Abstract

Spatiotemporal coupling is present when the electric fields of any pulsed beams fail to separate into a product of purely spatial and temporal factors, and it affects ultimately on the propagation of the light. Here we study the effect of spatiotemporal coupling on the Hanbury Brown and Twiss (HBT) effect for the first time, with the help of our recent developed method [Opt. Express 28, 32077 (2020) [CrossRef]  ], by assuming the Gaussian statistics of partially coherent spatiotemporal pulsed sources containing the intensity and correlation coupling effect between the spatial and temporal domain. The generalized results for the spatiotemporal coupling HBT effect are investigated and through a nontrivial two-dimensional case, we numerically illustrate the influence of the spatiotemporal coupling on the HBT effect. It observes that even a very tiny coupling effect will strongly change the HBT effect at longer distances. This work will be potentially useful for the study of the HBT effect (intensity-intensity correlations) with dynamic sources having spatiotemporal coupling in both optics and other branches of physics.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The importance of spatiotemporal coupling (STC) has been largely overlooked in optics as the light field is generally assumed non-coupled. However, the electric field for an ultrashort pulse usually contains the STC term which plays an important role in physical effects [1]. One finds that the spatial properties of such ultrashort light pulse sources depends upon time and vice versa. STC is normally generated when light pulses propagate through lenses [2], prisms [3], diffraction gratings [4], apertures [5,6], nonlinear media [7] etc., so in the experiments with optical instruments it is difficult to avoid STC.

Recently, many detailed studies of STC have been introduced in which all possible types of couplings including pulse-front tilt, spatial chirp, angular dispersion, time versus angle and other have been explained [8]. It was suggested that when STC is present then the pulse must be described at least in two domains like space and time domain or other three combinations with frequency and wave vector. Different kinds of coupling effects can be found by simple Fourier transform from one pair of domains to the other. So even the two domains like space and time can be useful to study the coupling effects and the other coupling effects can be found from these [8]. Introduction and control of STC allows much better longitudinal resolution in microscopy experiments than usual techniques [9]. By utilizing the pulse front tilt, broadband nearly single-cycle terahertz pulses have been generated [10]. Attosecond light houses [11,12] and the control on the velocity of ultrashort pulses [13] have been introduced by using STC. By modulating the transverse spatiotemporal dispersion, the honeycomb beam and the picket-fence beam, are generated in the spatiotemporal domain and it is observed that STC can provide new potentials for coherent control in optics [14]. Very recently, STC induced by the misalignment of mirrors and gratings in the parallel grating pair pulse stretcher is analysed by using the ray tracing simulation method and an adjustment procedure is introduced to accurately calibrate these misalignments [15]. The coupling in space-frequency or space-time twisted beams for partially coherent light fields has been suggested recently by Hyde and their behaviors have been discussed during the propagation [16]. Matrix optics methods have also been used for the study of STC [1720].

It is known that while passing through optical media the coupling effect can be generated and influence the propagation effect of light. However, to the best of our knowledge, there is no investigation for the influence of STC on the HBT effect specifically with partially coherent sources. Here we mentioned partially coherent sources specifically due to their coverage from fully coherent to completely non-coherent cases which makes them hot topic of research in temporal [2126], spatial [2734] and spatiotemporal domain [20,3537] in recent years. Recently we have extended the phenomenon of HBT from spatial [38,39] to spatiotemporal domain [40]. After realizing the importance of the STC which can be generated even due to light propagation in optical media, in this work we extend our recent study of HBT effect in spatiotemporal domain by assuming the source containing spatiotemporal coupling and observe how it can influence the HBT effect. Here we do not go in details of the origin of the STC but only focus on the effect of STC on HBT correlations. We introduce the STC matrix in the compact form of partially coherent Gaussian Schell-model pulsed beams (GSMPBs) and used the generalized results for HBT effect in spatiotemporal domain which is suitable for any optical system with the second-order linear dispersion [40], by using matrix optics methods under the paraxial approximation [41]. By considering two-dimensional case in air, we observe the influence of STC on HBT effect with the help of numerical examples. This study actually helps to approach the maximum possible accuracy of the results for HBT correlations as it highlights the influence of STC, which can be present even due to the laboratory instruments used in the measurements of optical effects.

2. Partially coherent GSMPBs with spatiotemporal coupling

Partially coherent GSMPBs for the non-coupling case have been explained in the literature in the compact form with the help of matrix optics theory (for detailed derivation of compact form please see [20,40] ). Such sources could be realizable with the help of Q-switching technology or by using the modulated random ground glass plate. Here we will explain the case when such light source goes through any medium which causes coupling effects in intensity and correlation between spatial and temporal domain. It should be noted that we are not going in details of any specific medium which produces the coupling effect, rather we will treat generalized case for the study of STC effect on the HBT effect. As we know that every pulse is identical and coherent for coherent pulsed beams, while for partially coherent situations, every pulse is different and it contains the random fluctuations in space and time, which can be characterized by the transverse spatial coherence and longitudinal temporal coherence in the correlation function. For such a partially coherent pulsed source, both the intensity and the correlation obey Gaussian statistics in spatial and temporal domain, and under the paraxial slowly varying envelope approximation, the correlation function of such pulsed sources can be expressed as [20]

$$\Gamma (\overline{\boldsymbol{r}}_{0})=\exp \left[ -\frac{ik}{2}(\overline{\boldsymbol{r}}_{0}^{\textrm{T}}\overline{\boldsymbol{Q}}^{{-}1}\overline{\boldsymbol{r}}_{0})\right] ,$$
where
$$\overline{\boldsymbol{Q}}^{{-}1}=\left(\begin{smallmatrix}\widetilde{\boldsymbol{\sigma }}_{1}, & \widetilde{\boldsymbol{\sigma }}_{2}\\\widetilde{\boldsymbol{\sigma }}_{3}, & \widetilde{\boldsymbol{\sigma }}_{4}\end{smallmatrix}\right)$$
is a 2$m\times$2$m$ matrix, if light source posses the STC effect then submatrices of matrix $\overline {\boldsymbol {Q}}^{-1}$ can be written in the form of $m \times m$ submatrices as $\widetilde {\boldsymbol {\sigma }}_{1}=\left (\begin {smallmatrix}-\frac {i}{2k}\boldsymbol {\sigma }_{\textrm {I}}^{-2}-\frac {i}{k}\boldsymbol {\sigma }_{\textrm {cs}}^{-2}, & \boldsymbol {q}_{12} \\\boldsymbol {q}_{21}, & -\frac {i}{k}\sigma _{\tau }^{-2}-\frac {i}{k}\sigma _{\textrm {c}\tau }^{-2}\end {smallmatrix}\right )$, $\widetilde {\boldsymbol {\sigma }}_{2}=\left (\begin {smallmatrix}\frac {i}{k}\boldsymbol {\sigma }_{\textrm {cs}}^{-2}, & \boldsymbol {q}_{14} \\-\boldsymbol {q}_{23}, & \frac {i}{k}\sigma _{\textrm {c}\tau }^{-2}\end {smallmatrix}\right ) ,\ \widetilde {\boldsymbol {\sigma }}_{3}=\left (\begin {smallmatrix}\frac {i}{k}\boldsymbol {\sigma }_{\textrm {cs}}^{-2}, & -\boldsymbol {q}_{32} \\\boldsymbol {q}_{41}, & \frac {i}{k}\sigma _{\textrm {c}\tau }^{-2}\end {smallmatrix}\right )$, $\widetilde {\boldsymbol {\sigma }}_{4}=\left (\begin {smallmatrix}-\frac {i}{2k}\boldsymbol {\sigma }_{\textrm {I}}^{-2}-\frac {i}{k}\boldsymbol {\sigma }_{\textrm {cs}}^{-2}, & -\boldsymbol {q}_{34} \\-\boldsymbol {q}_{43}, & -\frac {i}{k}\sigma _{\tau }^{-2}-\frac {i}{k}\sigma _{\textrm {c}\tau }^{-2}\end {smallmatrix}\right )$ and $\boldsymbol {q}_{12}$, $\boldsymbol {q}_{32}$, $\boldsymbol {q}_{14}$, $\boldsymbol {q}_{34}$ are $(m-1)\times$1 nonzero real matrices, $\boldsymbol {q}_{21}$, $\boldsymbol {q}_{23}$, $\boldsymbol { q}_{13}$, $\boldsymbol {q}_{43}$ are 1$\times (m-1)$ nonzero real matrices, whose elements depend on the coupling between space and time in the pulsed beams, $m$ is a dimension parameter which can be $m=$ 2 or 3. For $m=3$, it corresponds to the three-dimensional case: the two transverse spatial coordinates ($x$ and $y$) and another temporal dimension $\tau$; then we have $\boldsymbol {\sigma }_{I}^{-2}=\left (\begin {smallmatrix}\sigma _{I}^{-2} & 0 \\0 & \sigma _{I}^{-2}\end {smallmatrix}\right )$ and $\boldsymbol {\sigma }_{cs}^{-2}=\left (\begin {smallmatrix}\sigma _{cs}^{-2} & 0 \\0 & \sigma _{cs}^{-2}\end {smallmatrix}\right )$, which are the spatial properties of such pulsed beams, and for $m=2$, it corresponds to the two-dimensional case: only one transverse spatial coordinate ($x$ or $y$) and another temporal dimension $\tau$. In Eq. (1), $\overline {\boldsymbol {r}}_{0}\equiv \left(\begin{array}{l}{\boldsymbol {r}_{10}}\\{\boldsymbol {r}_{20}}\end{array}\right)$ is $2m\times 1$ matrix representing the two spatiotemporal points on the source plane and $\boldsymbol {r}_{i0}=(x_{i0},y_{i0},\tau _{i0})^{\textrm {T}}$ with $i=1,2$ represents two arbitrary spatiotemporal points on the source plane. Here the temporal variable $\tau _{i0}$ is defined by $\tau _{i0}\equiv v_{g}t_{i0}$ with a length dimension, and $t_{i0}$ is the delay time coordinate given by $t_{i0}=t_{s_{i0}}-z_{i}/v_{g}$, where $t_{s_{i0}}$ is the instant time and $z_{i}$ is the position of the observation plane. From these relations, it is well know that the origin of $\tau _{i0}$ is moving as $z_{i}$ changes, therefore it seems like a flying reference frame as light propagates with the group velocity $v_{g}$ and is called as the longitudinal flying reference frame. For free space, this value $v_{g}$becomes the speed of light. The parameters $\sigma _{\textrm {I}}$, $\sigma _{\textrm {cs}}$, $\sigma _{\textrm {t}}=\sigma _{\tau }/v_{g}$ and $\sigma _{\textrm {ct}}=\sigma _{c\tau }/v_{g}$ are positive constants representing the spatial width, transverse coherence length, temporal width, and longitudinal temporal coherence length of GSMPBs, respectively. It should be noted that in the matrix $\overline {\boldsymbol {Q}}^{-1}$ the subscript $\tau$ is representing the temporal part with the same unit as the spatial parts, which ensures all units in the elements of $\overline {\boldsymbol {Q}}^{-1}$ to be the same. Here we emphasize that the matrix $\overline {\boldsymbol {Q}}^{-1}$ is completely different from the one explained in Ref. [40], and the off diagonal elements in $\overline {\boldsymbol {Q}}^{-1}$ are non-zero, which explains the spatiotemporal coupling case. At the same time, by the characteristics of the correlation function $\Gamma ^{\ast }(\overline {\boldsymbol {r}}_{0})=\Gamma (\overline {\boldsymbol {r}}_{0})$, there exists the relations $\boldsymbol {q}_{12}=\boldsymbol {q}_{21}^{T}=\boldsymbol {q}_{34}=\boldsymbol {q}_{43}^{T}$ and $\boldsymbol {q}_{14}=\boldsymbol {q}_{41}^{T}=\boldsymbol {q}_{32}=\boldsymbol {q}_{23}^{T}$, the superscript “T” denotes the transposed operator. We call the parameters $\boldsymbol {q}_{12}$, $\boldsymbol {q}_{21}$, $\boldsymbol {q}_{34}$ and $\boldsymbol {q}_{43}$ the spatiotemporal intensity self-coupling at the same spatiotemporal point and the parameters $\boldsymbol {q}_{14}$, $\boldsymbol {q}_{41}$, $\boldsymbol {q}_{23}$, and $\boldsymbol {q}_{32}$ the spatiotemporal correlation mutual-coupling between any two different spatiotemporal points [20]. The later mutual-coupling between two different spatiotemporal points is similar to the cases considered in the recent work [16]. Actually we will see that both the spatiotemporal intensity self-coupling and correlation mutual-coupling play the important role in the propagation of the intensity correlation. Here we do not consider the coupling between spatial points, if there exist such coupling then the off-diagonal elements of matrices $\boldsymbol {\sigma }_{I}^{-2}$ and $\boldsymbol {\sigma }_{cs}^{-2}$ will also be nonzero.

3. Model for the HBT effect with spatiotemporal coupling

Figure 1 shows the schematic diagram for spatiotemporal HBT effect with a partially coherent source having STC. Consider a partially coherent pulsed source with STC, which has the Gaussian statistics in spatial and temporal domains and whose fluctuations are jointly Gaussian random process at any spatiotemporal point, light from the source reaches at two detectors. We also assume that both detectors have the ability to collect the spatial and temporal information. The detectors can move in transverse planes and their response time should be much shorter than the source coherence time. From both detectors the output is correlated in the second-order correlator, $G^{(2)}(\boldsymbol {\rho }_{1},\boldsymbol {\rho }_{2})$. The theoretical frame of the second-order intensity correlation function between the two detectors is already explained [4244]. For any spatiotemporal correlated pulsed fields obeying the Gaussian statistics, the second-order intensity correlation function between the two detectors on different spatiotemporal points $\boldsymbol {\rho }_{1,2}$ at the observation planes D1 and D2 can be expressed by [42]

$$G^{(2)}(\boldsymbol{\rho }_{1},\boldsymbol{\rho }_{2})=\left\langle I_{1}(\boldsymbol{\rho }_{1})\right\rangle \left\langle I_{2}(\boldsymbol{\rho }_{2})\right\rangle +\left\vert \Gamma (\boldsymbol{\rho }_{1},\boldsymbol{\rho }_{2})\right\vert ^{2}.$$

 figure: Fig. 1.

Fig. 1. Model for HBT effect with a source containing STC. Spatiotemporal light source splits into two light fields among which, one is detected by detector D1 and other is measured by detector D2, then signals from both detectors are being correlated in the second-order correlator.

Download Full Size | PPT Slide | PDF

Here $\boldsymbol {\rho }_{i}=(x_{i},y_{i},\tau _{i})^{\textrm {T}}$. For such sources, the normalized second-order correlation function (the spatiotemporal HBT effect) of the intensity fluctuations $\Delta I_{1,2}(\boldsymbol {\rho }_{1,2})=I_{1,2}(\boldsymbol {\rho }_{1,2})-\left \langle I_{1,2}(\boldsymbol {\rho }_{1,2})\right \rangle$ at two detectors is defined as [45]

$$HBT(\boldsymbol{\rho }_{1},\boldsymbol{\rho }_{2})=\frac{\left\langle \Delta I_{1}(\boldsymbol{\rho }_{1})\Delta I_{2}(\boldsymbol{\rho }_{2})\right\rangle }{\left\langle I_{1}(\boldsymbol{\rho }_{1})\right\rangle\left\langle I_{2}(\boldsymbol{\rho }_{2})\right\rangle }=\frac{\left\vert\Gamma (\boldsymbol{\rho }_{1},\boldsymbol{\rho }_{2})\right\vert ^{2}}{\left\langle I_{1}(\boldsymbol{\rho }_{1})\right\rangle \left\langle I_{2}(\boldsymbol{\rho }_{2})\right\rangle },$$
where $\Gamma (\boldsymbol {\rho }_{1},\boldsymbol {\rho }_{2})$ in Eqs. (2) and (3) is the first-order spatiotemporal correlation function that depends on the spatiotemporal coordinates of both detectors, $I_{i}(\boldsymbol {\rho }_{i})$ is the instantaneous intensity of the pulsed beam arriving at the $i$th detector, and $\left \langle \cdot \right \rangle$ denotes the ensemble average that is averaged over different realizations of the pulsed fields. The normalized background constant term in the HBT correlation is unimportant, thus we only concern the correlation of the intensity fluctuation in Eq. (3). The ingredients of Eq. (3) have been found recently, so we will not go in the lengthy calculation steps (for details of calculations see Ref. [40]) and just use the generalized solution for the first-order correlation
$$|\Gamma (\boldsymbol{\rho }_{1},\boldsymbol{\rho }_{2})|^{2}=\left\vert[\det (\overline{\mathbf{A}}+\overline{\mathbf{B}}\overline{\boldsymbol{Q}}^{{-}1})]^{-\frac{1}{2}}\exp \left\{{-}i\frac{k}{2}[\overline{\boldsymbol{\delta }}_{12}^{\textrm{T}}(\overline{\mathbf{C}}+\overline{\mathbf{D}}\overline{\boldsymbol{Q}}^{{-}1})(\overline{\mathbf{A}}+\overline{\mathbf{B}}\overline{\boldsymbol{Q}}^{{-}1})^{{-}1}\overline{\boldsymbol{\delta }}_{12}]\right\} \right\vert ^{2},$$
and the ensemble averaged intensities at detectors D1 and D2
$$\left\langle I_{i}(\boldsymbol{\rho }_{i})\right\rangle =\boldsymbol{[\det }(\overline{\mathbf{A}}_{i}+\overline{\mathbf{B}}_{i}\overline{\boldsymbol{Q}}^{{-}1})]^{-\frac{1}{2}}\exp \left\{{-}i\frac{k}{2}[-\overline{\boldsymbol{\rho}}_{ii}^{\textrm{T}}\overline{\mathbf{B}}_{i}^{{-}1}(\overline{\mathbf{A}}_{i}+\overline{\mathbf{B}}_{i}\overline{\boldsymbol{Q}}^{{-}1})^{{-}1}\overline{\boldsymbol{\rho }}_{ii}]\right\} ,$$
where $\overline {\mathbf {A}}=\left (\begin {smallmatrix}\widetilde {\mathbf {A}}_{1} & 0 \\0 & \widetilde {\mathbf {A}}_{2}\end {smallmatrix}\right )$, $\overline {\mathbf {B}}=\left (\begin {smallmatrix}\widetilde {\mathbf {B}}_{1} & 0 \\0 & -\widetilde {\mathbf {B}}_{2}\end {smallmatrix}\right )$, $\overline {\mathbf {C}}=\left (\begin {smallmatrix}\widetilde {\mathbf {C}}_{1} & 0 \\0 & -\widetilde {\mathbf {C}}_{2}\end {smallmatrix}\right )$, $\overline {\mathbf {D}}=\left (\begin {smallmatrix}\widetilde {\mathbf {D}}_{1} & 0 \\0 & \widetilde {\mathbf {D}}_{2}\end {smallmatrix}\right )$, $\overline {\mathbf {A}}_{i}=\left (\begin {smallmatrix}\widetilde {\mathbf {A}}_{i} & 0 \\0 & \widetilde {\mathbf {A}}_{i}\end {smallmatrix}\right )$, $\overline {\mathbf {B}}_{i}=\left (\begin {smallmatrix}\widetilde {\mathbf {B}}_{i} & 0 \\0 & -\widetilde {\mathbf {B}}_{i}\end {smallmatrix}\right )$, $\overline {\mathbf {C}}_{i}=\left (\begin {smallmatrix}\widetilde {\mathbf {C}}_{i} & 0 \\0 & -\widetilde {\mathbf {C}}_{i}\end {smallmatrix}\right )$, $\overline {\mathbf {D}}_{i}=\left (\begin {smallmatrix}\widetilde {\mathbf {D}}_{i} & 0 \\0 & \widetilde {\mathbf {D}}_{i}\end {smallmatrix}\right )$ are $2m\times 2m$ matrices, $\widetilde {\mathbf {A}}_{i},\widetilde {\mathbf {B}}_{i},\widetilde {\mathbf {C}}_{i}$, $\widetilde {\mathbf {D}}_{i}$ are $m \times m$ spatiotemporal ray characteristic matrices between the input and output planes of the optical systems under the paraxial approximation [20,37], the subscript $i$ with the matrices is representing the $i$th optical path as shown in Fig. 1, $\overline {\boldsymbol {\delta }}_{12}\equiv \left(\begin{array}{l}{\boldsymbol {\rho }_{1}}\\{\boldsymbol {\rho }_{2}}\end{array}\right)$ is a $2m\times 1$ matrix denoting the two spatiotemporal points on the planes of the detectors D1, D2, and $\overline {\boldsymbol {\rho }}_{ii}= \left(\begin{array}{l}{\boldsymbol {\rho }_{i}}\\{\boldsymbol {\rho }_{i}}\end{array}\right)$ is a $2m\times 1$ matrix representing the same spatiotemporal points at the detector D$i$. Here one can observe that the main influence in HBT effect will appear from matrices $\overline {\mathbf {B}}$ ($\overline {\mathbf {B}}_{i}$) and $\overline {\boldsymbol {Q}}^{-1}$, as both are multiplying so the increase in the values of matrix $\overline {\mathbf {B}}$ ($\overline {\mathbf {B}}_{i}$) will enhance the changes occurred due to $\overline {\boldsymbol {Q}}^{-1}$, for example increase in the distance from the source plane can enhance the small changes in the coupling effects.

4. Example and numerical results

Here we will demonstrate the above generalized results numerically by considering two dimensional case for simplicity, one dimension is in spatial domain along $x$ direction and another dimension is the temporal domain. The source has Gaussian statistics in spatiotemporal domain and contains the coupling effect between spatial and temporal domain. For easy understanding we further simplify the case by considering both optical paths are in the same homogeneous medium and air is considered as homogeneous medium for light propagation. The distances from the source plane to the planes of detectors D1 and D2 are same, i.e., $z_{1}=z_{2}=z$. Now we can define the spatiotemporal transfer matrices under above mentioned assumptions as $\widetilde {\mathbf {A}}_{1}=\widetilde {\mathbf {A}}_{2}=\left (\begin {smallmatrix}1 & 0 \\0 & 1\end {smallmatrix}\right )$, $\widetilde {\mathbf {B}}_{1}=\widetilde {\mathbf {B}}_{2}=\left (\begin {smallmatrix} b_{x} & 0 \\0 & b_{\tau }\end {smallmatrix}\right )$, $\widetilde {\mathbf {C}}_{1}=\widetilde {\mathbf {C}}_{2}=\left ( \begin {smallmatrix}0 & 0 \\0 & 0\end {smallmatrix}\right )$, $\widetilde {\mathbf {D}}_{1}=\widetilde {\mathbf {D}}_{2}=\left ( \begin {smallmatrix}1 & 0 \\0 & 1\end {smallmatrix}\right )$, with $b_{x}=z/n$, $b_{\tau }=-\beta _{2}c\omega z$ while $n$, $\beta _{2}$, $c$, $\omega$ representing the refractive index of the medium, group-velocity dispersion of a homogeneous medium, the speed of light in vacuum, angular frequency of light at its carrier frequency, respectively and group velocity is defined as $v_{g}=c/(n+2\beta _{2}\omega c)$. Although we have simplified the case for the numerical example, since the matrix $\overline {\boldsymbol {Q}}^{-1}$ contains non-zero elements at non diagonal places, so it is hard to get a concise analytical solution for HBT effect. According to the definitions, $\widetilde {\mathbf {A}}_{i}$, $\widetilde {\mathbf {C}}_{i}$ and $\widetilde {\mathbf {D}}_{i}$ transmission submatrices are constant for homogeneous medium, so their influence on HBT effect will not be obvious according to Eqs. (4) and (5). Since there exists spatiotemporal coupling which resides in matrix $\overline {\boldsymbol {Q}}^{-1}$, the spatial and temporal coordinates of HBT will be greatly affected due to this coupling as the matrix $\overline {\boldsymbol {Q}}^{-1}$ is multiplying with the arbitrary spatiotemporal coordinates in Eqs. (4) and (5).

For the sake of numerical results, we assume that the angular frequency of the pulsed beams is 2.355 rad/fs, the refractive index is 1.00028 and its group velocity dispersion is 0.021233 ps$^{2}$km$^{-1}$ for the medium of air taken from literature [36]. We also fix the detector D2 in the space at $x_{2}=0$ while, for the temporal part the detector D2 will be triggered with a fast response on the arrival of pulsed beams so the temporal position of it is also $t_{2}=0$. The detector D1 can move along $x$-axis spatially with temporally high resolution.

The relations $\boldsymbol {q}_{12}=\boldsymbol {q}_{21}^{T}=\boldsymbol {q}_{34}=\boldsymbol {q}_{43}^{T}$ and $\boldsymbol {q}_{14}=\boldsymbol {q}_{41}^{T}=\boldsymbol {q}_{32}=\boldsymbol {q}_{23}^{T}$ are equal respectively, so we will only consider $\boldsymbol {q}_{12}$ and $\boldsymbol {q}_{14}$ to elaborate the influence of spatiotemporal intensity self-coupling at the same spatiotemporal point and spatiotemporal correlation mutual-coupling between any two different spatiotemporal points, respectively on HBT effect. Figure 2 shows the spatiotemporal HBT effect under different parameters of the STC. It is observed that the value of HBT effect is maximum at $x_{1}=0$ and $t_{1}=0$, with the bigger values of HBT makes it easy to realize this effect experimentally. Figures 2(a) to (d) show the dependence of spatiotemporal HBT effect on different spatiotemporal intensity self-coupling at the same point ($q_{12}$). As $q_{12}$ increases, the tilt of spatiotemporal HBT correlation increases very quickly in anti-clockwise direction up to a certain angle. It can be observed that the intensity self-coupling can affect the results of HBT effect and it can not be ignored. From Figs. 2(e) to (h), with increasing the spatiotemporal correlation mutual-coupling between any two spatiotemporal points, the increase of the tilt in the HBT correlation appears in clockwise direction and then the peaks starts expanding at a certain angle, further increase in $q_{14}$ will expand the HBT peak without any increase in tilt angle. So the spatiotemporal correlation mutual-coupling between any two spatiotemporal points of such correlated pulsed beams play an important role in the HBT effect in spatiotemporal domain. There are interesting effects of the spatiotemporal coupling parameters $q_{12}$ and $q_{14}$ on the spatiotemporal HBT effect, when both are present simultaneously as shown in Figs. 2(i) to (p). As $q_{12}$ is small as compare to $q_{14}$ the tilt appears in clockwise direction, when both $q_{12}$ and $q_{14}$ are equal then the tilt completely disappears, as the $q_{12}$ increases than $q_{14}$, the tilt appears in anti-clockwise direction. From Figs. 2(i) to (p), we can conclude that both the $q_{12}$ and the $q_{14}$ at the source plane can affect the spatiotemporal HBT effect at output plane and should be considered for the study of HBT effect.

 figure: Fig. 2.

Fig. 2. Spatiotemporal HBT effect under different values of (a)-(d) $q_{12}$, (e)-(h) $q _{14}$ and (i)-(p) $q _{12}$. Other parameters are $\sigma _{\textrm {I}}$ = 1.5 cm, $\sigma _{\textrm {cs}}$ = 1 cm, $\sigma _{\textrm {t}}$ = 10 ps, $\sigma _{\textrm {ct}}$ = 10 ps, $z$ = 10 m, (e)-(h) $q _{12}$ = 0 and $q _{14}$ = (a)-(d) 0, (i)-(l) 0.001 cm$^{-1}$, (m)-(p) 0.004 cm$^{-1}$.

Download Full Size | PPT Slide | PDF

Figure 3 shows the spatiotemporal HBT effect with different distances from the source plane to the detectors under different values of STC. Figures 3(a) to (d) show the dependence of spatiotemporal HBT effect at different values $z$ with very small values of STC. It can be observed that when the coupling effect is very small the tilt in the HBT correlations appears at far away distances from the source plane. This is in accordance with Eqs. (4) and (5). From Figs. 3(e) to (p) it shows that as the values of $q_{12}$ and $q_{14}$ increase the tilt appears near to the source plane. From Fig. 3 one can observe that the effect of STC on HBT effect can be enhanced by increasing propagation distance.

 figure: Fig. 3.

Fig. 3. Spatiotemporal HBT effect under different values of $z$ with $q_{12}$ = (a)-(d) 0.0001 cm$^{-1}$, (e)-(h) 0.001 cm$^{-1}$, (i)-(l) 0.005 cm$^{-1}$, (m)-(p) 0.01 cm$^{-1}$ and (a)-(p) $q_{14}$ = $q_{12}/10$. Other unmentioned parameters are same as in Fig. 2.

Download Full Size | PPT Slide | PDF

Figure 4 shows the spatiotemporal HBT effect under different spatial parameters of the source with and without STC. Figures 4(a) to (d) show the dependence of spatiotemporal HBT effect on different values of spatial beam width of the source without coupling effect. As $\sigma _{\textrm {I}}$ decreases, the spatiotemporal HBT correlation increases very quickly in spatial domain. Figures 4(e) to (h) show the dependence of spatiotemporal HBT effect on different values of spatial beam width of the source with coupling effects. Here the effect of spatiotemporal coupling is obvious on the HBT effect which appears in the form of tilt. From Figs. 4(a) to (h) we find that the effect of STC influence the HBT correlation in the form of tilt. From Figs. 4(i) to (l), with increasing the spatial coherence of the source without coupling, the increase in the HBT correlation appears in spatial domain. With the same parameters Figs. 4(m) to (p) show the HBT effect influenced by the STC. In Fig. 4 we see the tilt in the HBT effect due to STC, as expected.

 figure: Fig. 4.

Fig. 4. Spatiotemporal HBT effect under different values of (a)-(h) $\sigma _{\textrm {I}}$, (i)-(p) $\sigma _{\textrm {cs}}$ with (a)-(d), (i)-(l) $q_{12}$ = 0 and (e)-(h), (m)-(p) $q_{12}$ = 0.0001 cm$^{-1}$. Other parameters are $\sigma _{\textrm {I}}$ = 2 cm, $\sigma _{\textrm {cs}}$ = 0.1 cm, $\sigma _{\textrm {t}}$ = 10 ps, $\sigma _{\textrm {ct}}$ = 10 ps, $z$ = 1000 m and $q_{14}$ = $q_{12}/10$.

Download Full Size | PPT Slide | PDF

Figure 5 shows the spatiotemporal HBT effect under different temporal parameters of the source with and without STC. Since $\beta _{2}$ is very small, we take the large distances from the source to two detectors in order to observe the influence of temporal and coupling parameters. Figures 5(a) to (d) show the dependence of spatiotemporal HBT effect on different values of temporal pulse width of the source without coupling effect. As $\sigma _{\textrm {t}}$ decreases, the spatiotemporal HBT correlation increases in temporal domain but in Figs. 5(a) to (c) this increase is very minor which is not very obvious in the absence of coupling. Figures 5(e) to (h) show the dependence of spatiotemporal HBT effect on different values of temporal pulse width of the source with STC effects. The effect of coupling appears as the tilt of HBT correlation as well as very prominent expansion of the HBT results, although the coupling is very small as in Fig. 4 but the expansion is mainly due to the large distance from the source plane. It can be observed that without coupling there was very minute change in the spatiotemporal HBT effect as in Figs. 5(a) to (c), but with STC this change is very obvious as can be noted in Figs. 5(e) to (g). This comparison highlights that the STC can be useful for finding minute changes in the intensity-intensity correlations. Figures 5(i) to (l) show the effect of temporal coherence of the source without coupling, with increasing the temporal coherence the increase in the HBT correlation appears in temporal domain. With the same parameters, in Figs. 5(m) to (p) the effect of STC on HBT effect is shown, there is obvious change in the results due to presence of coupling. In Fig. 5 we observe that very small amount of STC can be very sensitive for intensity-intensity correlations results, sometimes at far away distances. Here we also find that by producing STC one can observe the minute changes in the intensity-intensity correlations, so STC can be used for zooming the tiny effects in the intensity-intensity correlations. By exploring these tiny coupling effects, this work will be helpful to measure spatiotemporal parameters in intensity interferometry more precisely.

 figure: Fig. 5.

Fig. 5. Spatiotemporal HBT effect under different values of (a)-(h) $\sigma _{\textrm {t}}$, (i)-(p) $\sigma _{\textrm {ct}}$ with (a)-(d), (i)-(l) $q_{12}$ = 0 and (e)-(h), (m)-(p) $q_{12}$ = 0.0001 cm$^{-1}$. Other parameters are $\sigma _{\textrm {I}}$ = 100 cm, $\sigma _{\textrm {cs}}$ = 10 cm, $\sigma _{\textrm {t}}$ = 5 ps, $\sigma _{\textrm {ct}}$ = 10 ps, $z$ = $5\times 10^4$ m and $q_{14}$ = $q_{12}$/10.

Download Full Size | PPT Slide | PDF

5. Conclusion

In conclusion, a spatiotemporal source containing Gaussian statistics with STC is considered for the detail study of the HBT effect. We used the matrix optics method and consider a generalized matrix containing the effect of coupling between spatial and temporal domain. By considering air as an example for linear dispersive medium we observe the effect of intensity and correlation coupling, between spatial and temporal domain on the HBT effect. It is observed that both type of coupling can produce the tilt in the results of HBT effect but in opposite direction. By comparing the case with and without coupling it is found that the HBT effect is very sensitive to STC and even very minute coupling can influence the results at larger distances. Our results realize the importance of considering the STC for the study of HBT effect, which can be present in the source by any means. In this work we find an interesting application of STC for enhancing the tiny effects in intensity-intensity correlations. The importance of the considering STC will be useful for detail study of intensity-intensity correlations in other branches of physics like astronomy, atomic physics, particle physics and condensed matter physics.

Funding

National Natural Science Foundation of China (11974309); Natural Science Foundation of Zhejiang Province (LD18A040001); National Key Research and Development Program of China (2017YFA0304202).

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010). [CrossRef]  

2. Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14(2), 119–121 (1989). [CrossRef]  

3. Z. Bor and B. Racz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54(3), 165–170 (1985). [CrossRef]  

4. O. E. Martinez, “Pulse distortions in tilted pulse schemes for ultrashort pulses,” Opt. Commun. 59(3), 229–232 (1986). [CrossRef]  

5. Z. L. Horvath and Z. Bor, “Diffraction of short pulses with boundary diffraction wave theory,” Phys. Rev. E 63(2), 026601 (2001). [CrossRef]  

6. N. G. Worku and H. Gross, “Spatially truncated Gaussian pulsed beam and its application in modeling diffraction of ultrashort pulses from hard apertures,” J. Opt. Soc. Am. A 37(2), 317–326 (2020). [CrossRef]  

7. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20(1), 73–75 (1995). [CrossRef]  

8. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005). [CrossRef]  

9. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005). [CrossRef]  

10. K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007). [CrossRef]  

11. H. Vincenti and F. Quere, “Attosecond Lighthouses: How To Use Spatiotemporally Coupled Light Fields To Generate Isolated Attosecond Pulses,” Phys. Rev. Lett. 108(11), 113904 (2012). [CrossRef]  

12. J. A. Wheeler, A. Borot, S. Monchoce, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, and F. Quere, “Attosecond lighthouses from plasma mirrors,” Nat. Photonics 6(12), 829–833 (2012). [CrossRef]  

13. A. S. Marie, O. Ggbert, and F. Que’re’, “Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings,” Optica 4(10), 1298–1304 (2017). [CrossRef]  

14. Z. Li and N. Miyanaga, “Theoretical method for generating regular spatiotemporal pulsed-beam with controlled transverse-spatiotemporal dispersion,” Opt. Commun. 432, 91–96 (2019). [CrossRef]  

15. Z. Zhong, W. Gong, H. Jiang, H. Gu, X. Chen, and S. Liu, “Investigation of Spatial Chirp Induced by Misalignments in a Parallel Grating Pair Pulse Stretcher,” Appl. Sci. 10(5), 1584 (2020). [CrossRef]  

16. M. W. Hyde, “Twisted space-frequency and space-time partially coherent beams,” Sci. Rep. 10(1), 12443 (2020). [CrossRef]  

17. Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Transformation of pulsed nonideal beams in a four-dimension domain,” Opt. Lett. 18(9), 669–671 (1993). [CrossRef]  

18. Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Spatial-temporal coupling in grating-pair pulse compression system analysed by matrix optics,” Opt. Quantum Electron. 27(7), 679–692 (1995). [CrossRef]  

19. Y. Chen, C. Wang, Z. Zhang, X. Yang, Y. Xu, Y. Leng, and Z. Xu, “Investigation of spatio-temporal stretching in a duplex grating compressor,” Opt. Express 27(22), 31667–31675 (2019). [CrossRef]  

20. L. G. Wang, Q. Lin, H. Chen, and S. Y. Zhu, “Propagation of partially coherent pulsed beams in the spatiotemporal domain,” Phys. Rev. E 67(5), 056613 (2003). [CrossRef]  

21. P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204(1-6), 53–58 (2002). [CrossRef]  

22. Q. Lin, L. G. Wang, and S. Y. Zhu, “Partially coherent light pulse and its propagation,” Opt. Commun. 219(1-6), 65–70 (2003). [CrossRef]  

23. L. G. Wang, N. H. Liu, Q. Lin, and S. Y. Zhu, “Propagation of coherent and partially coherent pulses through one-dimensional photonic crystals,” Phys. Rev. E 70(1), 016601 (2004). [CrossRef]  

24. H. Lajunen, V. Torres-Company, J. Lancis, E. Silvestre, and P. Andres, “Pulse-by-pulse method to characterize partially coherent pulse propagation in instantaneous nonlinear media,” Opt. Express 18(14), 14979–14991 (2010). [CrossRef]  

25. C. Ding, O. Korotkova, Y. Zhang, and L. Pan, “Cosine-Gaussian correlated Schell-model pulsed beams,” Opt. Express 22(1), 931–942 (2014). [CrossRef]  

26. X. Duan, J. Liu, X. Li, G. Xue, T. Zhao, and J. Duan, “Novel computer-generated hologram encoding method based on partially temporal coherent light,” Opt. Express 27(5), 6851–6862 (2019). [CrossRef]  

27. L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32(11), 1393–1395 (2007). [CrossRef]  

28. Z. Mei and O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38(2), 91–93 (2013). [CrossRef]  

29. L. Z. Pan, C. L. Ding, and H. X. Wang, “Diffraction of cosine-Gaussian-correlated Schell-model beams,” Opt. Express 22(10), 11670–11679 (2014). [CrossRef]  

30. A. Abbas, J. Wen, C. Xu, and L. G. Wang, “Parabolic-Gaussian Schell-model sources and their propagations,” J. Opt. Soc. Am. A 35(8), 1283–1287 (2018). [CrossRef]  

31. M. W. Hyde, “Stochastic complex transmittance screens for synthesizing general partially coherent sources,” J. Opt. Soc. Am. A 37(2), 257–264 (2020). [CrossRef]  

32. Y. Deng, H. Wang, X. Ji, X. Li, H. Yu, and L. Chen, “Characteristics of high-power partially coherent laser beams propagating upwards in the turbulent atmosphere,” Opt. Express 28(19), 27927–27939 (2020). [CrossRef]  

33. M. W. Hyde, “Independently Controlling Stochastic Field Realization Magnitude and Phase Statistics for the Construction of Novel Partially Coherent Sources,” Photonics 8(2), 60 (2021). [CrossRef]  

34. D. G. Pires, N. M. Litchinitser, and P. A. Brandao, “Scattering of partially coherent vortex beams by a PT-symmetric dipole,” Opt. Express 29(10), 15576–15586 (2021). [CrossRef]  

35. M. L. Luo and D. M. Zhao, “Characterizing the polarization and crosspolarization of electromagnetic vortex pulses in the space-time and space-frequency domain,” Opt. Express 23(4), 4153–4162 (2015). [CrossRef]  

36. Z. Zhao, C. Ding, Y. Zhang, and L. Pan, “Spatial-Temporal Self-Focusing of Partially Coherent Pulsed Beams in Dispersive Medium,” Appl. Sci. 9(17), 3616 (2019). [CrossRef]  

37. A. Abbas, C. Xu, and L. G. Wang, “Spatiotemporal ghost imaging and interference,” Phys. Rev. A 101(4), 043805 (2020). [CrossRef]  

38. R. Hanbury Brown and R. Q. Twiss, “A new type of interferometer for use in radio astronomy,” Phil. Magazine 45, 663–682 (1954).

39. R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirus,” Nature 178(4541), 1046–1048 (1956). [CrossRef]  

40. A. Abbas and L. G. Wang, “Hanbury Brown and Twiss effect in spatiotemporal domain,” Opt. Express 28(21), 32077–32086 (2020). [CrossRef]  

41. S. Wang and D. Zhao, Matrix Optics (Springer, 2000).

42. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

43. O. S. M. Loaiza, M. Mirhosseini, R. M. Cross, S. M. H. Rafsanjani, and R. W. Boyd, “Hanbury Brown and Twiss interferometry with twisted light,” Sci. Adv. 2(4), e1501143 (2016). [CrossRef]  

44. T. Shirai, T. Setälä, and A. T. Friberg, “Temporal ghost imaging with classical non-stationary pulsed light,” J. Opt. Soc. Am. B 27(12), 2549 (2010). [CrossRef]  

45. L. G. Wang, S. Qamar, S. Y. Zhu, and M. S. Zubairy, “Hanbury Brown-Twiss effect and thermal light ghost imaging: A unified approach,” Phys. Rev. A 79(3), 033835 (2009). [CrossRef]  

References

  • View by:

  1. S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
    [Crossref]
  2. Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14(2), 119–121 (1989).
    [Crossref]
  3. Z. Bor and B. Racz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54(3), 165–170 (1985).
    [Crossref]
  4. O. E. Martinez, “Pulse distortions in tilted pulse schemes for ultrashort pulses,” Opt. Commun. 59(3), 229–232 (1986).
    [Crossref]
  5. Z. L. Horvath and Z. Bor, “Diffraction of short pulses with boundary diffraction wave theory,” Phys. Rev. E 63(2), 026601 (2001).
    [Crossref]
  6. N. G. Worku and H. Gross, “Spatially truncated Gaussian pulsed beam and its application in modeling diffraction of ultrashort pulses from hard apertures,” J. Opt. Soc. Am. A 37(2), 317–326 (2020).
    [Crossref]
  7. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20(1), 73–75 (1995).
    [Crossref]
  8. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
    [Crossref]
  9. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
    [Crossref]
  10. K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
    [Crossref]
  11. H. Vincenti and F. Quere, “Attosecond Lighthouses: How To Use Spatiotemporally Coupled Light Fields To Generate Isolated Attosecond Pulses,” Phys. Rev. Lett. 108(11), 113904 (2012).
    [Crossref]
  12. J. A. Wheeler, A. Borot, S. Monchoce, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, and F. Quere, “Attosecond lighthouses from plasma mirrors,” Nat. Photonics 6(12), 829–833 (2012).
    [Crossref]
  13. A. S. Marie, O. Ggbert, and F. Que’re’, “Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings,” Optica 4(10), 1298–1304 (2017).
    [Crossref]
  14. Z. Li and N. Miyanaga, “Theoretical method for generating regular spatiotemporal pulsed-beam with controlled transverse-spatiotemporal dispersion,” Opt. Commun. 432, 91–96 (2019).
    [Crossref]
  15. Z. Zhong, W. Gong, H. Jiang, H. Gu, X. Chen, and S. Liu, “Investigation of Spatial Chirp Induced by Misalignments in a Parallel Grating Pair Pulse Stretcher,” Appl. Sci. 10(5), 1584 (2020).
    [Crossref]
  16. M. W. Hyde, “Twisted space-frequency and space-time partially coherent beams,” Sci. Rep. 10(1), 12443 (2020).
    [Crossref]
  17. Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Transformation of pulsed nonideal beams in a four-dimension domain,” Opt. Lett. 18(9), 669–671 (1993).
    [Crossref]
  18. Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Spatial-temporal coupling in grating-pair pulse compression system analysed by matrix optics,” Opt. Quantum Electron. 27(7), 679–692 (1995).
    [Crossref]
  19. Y. Chen, C. Wang, Z. Zhang, X. Yang, Y. Xu, Y. Leng, and Z. Xu, “Investigation of spatio-temporal stretching in a duplex grating compressor,” Opt. Express 27(22), 31667–31675 (2019).
    [Crossref]
  20. L. G. Wang, Q. Lin, H. Chen, and S. Y. Zhu, “Propagation of partially coherent pulsed beams in the spatiotemporal domain,” Phys. Rev. E 67(5), 056613 (2003).
    [Crossref]
  21. P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204(1-6), 53–58 (2002).
    [Crossref]
  22. Q. Lin, L. G. Wang, and S. Y. Zhu, “Partially coherent light pulse and its propagation,” Opt. Commun. 219(1-6), 65–70 (2003).
    [Crossref]
  23. L. G. Wang, N. H. Liu, Q. Lin, and S. Y. Zhu, “Propagation of coherent and partially coherent pulses through one-dimensional photonic crystals,” Phys. Rev. E 70(1), 016601 (2004).
    [Crossref]
  24. H. Lajunen, V. Torres-Company, J. Lancis, E. Silvestre, and P. Andres, “Pulse-by-pulse method to characterize partially coherent pulse propagation in instantaneous nonlinear media,” Opt. Express 18(14), 14979–14991 (2010).
    [Crossref]
  25. C. Ding, O. Korotkova, Y. Zhang, and L. Pan, “Cosine-Gaussian correlated Schell-model pulsed beams,” Opt. Express 22(1), 931–942 (2014).
    [Crossref]
  26. X. Duan, J. Liu, X. Li, G. Xue, T. Zhao, and J. Duan, “Novel computer-generated hologram encoding method based on partially temporal coherent light,” Opt. Express 27(5), 6851–6862 (2019).
    [Crossref]
  27. L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32(11), 1393–1395 (2007).
    [Crossref]
  28. Z. Mei and O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38(2), 91–93 (2013).
    [Crossref]
  29. L. Z. Pan, C. L. Ding, and H. X. Wang, “Diffraction of cosine-Gaussian-correlated Schell-model beams,” Opt. Express 22(10), 11670–11679 (2014).
    [Crossref]
  30. A. Abbas, J. Wen, C. Xu, and L. G. Wang, “Parabolic-Gaussian Schell-model sources and their propagations,” J. Opt. Soc. Am. A 35(8), 1283–1287 (2018).
    [Crossref]
  31. M. W. Hyde, “Stochastic complex transmittance screens for synthesizing general partially coherent sources,” J. Opt. Soc. Am. A 37(2), 257–264 (2020).
    [Crossref]
  32. Y. Deng, H. Wang, X. Ji, X. Li, H. Yu, and L. Chen, “Characteristics of high-power partially coherent laser beams propagating upwards in the turbulent atmosphere,” Opt. Express 28(19), 27927–27939 (2020).
    [Crossref]
  33. M. W. Hyde, “Independently Controlling Stochastic Field Realization Magnitude and Phase Statistics for the Construction of Novel Partially Coherent Sources,” Photonics 8(2), 60 (2021).
    [Crossref]
  34. D. G. Pires, N. M. Litchinitser, and P. A. Brandao, “Scattering of partially coherent vortex beams by a PT-symmetric dipole,” Opt. Express 29(10), 15576–15586 (2021).
    [Crossref]
  35. M. L. Luo and D. M. Zhao, “Characterizing the polarization and crosspolarization of electromagnetic vortex pulses in the space-time and space-frequency domain,” Opt. Express 23(4), 4153–4162 (2015).
    [Crossref]
  36. Z. Zhao, C. Ding, Y. Zhang, and L. Pan, “Spatial-Temporal Self-Focusing of Partially Coherent Pulsed Beams in Dispersive Medium,” Appl. Sci. 9(17), 3616 (2019).
    [Crossref]
  37. A. Abbas, C. Xu, and L. G. Wang, “Spatiotemporal ghost imaging and interference,” Phys. Rev. A 101(4), 043805 (2020).
    [Crossref]
  38. R. Hanbury Brown and R. Q. Twiss, “A new type of interferometer for use in radio astronomy,” Phil. Magazine 45, 663–682 (1954).
  39. R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirus,” Nature 178(4541), 1046–1048 (1956).
    [Crossref]
  40. A. Abbas and L. G. Wang, “Hanbury Brown and Twiss effect in spatiotemporal domain,” Opt. Express 28(21), 32077–32086 (2020).
    [Crossref]
  41. S. Wang and D. Zhao, Matrix Optics (Springer, 2000).
  42. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  43. O. S. M. Loaiza, M. Mirhosseini, R. M. Cross, S. M. H. Rafsanjani, and R. W. Boyd, “Hanbury Brown and Twiss interferometry with twisted light,” Sci. Adv. 2(4), e1501143 (2016).
    [Crossref]
  44. T. Shirai, T. Setälä, and A. T. Friberg, “Temporal ghost imaging with classical non-stationary pulsed light,” J. Opt. Soc. Am. B 27(12), 2549 (2010).
    [Crossref]
  45. L. G. Wang, S. Qamar, S. Y. Zhu, and M. S. Zubairy, “Hanbury Brown-Twiss effect and thermal light ghost imaging: A unified approach,” Phys. Rev. A 79(3), 033835 (2009).
    [Crossref]

2021 (2)

M. W. Hyde, “Independently Controlling Stochastic Field Realization Magnitude and Phase Statistics for the Construction of Novel Partially Coherent Sources,” Photonics 8(2), 60 (2021).
[Crossref]

D. G. Pires, N. M. Litchinitser, and P. A. Brandao, “Scattering of partially coherent vortex beams by a PT-symmetric dipole,” Opt. Express 29(10), 15576–15586 (2021).
[Crossref]

2020 (7)

2019 (4)

Z. Li and N. Miyanaga, “Theoretical method for generating regular spatiotemporal pulsed-beam with controlled transverse-spatiotemporal dispersion,” Opt. Commun. 432, 91–96 (2019).
[Crossref]

Z. Zhao, C. Ding, Y. Zhang, and L. Pan, “Spatial-Temporal Self-Focusing of Partially Coherent Pulsed Beams in Dispersive Medium,” Appl. Sci. 9(17), 3616 (2019).
[Crossref]

Y. Chen, C. Wang, Z. Zhang, X. Yang, Y. Xu, Y. Leng, and Z. Xu, “Investigation of spatio-temporal stretching in a duplex grating compressor,” Opt. Express 27(22), 31667–31675 (2019).
[Crossref]

X. Duan, J. Liu, X. Li, G. Xue, T. Zhao, and J. Duan, “Novel computer-generated hologram encoding method based on partially temporal coherent light,” Opt. Express 27(5), 6851–6862 (2019).
[Crossref]

2018 (1)

2017 (1)

2016 (1)

O. S. M. Loaiza, M. Mirhosseini, R. M. Cross, S. M. H. Rafsanjani, and R. W. Boyd, “Hanbury Brown and Twiss interferometry with twisted light,” Sci. Adv. 2(4), e1501143 (2016).
[Crossref]

2015 (1)

2014 (2)

2013 (1)

2012 (2)

H. Vincenti and F. Quere, “Attosecond Lighthouses: How To Use Spatiotemporally Coupled Light Fields To Generate Isolated Attosecond Pulses,” Phys. Rev. Lett. 108(11), 113904 (2012).
[Crossref]

J. A. Wheeler, A. Borot, S. Monchoce, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, and F. Quere, “Attosecond lighthouses from plasma mirrors,” Nat. Photonics 6(12), 829–833 (2012).
[Crossref]

2010 (3)

2009 (1)

L. G. Wang, S. Qamar, S. Y. Zhu, and M. S. Zubairy, “Hanbury Brown-Twiss effect and thermal light ghost imaging: A unified approach,” Phys. Rev. A 79(3), 033835 (2009).
[Crossref]

2007 (2)

L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32(11), 1393–1395 (2007).
[Crossref]

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

2005 (2)

2004 (1)

L. G. Wang, N. H. Liu, Q. Lin, and S. Y. Zhu, “Propagation of coherent and partially coherent pulses through one-dimensional photonic crystals,” Phys. Rev. E 70(1), 016601 (2004).
[Crossref]

2003 (2)

Q. Lin, L. G. Wang, and S. Y. Zhu, “Partially coherent light pulse and its propagation,” Opt. Commun. 219(1-6), 65–70 (2003).
[Crossref]

L. G. Wang, Q. Lin, H. Chen, and S. Y. Zhu, “Propagation of partially coherent pulsed beams in the spatiotemporal domain,” Phys. Rev. E 67(5), 056613 (2003).
[Crossref]

2002 (1)

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204(1-6), 53–58 (2002).
[Crossref]

2001 (1)

Z. L. Horvath and Z. Bor, “Diffraction of short pulses with boundary diffraction wave theory,” Phys. Rev. E 63(2), 026601 (2001).
[Crossref]

1995 (2)

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20(1), 73–75 (1995).
[Crossref]

Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Spatial-temporal coupling in grating-pair pulse compression system analysed by matrix optics,” Opt. Quantum Electron. 27(7), 679–692 (1995).
[Crossref]

1993 (1)

1989 (1)

1986 (1)

O. E. Martinez, “Pulse distortions in tilted pulse schemes for ultrashort pulses,” Opt. Commun. 59(3), 229–232 (1986).
[Crossref]

1985 (1)

Z. Bor and B. Racz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54(3), 165–170 (1985).
[Crossref]

1956 (1)

R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirus,” Nature 178(4541), 1046–1048 (1956).
[Crossref]

1954 (1)

R. Hanbury Brown and R. Q. Twiss, “A new type of interferometer for use in radio astronomy,” Phil. Magazine 45, 663–682 (1954).

Abbas, A.

Akturk, S.

Alda, J.

Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Spatial-temporal coupling in grating-pair pulse compression system analysed by matrix optics,” Opt. Quantum Electron. 27(7), 679–692 (1995).
[Crossref]

Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Transformation of pulsed nonideal beams in a four-dimension domain,” Opt. Lett. 18(9), 669–671 (1993).
[Crossref]

Andres, P.

Bernabeu, E.

Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Spatial-temporal coupling in grating-pair pulse compression system analysed by matrix optics,” Opt. Quantum Electron. 27(7), 679–692 (1995).
[Crossref]

Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Transformation of pulsed nonideal beams in a four-dimension domain,” Opt. Lett. 18(9), 669–671 (1993).
[Crossref]

Bor, Z.

Z. L. Horvath and Z. Bor, “Diffraction of short pulses with boundary diffraction wave theory,” Phys. Rev. E 63(2), 026601 (2001).
[Crossref]

Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14(2), 119–121 (1989).
[Crossref]

Z. Bor and B. Racz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54(3), 165–170 (1985).
[Crossref]

Borot, A.

J. A. Wheeler, A. Borot, S. Monchoce, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, and F. Quere, “Attosecond lighthouses from plasma mirrors,” Nat. Photonics 6(12), 829–833 (2012).
[Crossref]

Bowlan, P.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

Boyd, R. W.

O. S. M. Loaiza, M. Mirhosseini, R. M. Cross, S. M. H. Rafsanjani, and R. W. Boyd, “Hanbury Brown and Twiss interferometry with twisted light,” Sci. Adv. 2(4), e1501143 (2016).
[Crossref]

Brandao, P. A.

Braun, A.

Chen, H.

L. G. Wang, Q. Lin, H. Chen, and S. Y. Zhu, “Propagation of partially coherent pulsed beams in the spatiotemporal domain,” Phys. Rev. E 67(5), 056613 (2003).
[Crossref]

Chen, L.

Chen, X.

Z. Zhong, W. Gong, H. Jiang, H. Gu, X. Chen, and S. Liu, “Investigation of Spatial Chirp Induced by Misalignments in a Parallel Grating Pair Pulse Stretcher,” Appl. Sci. 10(5), 1584 (2020).
[Crossref]

Chen, Y.

Cross, R. M.

O. S. M. Loaiza, M. Mirhosseini, R. M. Cross, S. M. H. Rafsanjani, and R. W. Boyd, “Hanbury Brown and Twiss interferometry with twisted light,” Sci. Adv. 2(4), e1501143 (2016).
[Crossref]

Deng, Y.

Ding, C.

Z. Zhao, C. Ding, Y. Zhang, and L. Pan, “Spatial-Temporal Self-Focusing of Partially Coherent Pulsed Beams in Dispersive Medium,” Appl. Sci. 9(17), 3616 (2019).
[Crossref]

C. Ding, O. Korotkova, Y. Zhang, and L. Pan, “Cosine-Gaussian correlated Schell-model pulsed beams,” Opt. Express 22(1), 931–942 (2014).
[Crossref]

Ding, C. L.

Du, D.

Duan, J.

Duan, X.

Friberg, A. T.

T. Shirai, T. Setälä, and A. T. Friberg, “Temporal ghost imaging with classical non-stationary pulsed light,” J. Opt. Soc. Am. B 27(12), 2549 (2010).
[Crossref]

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204(1-6), 53–58 (2002).
[Crossref]

Gabolde, P.

Ggbert, O.

Gong, W.

Z. Zhong, W. Gong, H. Jiang, H. Gu, X. Chen, and S. Liu, “Investigation of Spatial Chirp Induced by Misalignments in a Parallel Grating Pair Pulse Stretcher,” Appl. Sci. 10(5), 1584 (2020).
[Crossref]

Gross, H.

Gu, H.

Z. Zhong, W. Gong, H. Jiang, H. Gu, X. Chen, and S. Liu, “Investigation of Spatial Chirp Induced by Misalignments in a Parallel Grating Pair Pulse Stretcher,” Appl. Sci. 10(5), 1584 (2020).
[Crossref]

Gu, X.

Hanbury Brown, R.

R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirus,” Nature 178(4541), 1046–1048 (1956).
[Crossref]

R. Hanbury Brown and R. Q. Twiss, “A new type of interferometer for use in radio astronomy,” Phil. Magazine 45, 663–682 (1954).

Hebling, J.

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Hoffmann, M. C.

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Horvath, Z. L.

Z. L. Horvath and Z. Bor, “Diffraction of short pulses with boundary diffraction wave theory,” Phys. Rev. E 63(2), 026601 (2001).
[Crossref]

Hyde, M. W.

M. W. Hyde, “Independently Controlling Stochastic Field Realization Magnitude and Phase Statistics for the Construction of Novel Partially Coherent Sources,” Photonics 8(2), 60 (2021).
[Crossref]

M. W. Hyde, “Stochastic complex transmittance screens for synthesizing general partially coherent sources,” J. Opt. Soc. Am. A 37(2), 257–264 (2020).
[Crossref]

M. W. Hyde, “Twisted space-frequency and space-time partially coherent beams,” Sci. Rep. 10(1), 12443 (2020).
[Crossref]

Ji, X.

Jiang, H.

Z. Zhong, W. Gong, H. Jiang, H. Gu, X. Chen, and S. Liu, “Investigation of Spatial Chirp Induced by Misalignments in a Parallel Grating Pair Pulse Stretcher,” Appl. Sci. 10(5), 1584 (2020).
[Crossref]

Korn, G.

Korotkova, O.

Lajunen, H.

Lancis, J.

Leng, Y.

Li, X.

Li, Z.

Z. Li and N. Miyanaga, “Theoretical method for generating regular spatiotemporal pulsed-beam with controlled transverse-spatiotemporal dispersion,” Opt. Commun. 432, 91–96 (2019).
[Crossref]

Lin, Q.

L. G. Wang, N. H. Liu, Q. Lin, and S. Y. Zhu, “Propagation of coherent and partially coherent pulses through one-dimensional photonic crystals,” Phys. Rev. E 70(1), 016601 (2004).
[Crossref]

L. G. Wang, Q. Lin, H. Chen, and S. Y. Zhu, “Propagation of partially coherent pulsed beams in the spatiotemporal domain,” Phys. Rev. E 67(5), 056613 (2003).
[Crossref]

Q. Lin, L. G. Wang, and S. Y. Zhu, “Partially coherent light pulse and its propagation,” Opt. Commun. 219(1-6), 65–70 (2003).
[Crossref]

Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Spatial-temporal coupling in grating-pair pulse compression system analysed by matrix optics,” Opt. Quantum Electron. 27(7), 679–692 (1995).
[Crossref]

Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Transformation of pulsed nonideal beams in a four-dimension domain,” Opt. Lett. 18(9), 669–671 (1993).
[Crossref]

Litchinitser, N. M.

Liu, J.

Liu, N. H.

L. G. Wang, N. H. Liu, Q. Lin, and S. Y. Zhu, “Propagation of coherent and partially coherent pulses through one-dimensional photonic crystals,” Phys. Rev. E 70(1), 016601 (2004).
[Crossref]

Liu, S.

Z. Zhong, W. Gong, H. Jiang, H. Gu, X. Chen, and S. Liu, “Investigation of Spatial Chirp Induced by Misalignments in a Parallel Grating Pair Pulse Stretcher,” Appl. Sci. 10(5), 1584 (2020).
[Crossref]

Liu, X.

Loaiza, O. S. M.

O. S. M. Loaiza, M. Mirhosseini, R. M. Cross, S. M. H. Rafsanjani, and R. W. Boyd, “Hanbury Brown and Twiss interferometry with twisted light,” Sci. Adv. 2(4), e1501143 (2016).
[Crossref]

Lopez-Martens, R.

J. A. Wheeler, A. Borot, S. Monchoce, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, and F. Quere, “Attosecond lighthouses from plasma mirrors,” Nat. Photonics 6(12), 829–833 (2012).
[Crossref]

Lu, X. H.

Luo, M. L.

Malvache, A.

J. A. Wheeler, A. Borot, S. Monchoce, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, and F. Quere, “Attosecond lighthouses from plasma mirrors,” Nat. Photonics 6(12), 829–833 (2012).
[Crossref]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Marie, A. S.

Martinez, O. E.

O. E. Martinez, “Pulse distortions in tilted pulse schemes for ultrashort pulses,” Opt. Commun. 59(3), 229–232 (1986).
[Crossref]

Mei, Z.

Mirhosseini, M.

O. S. M. Loaiza, M. Mirhosseini, R. M. Cross, S. M. H. Rafsanjani, and R. W. Boyd, “Hanbury Brown and Twiss interferometry with twisted light,” Sci. Adv. 2(4), e1501143 (2016).
[Crossref]

Miyanaga, N.

Z. Li and N. Miyanaga, “Theoretical method for generating regular spatiotemporal pulsed-beam with controlled transverse-spatiotemporal dispersion,” Opt. Commun. 432, 91–96 (2019).
[Crossref]

Monchoce, S.

J. A. Wheeler, A. Borot, S. Monchoce, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, and F. Quere, “Attosecond lighthouses from plasma mirrors,” Nat. Photonics 6(12), 829–833 (2012).
[Crossref]

Mourou, G.

Nelson, K. A.

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Oron, D.

Paakkonen, P.

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204(1-6), 53–58 (2002).
[Crossref]

Pan, L.

Z. Zhao, C. Ding, Y. Zhang, and L. Pan, “Spatial-Temporal Self-Focusing of Partially Coherent Pulsed Beams in Dispersive Medium,” Appl. Sci. 9(17), 3616 (2019).
[Crossref]

C. Ding, O. Korotkova, Y. Zhang, and L. Pan, “Cosine-Gaussian correlated Schell-model pulsed beams,” Opt. Express 22(1), 931–942 (2014).
[Crossref]

Pan, L. Z.

Pires, D. G.

Qamar, S.

L. G. Wang, S. Qamar, S. Y. Zhu, and M. S. Zubairy, “Hanbury Brown-Twiss effect and thermal light ghost imaging: A unified approach,” Phys. Rev. A 79(3), 033835 (2009).
[Crossref]

Que’re’, F.

Quere, F.

J. A. Wheeler, A. Borot, S. Monchoce, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, and F. Quere, “Attosecond lighthouses from plasma mirrors,” Nat. Photonics 6(12), 829–833 (2012).
[Crossref]

H. Vincenti and F. Quere, “Attosecond Lighthouses: How To Use Spatiotemporally Coupled Light Fields To Generate Isolated Attosecond Pulses,” Phys. Rev. Lett. 108(11), 113904 (2012).
[Crossref]

Racz, B.

Z. Bor and B. Racz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54(3), 165–170 (1985).
[Crossref]

Rafsanjani, S. M. H.

O. S. M. Loaiza, M. Mirhosseini, R. M. Cross, S. M. H. Rafsanjani, and R. W. Boyd, “Hanbury Brown and Twiss interferometry with twisted light,” Sci. Adv. 2(4), e1501143 (2016).
[Crossref]

Ricci, A.

J. A. Wheeler, A. Borot, S. Monchoce, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, and F. Quere, “Attosecond lighthouses from plasma mirrors,” Nat. Photonics 6(12), 829–833 (2012).
[Crossref]

Setälä, T.

Shirai, T.

Silberberg, Y.

Silvestre, E.

Squier, J.

Tal, E.

Torres-Company, V.

Trebino, R.

Turunen, J.

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204(1-6), 53–58 (2002).
[Crossref]

Twiss, R. Q.

R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirus,” Nature 178(4541), 1046–1048 (1956).
[Crossref]

R. Hanbury Brown and R. Q. Twiss, “A new type of interferometer for use in radio astronomy,” Phil. Magazine 45, 663–682 (1954).

Vahimaa, P.

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204(1-6), 53–58 (2002).
[Crossref]

Vincenti, H.

J. A. Wheeler, A. Borot, S. Monchoce, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, and F. Quere, “Attosecond lighthouses from plasma mirrors,” Nat. Photonics 6(12), 829–833 (2012).
[Crossref]

H. Vincenti and F. Quere, “Attosecond Lighthouses: How To Use Spatiotemporally Coupled Light Fields To Generate Isolated Attosecond Pulses,” Phys. Rev. Lett. 108(11), 113904 (2012).
[Crossref]

Wang, C.

Wang, H.

Wang, H. X.

Wang, L. G.

A. Abbas and L. G. Wang, “Hanbury Brown and Twiss effect in spatiotemporal domain,” Opt. Express 28(21), 32077–32086 (2020).
[Crossref]

A. Abbas, C. Xu, and L. G. Wang, “Spatiotemporal ghost imaging and interference,” Phys. Rev. A 101(4), 043805 (2020).
[Crossref]

A. Abbas, J. Wen, C. Xu, and L. G. Wang, “Parabolic-Gaussian Schell-model sources and their propagations,” J. Opt. Soc. Am. A 35(8), 1283–1287 (2018).
[Crossref]

L. G. Wang, S. Qamar, S. Y. Zhu, and M. S. Zubairy, “Hanbury Brown-Twiss effect and thermal light ghost imaging: A unified approach,” Phys. Rev. A 79(3), 033835 (2009).
[Crossref]

L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32(11), 1393–1395 (2007).
[Crossref]

L. G. Wang, N. H. Liu, Q. Lin, and S. Y. Zhu, “Propagation of coherent and partially coherent pulses through one-dimensional photonic crystals,” Phys. Rev. E 70(1), 016601 (2004).
[Crossref]

Q. Lin, L. G. Wang, and S. Y. Zhu, “Partially coherent light pulse and its propagation,” Opt. Commun. 219(1-6), 65–70 (2003).
[Crossref]

L. G. Wang, Q. Lin, H. Chen, and S. Y. Zhu, “Propagation of partially coherent pulsed beams in the spatiotemporal domain,” Phys. Rev. E 67(5), 056613 (2003).
[Crossref]

Wang, L. Q.

Wang, S.

Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Spatial-temporal coupling in grating-pair pulse compression system analysed by matrix optics,” Opt. Quantum Electron. 27(7), 679–692 (1995).
[Crossref]

Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Transformation of pulsed nonideal beams in a four-dimension domain,” Opt. Lett. 18(9), 669–671 (1993).
[Crossref]

S. Wang and D. Zhao, Matrix Optics (Springer, 2000).

Wen, J.

Wheeler, J. A.

J. A. Wheeler, A. Borot, S. Monchoce, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, and F. Quere, “Attosecond lighthouses from plasma mirrors,” Nat. Photonics 6(12), 829–833 (2012).
[Crossref]

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Worku, N. G.

Wyrowski, F.

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204(1-6), 53–58 (2002).
[Crossref]

Xu, C.

A. Abbas, C. Xu, and L. G. Wang, “Spatiotemporal ghost imaging and interference,” Phys. Rev. A 101(4), 043805 (2020).
[Crossref]

A. Abbas, J. Wen, C. Xu, and L. G. Wang, “Parabolic-Gaussian Schell-model sources and their propagations,” J. Opt. Soc. Am. A 35(8), 1283–1287 (2018).
[Crossref]

Xu, Y.

Xu, Z.

Xue, G.

Yang, X.

Yeh, K. L.

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Yu, H.

Zhang, Y.

Z. Zhao, C. Ding, Y. Zhang, and L. Pan, “Spatial-Temporal Self-Focusing of Partially Coherent Pulsed Beams in Dispersive Medium,” Appl. Sci. 9(17), 3616 (2019).
[Crossref]

C. Ding, O. Korotkova, Y. Zhang, and L. Pan, “Cosine-Gaussian correlated Schell-model pulsed beams,” Opt. Express 22(1), 931–942 (2014).
[Crossref]

Zhang, Z.

Zhao, C. L.

Zhao, D.

S. Wang and D. Zhao, Matrix Optics (Springer, 2000).

Zhao, D. M.

Zhao, T.

Zhao, Z.

Z. Zhao, C. Ding, Y. Zhang, and L. Pan, “Spatial-Temporal Self-Focusing of Partially Coherent Pulsed Beams in Dispersive Medium,” Appl. Sci. 9(17), 3616 (2019).
[Crossref]

Zhong, Z.

Z. Zhong, W. Gong, H. Jiang, H. Gu, X. Chen, and S. Liu, “Investigation of Spatial Chirp Induced by Misalignments in a Parallel Grating Pair Pulse Stretcher,” Appl. Sci. 10(5), 1584 (2020).
[Crossref]

Zhu, S. Y.

L. G. Wang, S. Qamar, S. Y. Zhu, and M. S. Zubairy, “Hanbury Brown-Twiss effect and thermal light ghost imaging: A unified approach,” Phys. Rev. A 79(3), 033835 (2009).
[Crossref]

L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32(11), 1393–1395 (2007).
[Crossref]

L. G. Wang, N. H. Liu, Q. Lin, and S. Y. Zhu, “Propagation of coherent and partially coherent pulses through one-dimensional photonic crystals,” Phys. Rev. E 70(1), 016601 (2004).
[Crossref]

Q. Lin, L. G. Wang, and S. Y. Zhu, “Partially coherent light pulse and its propagation,” Opt. Commun. 219(1-6), 65–70 (2003).
[Crossref]

L. G. Wang, Q. Lin, H. Chen, and S. Y. Zhu, “Propagation of partially coherent pulsed beams in the spatiotemporal domain,” Phys. Rev. E 67(5), 056613 (2003).
[Crossref]

Zubairy, M. S.

L. G. Wang, S. Qamar, S. Y. Zhu, and M. S. Zubairy, “Hanbury Brown-Twiss effect and thermal light ghost imaging: A unified approach,” Phys. Rev. A 79(3), 033835 (2009).
[Crossref]

Appl. Phys. Lett. (1)

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Appl. Sci. (2)

Z. Zhong, W. Gong, H. Jiang, H. Gu, X. Chen, and S. Liu, “Investigation of Spatial Chirp Induced by Misalignments in a Parallel Grating Pair Pulse Stretcher,” Appl. Sci. 10(5), 1584 (2020).
[Crossref]

Z. Zhao, C. Ding, Y. Zhang, and L. Pan, “Spatial-Temporal Self-Focusing of Partially Coherent Pulsed Beams in Dispersive Medium,” Appl. Sci. 9(17), 3616 (2019).
[Crossref]

J. Opt. (1)

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

J. A. Wheeler, A. Borot, S. Monchoce, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, and F. Quere, “Attosecond lighthouses from plasma mirrors,” Nat. Photonics 6(12), 829–833 (2012).
[Crossref]

Nature (1)

R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirus,” Nature 178(4541), 1046–1048 (1956).
[Crossref]

Opt. Commun. (5)

Z. Bor and B. Racz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54(3), 165–170 (1985).
[Crossref]

O. E. Martinez, “Pulse distortions in tilted pulse schemes for ultrashort pulses,” Opt. Commun. 59(3), 229–232 (1986).
[Crossref]

Z. Li and N. Miyanaga, “Theoretical method for generating regular spatiotemporal pulsed-beam with controlled transverse-spatiotemporal dispersion,” Opt. Commun. 432, 91–96 (2019).
[Crossref]

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204(1-6), 53–58 (2002).
[Crossref]

Q. Lin, L. G. Wang, and S. Y. Zhu, “Partially coherent light pulse and its propagation,” Opt. Commun. 219(1-6), 65–70 (2003).
[Crossref]

Opt. Express (11)

Y. Chen, C. Wang, Z. Zhang, X. Yang, Y. Xu, Y. Leng, and Z. Xu, “Investigation of spatio-temporal stretching in a duplex grating compressor,” Opt. Express 27(22), 31667–31675 (2019).
[Crossref]

H. Lajunen, V. Torres-Company, J. Lancis, E. Silvestre, and P. Andres, “Pulse-by-pulse method to characterize partially coherent pulse propagation in instantaneous nonlinear media,” Opt. Express 18(14), 14979–14991 (2010).
[Crossref]

C. Ding, O. Korotkova, Y. Zhang, and L. Pan, “Cosine-Gaussian correlated Schell-model pulsed beams,” Opt. Express 22(1), 931–942 (2014).
[Crossref]

X. Duan, J. Liu, X. Li, G. Xue, T. Zhao, and J. Duan, “Novel computer-generated hologram encoding method based on partially temporal coherent light,” Opt. Express 27(5), 6851–6862 (2019).
[Crossref]

L. Z. Pan, C. L. Ding, and H. X. Wang, “Diffraction of cosine-Gaussian-correlated Schell-model beams,” Opt. Express 22(10), 11670–11679 (2014).
[Crossref]

D. G. Pires, N. M. Litchinitser, and P. A. Brandao, “Scattering of partially coherent vortex beams by a PT-symmetric dipole,” Opt. Express 29(10), 15576–15586 (2021).
[Crossref]

M. L. Luo and D. M. Zhao, “Characterizing the polarization and crosspolarization of electromagnetic vortex pulses in the space-time and space-frequency domain,” Opt. Express 23(4), 4153–4162 (2015).
[Crossref]

Y. Deng, H. Wang, X. Ji, X. Li, H. Yu, and L. Chen, “Characteristics of high-power partially coherent laser beams propagating upwards in the turbulent atmosphere,” Opt. Express 28(19), 27927–27939 (2020).
[Crossref]

S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
[Crossref]

D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
[Crossref]

A. Abbas and L. G. Wang, “Hanbury Brown and Twiss effect in spatiotemporal domain,” Opt. Express 28(21), 32077–32086 (2020).
[Crossref]

Opt. Lett. (5)

Opt. Quantum Electron. (1)

Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Spatial-temporal coupling in grating-pair pulse compression system analysed by matrix optics,” Opt. Quantum Electron. 27(7), 679–692 (1995).
[Crossref]

Optica (1)

Phil. Magazine (1)

R. Hanbury Brown and R. Q. Twiss, “A new type of interferometer for use in radio astronomy,” Phil. Magazine 45, 663–682 (1954).

Photonics (1)

M. W. Hyde, “Independently Controlling Stochastic Field Realization Magnitude and Phase Statistics for the Construction of Novel Partially Coherent Sources,” Photonics 8(2), 60 (2021).
[Crossref]

Phys. Rev. A (2)

A. Abbas, C. Xu, and L. G. Wang, “Spatiotemporal ghost imaging and interference,” Phys. Rev. A 101(4), 043805 (2020).
[Crossref]

L. G. Wang, S. Qamar, S. Y. Zhu, and M. S. Zubairy, “Hanbury Brown-Twiss effect and thermal light ghost imaging: A unified approach,” Phys. Rev. A 79(3), 033835 (2009).
[Crossref]

Phys. Rev. E (3)

L. G. Wang, Q. Lin, H. Chen, and S. Y. Zhu, “Propagation of partially coherent pulsed beams in the spatiotemporal domain,” Phys. Rev. E 67(5), 056613 (2003).
[Crossref]

L. G. Wang, N. H. Liu, Q. Lin, and S. Y. Zhu, “Propagation of coherent and partially coherent pulses through one-dimensional photonic crystals,” Phys. Rev. E 70(1), 016601 (2004).
[Crossref]

Z. L. Horvath and Z. Bor, “Diffraction of short pulses with boundary diffraction wave theory,” Phys. Rev. E 63(2), 026601 (2001).
[Crossref]

Phys. Rev. Lett. (1)

H. Vincenti and F. Quere, “Attosecond Lighthouses: How To Use Spatiotemporally Coupled Light Fields To Generate Isolated Attosecond Pulses,” Phys. Rev. Lett. 108(11), 113904 (2012).
[Crossref]

Sci. Adv. (1)

O. S. M. Loaiza, M. Mirhosseini, R. M. Cross, S. M. H. Rafsanjani, and R. W. Boyd, “Hanbury Brown and Twiss interferometry with twisted light,” Sci. Adv. 2(4), e1501143 (2016).
[Crossref]

Sci. Rep. (1)

M. W. Hyde, “Twisted space-frequency and space-time partially coherent beams,” Sci. Rep. 10(1), 12443 (2020).
[Crossref]

Other (2)

S. Wang and D. Zhao, Matrix Optics (Springer, 2000).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Model for HBT effect with a source containing STC. Spatiotemporal light source splits into two light fields among which, one is detected by detector D1 and other is measured by detector D2, then signals from both detectors are being correlated in the second-order correlator.
Fig. 2.
Fig. 2. Spatiotemporal HBT effect under different values of (a)-(d) $q_{12}$, (e)-(h) $q _{14}$ and (i)-(p) $q _{12}$. Other parameters are $\sigma _{\textrm {I}}$ = 1.5 cm, $\sigma _{\textrm {cs}}$ = 1 cm, $\sigma _{\textrm {t}}$ = 10 ps, $\sigma _{\textrm {ct}}$ = 10 ps, $z$ = 10 m, (e)-(h) $q _{12}$ = 0 and $q _{14}$ = (a)-(d) 0, (i)-(l) 0.001 cm$^{-1}$, (m)-(p) 0.004 cm$^{-1}$.
Fig. 3.
Fig. 3. Spatiotemporal HBT effect under different values of $z$ with $q_{12}$ = (a)-(d) 0.0001 cm$^{-1}$, (e)-(h) 0.001 cm$^{-1}$, (i)-(l) 0.005 cm$^{-1}$, (m)-(p) 0.01 cm$^{-1}$ and (a)-(p) $q_{14}$ = $q_{12}/10$. Other unmentioned parameters are same as in Fig. 2.
Fig. 4.
Fig. 4. Spatiotemporal HBT effect under different values of (a)-(h) $\sigma _{\textrm {I}}$, (i)-(p) $\sigma _{\textrm {cs}}$ with (a)-(d), (i)-(l) $q_{12}$ = 0 and (e)-(h), (m)-(p) $q_{12}$ = 0.0001 cm$^{-1}$. Other parameters are $\sigma _{\textrm {I}}$ = 2 cm, $\sigma _{\textrm {cs}}$ = 0.1 cm, $\sigma _{\textrm {t}}$ = 10 ps, $\sigma _{\textrm {ct}}$ = 10 ps, $z$ = 1000 m and $q_{14}$ = $q_{12}/10$.
Fig. 5.
Fig. 5. Spatiotemporal HBT effect under different values of (a)-(h) $\sigma _{\textrm {t}}$, (i)-(p) $\sigma _{\textrm {ct}}$ with (a)-(d), (i)-(l) $q_{12}$ = 0 and (e)-(h), (m)-(p) $q_{12}$ = 0.0001 cm$^{-1}$. Other parameters are $\sigma _{\textrm {I}}$ = 100 cm, $\sigma _{\textrm {cs}}$ = 10 cm, $\sigma _{\textrm {t}}$ = 5 ps, $\sigma _{\textrm {ct}}$ = 10 ps, $z$ = $5\times 10^4$ m and $q_{14}$ = $q_{12}$/10.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Γ ( r ¯ 0 ) = exp [ i k 2 ( r ¯ 0 T Q ¯ 1 r ¯ 0 ) ] ,
Q ¯ 1 = ( σ ~ 1 , σ ~ 2 σ ~ 3 , σ ~ 4 )
G ( 2 ) ( ρ 1 , ρ 2 ) = I 1 ( ρ 1 ) I 2 ( ρ 2 ) + | Γ ( ρ 1 , ρ 2 ) | 2 .
H B T ( ρ 1 , ρ 2 ) = Δ I 1 ( ρ 1 ) Δ I 2 ( ρ 2 ) I 1 ( ρ 1 ) I 2 ( ρ 2 ) = | Γ ( ρ 1 , ρ 2 ) | 2 I 1 ( ρ 1 ) I 2 ( ρ 2 ) ,
| Γ ( ρ 1 , ρ 2 ) | 2 = | [ det ( A ¯ + B ¯ Q ¯ 1 ) ] 1 2 exp { i k 2 [ δ ¯ 12 T ( C ¯ + D ¯ Q ¯ 1 ) ( A ¯ + B ¯ Q ¯ 1 ) 1 δ ¯ 12 ] } | 2 ,
I i ( ρ i ) = [ det ( A ¯ i + B ¯ i Q ¯ 1 ) ] 1 2 exp { i k 2 [ ρ ¯ i i T B ¯ i 1 ( A ¯ i + B ¯ i Q ¯ 1 ) 1 ρ ¯ i i ] } ,

Metrics