrochemiluminescent silver nanoclusters/titanium oxide nanomaterials as a signal probe for ferrocene-driven light switch bioanalysis,” Anal. Chem. 89(6), 3732–3738 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (2)

D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, “Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector,” ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019).
[Crossref]

P. Ghamgosar, F. Rigoni, M. G. Kohan, S. You, E. A. Morales, R. Mazzaro, V. Morandi, N. Almqvist, I. Concina, and A. Vomiero, “Self-powered photodetectors based on core shell ZnO-Co3O4 nanowire heterojunctions,” ACS Appl. Mater. Interfaces 11(26), 23454–23462 (2019).
[Crossref]

ACS Appl. Nano Mater. (1)

Y. Zhao, Z. Xing, L. Geelhaar, J. Zhang, W. Yang, T. Auzelle, Y. Wu, L. Bian, and S. Lu, “Detaching (In,Ga)N nanowire films for devices requiring high flexibility and transmittance,” ACS Appl. Nano Mater. 3(10), 9943–9950 (2020).
[Crossref]

ACS Nano (1)

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-step overall water wplitting under visible light using multiband InGaN/GaN nanowire heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref]

ACS Photonics (1)

C. Xing, X. Chen, W. Huang, Y. Song, J. Li, S. Chen, Y. Zhou, B. Dong, D. Fan, X. Zhu, and H. Zhang, “Two-dimensional lead monoxide: facile liquid phase exfoliation, excellent photoresponse performance, and theoretical investigation,” ACS Photonics 5(12), 5055–5067 (2018).
[Crossref]

Adv. Energy Mater. (1)

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

Adv. Funct. Mater. (2)

M. I. Zappia, G. Bianca, S. Bellani, M. Serri, L. Najafi, R. Oropesa-Nunez, B. Martin-Garcia, D. Bousa, D. Sedmidubsky, V. Pellegrini, Z. Sofer, A. Cupolillo, and F. Bonaccorso, “Solution-processed GaSe nanoflake-based films for Photoelectrochemical water splitting and photoelectrochemical-type photodetectors,” Adv. Funct. Mater. 30(10), 1909572 (2020).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Adv. Mater. (2)

C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang, and J. Zhu, “Nanowire-based high-performance “micro fuel cells": one nanowire, one fuel cell,” Adv. Mater. 20(9), 1644–1648 (2008).
[Crossref]

H. Sun, W. Tian, F. Cao, J. Xiong, and L. Li, “Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector,” Adv. Mater. 30(21), 1706986 (2018).
[Crossref]

Adv. Opt. Mater. (1)

Y. Zheng, Y. Li, X. Tang, W. Wang, and G. Li, “A self-powered high-performance UV photodetector based on core-shell GaN/MoO3-x nanorod array heterojunction,” Adv. Opt. Mater. 8(15), 2000197 (2020).
[Crossref]

Anal. Chem. (1)

Y. Zhou, H. Wang, Y. Zhuo, Y. Chai, and R. Yuan, “Highly efficient electrochemiluminescent silver nanoclusters/titanium oxide nanomaterials as a signal probe for ferrocene-driven light switch bioanalysis,” Anal. Chem. 89(6), 3732–3738 (2017).
[Crossref]

Appl. Mater. Today (1)

H. Qiao, Z. Li, Z. Huang, X. Ren, J. Kang, M. Qiu, Y. Liu, X. Qi, J. Zhong, and H. Zhang, “Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters,” Appl. Mater. Today 20, 100765 (2020).
[Crossref]

Appl. Surf. Sci. (1)

M. Zhang, Y. Liu, M. Yang, W. Zhang, J. Zhou, Z. Zhang, E. Xie, X. Pan, and S. Li, “High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires,” Appl. Surf. Sci. 452, 43–48 (2018).
[Crossref]

Biosens. Bioelectron. (2)

M. Riedel, S. Hoelzel, P. Hille, J. Schoermann, M. Eickhoff, and F. Lisdat, “InGaN/GaN nanowires as a new platform for photoelectrochemical sensors-detection of NADH,” Biosens. Bioelectron. 94, 298–304 (2017).
[Crossref]

R. Atchudan, N. Muthuchamy, T. N. J. I. Edison, S. Perumal, R. Vinodh, K. H. Park, and Y. R. Lee, “An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles,” Biosens. Bioelectron. 126, 160–169 (2019).
[Crossref]

Curr Opin Electrochem (1)

C. Zhu, D. Liu, Y. Li, X. Shen, L. Li, Y. Liu, and T. You, “Ratiometric electrochemical, electrochemiluminescent, and photoelectrochemical strategies for environmental contaminant detection,” Curr Opin Electrochem 17, 47–55 (2019).
[Crossref]

Energy Environ. Sci. (2)

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Gratzel, “A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
[Crossref]

Eur. J. Inorg. Chem. (1)

C. Decavoli, C. L. Boldrini, N. Manfredi, and A. Abbotto, “Molecular organic sensitizers for photoelectrochemical water splitting,” Eur. J. Inorg. Chem. 2020(11-12), 978–999 (2020).
[Crossref]

FlatChem (1)

X. Ren, B. Wang, Z. Huang, H. Qiao, C. Duan, Y. Zhou, J. Zhong, Z. Wang, and X. Qi, “Flexible self-powered photoelectrochemical-type photodetector based on 2D WS2-graphene heterojunction,” FlatChem 25, 100215 (2021).
[Crossref]

J. Am. Chem. Soc. (1)

B. Shan, M. K. Brenneman, L. Troian-Gautier, Y. Liu, A. Nayak, C. M. Klug, T.-T. Li, R. M. Bullock, and T. J. Meyer, “A silicon-based heterojunction integrated with a molecular excited state in a water-splitting tandem cell,” J. Am. Chem. Soc. 141(26), 10390–10398 (2019).
[Crossref]

J. Cryst. Growth (1)

J. Zhang, Z. Xing, D. Wu, L. Bian, Y. Zhao, W. Yang, Y. Wu, M. Zhou, M. Jiang, and S. Lu, “Mechanism study of photoluminescence peak shift of transparent (In,Ga)N nanowire films detached by acid solution,” J. Cryst. Growth 562, 126066 (2021).
[Crossref]

J. Mater. Chem. C (1)

J. Zhang, S. Jiao, D. Wang, S. Ni, S. Gao, and J. Wang, “Solar-blind ultraviolet photodetection of an α-Ga2O3 nanorod array based on photoelectrochemical self-powered detectors with a simple, newly-designed structure,” J. Mater. Chem. C 7(23), 6867–6871 (2019).
[Crossref]

J. Phys. D: Appl. Phys. (1)

H. Zhang, N. Guan, V. Piazza, A. Kapoor, C. Bougerol, F. H. Julien, A. V. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, and M. Tchernycheva, “Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes,” J. Phys. D: Appl. Phys. 50(48), 484001 (2017).
[Crossref]

Joule (1)

A. G. Wallace and M. D. Symes, “Decoupling strategies in electrochemical water splitting and beyond,” Joule 2(8), 1390–1395 (2018).
[Crossref]

Mater. Adv. (1)

Z. Xing, Y. Zhao, L. Bian, J. Zhang, M. Zhou, W. Yang, Y. Wu, M. Jiang, J. Long, and S. Lu, “Economically detaching transparent and flexible (Al,Ga)N nanowire films with improved photoelectric response in view of ultraviolet photodetectors,” Mater. Adv. 2(3), 1006–1015 (2021).
[Crossref]

Mater. Today Energy (1)

X. Ren, W. Zheng, H. Qiao, L. Ren, S. Liu, Z. Huang, X. Qi, Z. Wang, J. Zhong, and H. Zhang, “Enhanced photoresponse behavior of Au@Bi2Te3 based photoelectrochemical-type photodetector at solid-solid-liquid joint interface,” Mater. Today Energy 16, 100401 (2020).
[Crossref]

Mater. Today Nano (1)

B. Wang, Y. Zhou, Z. Huang, H. Qiao, C. Duan, X. Ren, Z. Wang, J. Zhong, and X. Qi, “Photoelectrochemical self-powered photodetector based on 2D liquid-exfoliated bismuth nanosheets: with novel structures for portability and flexibility,” Mater. Today Nano 14, 100109 (2021).
[Crossref]

Nano Energy (2)

N. Ul Hassan Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. Jesus Gomez, A. U. H. Alvi, W. ul Hassan, M. Willander, and R. Noetzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan, A. L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, and A. Vomiero, “ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors,” Nano Energy 51, 308–316 (2018).
[Crossref]

Nano Lett. (3)

M. Tchernycheva, A. Messanvi, A. d, L. Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref]

D. Wang, X. Liu, S. Fang, C. Huang, Y. Kang, H. Yu, Z. Liu, H. Zhang, R. Long, Y. Xiong, Y. Lin, Y. Yue, B. Ge, T. K. Ng, B. S. Ooi, Z. Mi, J.-H. He, and H. Sun, “Pt/AlGaN nanoarchitecture: toward high responsivity, self-powered ultraviolet-sensitive photodetection,” Nano Lett. 21(1), 120–129 (2021).
[Crossref]

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “P-type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref]

Nanoscale (1)

J. Zhou, L. Chen, Y. Wang, Y. He, X. Pan, and E. Xie, “An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors,” Nanoscale 8(1), 50–73 (2016).
[Crossref]

Nanoscale Res. Lett. (2)

Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, and L. Mei, “ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector,” Nanoscale Res. Lett. 8(1), 415 (2013).
[Crossref]

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref]

Nat. Commun. (1)

M. M. May, H.-J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6(1), 8286 (2015).
[Crossref]

Nat. Nanotechnol. (1)

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5(5), 366–373 (2010).
[Crossref]

Nat. Rev. Mater. (1)

F. P. G. de Arquer, A. Armin, P. Meredith, and E. H. Sargent, “Solution-processed semiconductors for next-generation photodetectors,” Nat. Rev. Mater. 2(3), 16100 (2017).
[Crossref]

Nature (3)

X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, T. Fu, J. Chen, D. R. Lovley, and J. Yao, “Power generation from ambient humidity using protein nanowires,” Nature 578(7796), 550–554 (2020).
[Crossref]

S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature 555(7694), 83–88 (2018).
[Crossref]

M. Gratzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[Crossref]

Phys. Status Solidi A (1)

M. Zhou, H. Qiu, T. He, J. Zhang, W. Yang, S. Lu, L. Bian, and Y. Zhao, “UV photodetector based on vertical (Al, Ga)N nanowires with graphene electrode and Si substrate,” Phys. Status Solidi A 217(15), 2000061 (2020).
[Crossref]

RSC Adv. (1)

J. Zhang, M. Zhou, D. Wu, L. Bian, Y. Zhao, H. Qin, W. Yang, Y. Wu, Z. Xing, and S. Lu, “Dual-wavelength visible photodetector based on vertical (In,Ga)N nanowires grown by molecular beam epitaxy,” RSC Adv. 11(26), 15632–15638 (2021).
[Crossref]

Science (1)

S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. Choi, J. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, “Harvesting electrical energy from carbon nanotube yarn twist,” Science 357(6353), 773–778 (2017).
[Crossref]

Small (3)

D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W. P. Hu, and W. Chen, “Surface transfer doping-induced, high-performance graphene/silicon schottky junction-based, self-powered photodetector,” Small 11(37), 4829–4836 (2015).
[Crossref]

W. Tian, Y. Wang, L. Chen, and L. Li, “Self-powered nanoscale photodetectors,” Small 13(45), 1701848 (2017).
[Crossref]

N. Liu, H. Qiao, K. Xu, Y. Xi, L. Ren, N. Cheng, D. Cui, X. Qi, X. Xu, W. Hao, X. Dou Shi, and Y. Du, “Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector,” Small 16(23), 2000283 (2020).
[Crossref]

Supplementary Material (1)

NameDescription
Supplement 1       Supporting content for the paper

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of vertical (In,Ga)N NWs (a) with and (b) without AlN buffer layer. (c) Experimental PL spectra of (In,Ga)N NWs. (d) Schematic illustration of a self-powered PEC PD based on (In,Ga)N NWs.
Fig. 2.
Fig. 2. (a) Top-view and (b) side-view SEM images of as-grown (In,Ga)N NWs before PEC detection. (c) Top-view and (d) side-view SEM images of (In,Ga)N NWs after 3 h PEC detection.
Fig. 3.
Fig. 3. (a) I-V curves of the PD in the dark and under the 630 nm illumination. (b) Transient response of the PD under 630 nm illumination and an open-circuit potential. Insets are the enlarged curves of rise time and fall time, respectively.
Fig. 4.
Fig. 4. (a) Photo-switching behaviors of the self-powered PEC PD under illuminations with different powers and an open-circuit potential. The unit of incident light power density is μW/cm2. (b) Photocurrent density and responsivity as a function of incident light power density.
Fig. 5.
Fig. 5. (a) Photocurrent stability of PEC PD based on (In,Ga)N NWs. Photocurrent response measurement of PEC PD under open-circuit potential when continuously working (b) 300 s, (c) 2 h and (d) 3 h.
Fig. 6.
Fig. 6. Schematic illustrations of (a) the NW structure and (b) the corresponding energy band diagram under 630 nm illumination.

Tables (1)

Tables Icon

Table 1. Comparison of response time and responsivity between this work and some recent reports.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R=IphPinc,
H++4e=2H2,
4h++2H2=O2+4H+.

Metrics