Abstract

We propose and numerically investigate a novel direct route to produce multi-terawatt femtosecond self-compressed 10 µm laser pulses suitable for the next generation relativistic laser-plasma studies including laser-wakefield acceleration at long wavelengths. The basic concept involves selecting an appropriate isotope of CO2 gas as a compression medium. This offers a dispersion/absorption landscape that is shifted in frequency relative to the driving CO2 laser used for 10 µm picosecond pulse generation. We show numerically that as a consequence of low losses and a broad anomalous dispersion window, a 3.5 ps duration pulse can be compressed to ∼300 fs while carrying ∼7 TW of peak power in less than 7 m. An interplay of self-phase modulation and anomalous dispersion leads to a ∼3.5 times compression factor, followed by the onset of filamentation near the cell exit to get below 300 fs duration.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

High-power long-wave IR (LWIR) lasers emitting at 10 µm wavelengths, producing relativistic pulses enable the exploitation of new regimes in utilizing wavelength scaling of the ponderomotive force for acceleration of electrons and ions from laser-ionized plasmas [1,2] or in the generation of keV X-rays [3]. For 10 µm light, the laser-matter interaction becomes relativistic at laser intensities I ≥ 1016 W/cm2, at which the normalized field strength parameter, a0=eE/mωc ≥ 1. Several numerical studies indicate that a 5–10 TW, 200–300 fs laser-wakefield drivers capable of reaching a0∼2–4 at these long wavelengths will allow for the generation of high quality electron bunches with a low energy spread, high charge and an extremely low <50 nm normalized emittance, critical for X-ray FELs [46]. CO2 lasers operating at 10 µm are currently the most viable candidates for reaching multi-terawatt peak powers in the LWIR portion of the spectrum, but have a 10x longer than required pulse duration limited by the gain bandwidth to ∼ 2–3 ps [7,8] at best. It is the aim of this work to show that self-compression in a suitable medium is a promising avenue to achieve 300 fs pulse durations while providing high peak power and good beam quality.

It is known that a laser pulse with a power above the critical power for self-focusing can be self-guided in a gas generating a frequency chirp due to self-phase modulation (SPM) that can then be removed by pulse recompression with different dispersive elements [9,10]. In the near-IR range it became a technology for producing low energy pulsed wavepackets with a bandwidth close to a single optical cycle [11]. However, even though pulse compression through SPM is well documented for wavelengths ranging from the UV to the near IR with recent high impact works in the literature [12], typical compression setups that work for these wavelengths cannot be directly applied to the nonlinear regime found at 10µm, mainly due to key material dispersion/absorption considerations. Recent studies, inspired by demonstration of nonlinear propagation of a TW-power 10 µm pulses in air [13], have identified that for km-scale distances anomalous dispersion of atmospheric CO2 can self-compress a spectrally broadened LWIR pulse reaching very high peak powers [14,15]. Self-compression by a factor of 3 due to the dispersion anomaly of air was experimentally observed for 100 fs laser pulses with a wavelength of ∼4 µm close to the strongest fundamental band of CO2 molecule at 4.3 µm [16]. However, for compression of multi-terawatt 10 µm CO2 laser pulses, propagation in air would require very long distances and resonant absorption losses hinder their propagation in a CO2 gas filled cell.

In this paper we consider and study numerically a novel scheme in which a currently available 10.3 µm, 3.5 ps, ∼1 TW CO2 laser pulse [13], can be self-compressed to ∼300 fs pulse duration reaching a relativistic power above 7 TW (a0∼4). Such a remarkable ∼12x compression is achieved by choosing 13CO2 molecule as a compression-mediating medium in a several meter-long cell. Combining SPM in a self-focused beam (a peak power P/Pcr∼2.7) with anomalous dispersion of the weakly absorbing 10.8 µm, 100-001 band of a 13CO2 isotope [17] allows one to reach a multi-terawatt peak power in a femtosecond pulse.

2. Methodology and numerical model

Simulations are conducted in radial symmetric geometry (r, t, z), using the electric field resolved Unidirectional Pulse Propagation Equation (UPPE) solver [18,19]. The UPPE propagator is sourced by a nonlinear polarization and current. The model incorporates all relevant physical effects such as diffraction, Kerr nonlinear response [18], tunnel ionization [20], two-temperature avalanche memory effects [21], as discussed in previous works [22]. The ionization potential of CO2 is 13.8 eV [23]. Linear dispersion and absorption of 13CO2 are modeled with use of the HITRAN database [24] for the whole computational spectral window for 1 atm pressure and temperature of 22.5 C, as depicted in Fig. 1.

 

Fig. 1. Blue curve: real (a) and imaginary (b) linear susceptibility of 13CO2. Black curve: input pulse spectrum of a 10.3 µm Fourier limited 3.5 ps (FWHM) laser pulse. Inset: zoom-in of imaginary χ of 12CO2 (red curve) and 13CO2 (blue curve) gases. In this work only 13CO2 was used.

Download Full Size | PPT Slide | PDF

For our numerical experiment, we launch a 10.3 µm Fourier limited 3.5 ps at FWHM (Full width at Half Maximum) Gaussian spatio-temporal laser pulse [12] in a 13CO2 filled gas cell maintained at 1 atmosphere pressure. We add a 1 cm thick NaCl window at the entrance of the gas cell. This window performs a dual function: 1) to confine the 13CO2 gas and 2) to impart a weak positive lens on the beam before it interacts with the gas. The latter proves important in ensuring a clean well-formed pulse spatial and temporal profile of the output [see Fig. 3]. The input pulse has 4.1 J of energy, corresponding to ∼2.7 critical powers (Pcr) for CO2. The choice of 13CO2 gas as the compression medium is motivated by the significant offset of its spectral response relative to the 10.3 µm central wavelength of the 12CO2 laser source. The red curve in Fig. 1(b) compares the 12CO2, absorption relative to 13CO2 over the relevant spectral window showing a strong reduction in absorption while retaining a wide spectral window of anomalous dispersion. A propagation regime with relatively low losses while experiencing weak anomalous dispersion is crucial for optimal compression.

Pulse compression through SPM is well documented in the literature [12,25,26] for various materials and laser wavelengths. However, to our knowledge it has never before been successfully applied to 10 µm picosecond CO2 lasers. Compression is typically achieved by first broadening of the pulse spectrum through nonlinear SPM, which is followed by chirp compensation through various means such as mirrors or fibers, in order to reach shorter pulse durations. A simplified formula for describing the newly generated frequencies from SPM can be written in the form of $\omega (t )= {\omega _0} + {\omega _0}z/2{n_0}c{\rho _C} \cdot \frac{{\partial \rho (t )}}{{\partial t}} - {n_2}{\omega _0}z/c \cdot \frac{{\partial I(t )}}{{\partial t}}$, where n0, and n2 are the linear and nonlinear refractive indices, c is the speed of light in vacuum, ω0 is the central frequency of the laser, and ρC is the critical plasma density at which plasma becomes opaque. The derivative terms on the right-hand side account for the newly generated frequencies from plasma and Kerr respectively. For typical Gaussian shaped pulses, Kerr will produce lower frequencies in the leading part of the pulse (redshift) and higher frequencies in the trailing part (blueshift). At the onset of filamentation plasma will generally produce a blueshift in the pulse’s time frame. The goal in this work is to maximize spectral broadening from Kerr while at the same time minimize plasma generation that builds up during filamentation while exploiting the very broad window of anomalous dispersion in CO2.

3. Results and discussion

Figure 2 shows the propagation of the 3.5 ps (Gaussian at FWHM) – 4.1 J and 1 cm waist at 1/e2 radius, 10.3 µm wavelength initially collimated pulse when launched through a NaCl window into a 13CO2 gas cell over a propagation distance of 10 m. The pulse has an initially imposed weak positive lens after passing through the cell window due the high Kerr nonlinearity of NaCl. Propagating now in 13CO2 gas, the wavepacket self-focuses and forms a single on-axis filament at approximately 6.6 m inside the cell. The filament extends up to the end of the 10 m long gas column reaching a peak on-axis intensity of 3-4 × 1017 W/m2. The filament diameter (FWHM) remains stable at ∼2–3 mm. Significant plasma generation is generated through tunneling and avalanche ionization reaching peak electron densities of 8 × 1016 cm−3 as depicted in Fig. 2(a) (red dashed curve).

 

Fig. 2. Propagation dynamics of the 3.5 ps – 4.1 J – 1 cm – 10.3 µm collimated wavepacket in 13CO2 gas. (a) Peak intensity (black curve) and peak plasma density (rad dashed curve), (b) beam waist at FWHM diameter calculated on intensity (black curve) and fluence (blue dashed curve).

Download Full Size | PPT Slide | PDF

In order to better understand the compression dynamics, we separate the propagation inside the gas cell into three distinct stages: the pre-filament stage (0–6.6 m), the onset of filamentation (6–6.6 m), and finally the filamentary propagation stage (6.6 m – 10 m). Figure 3(a) shows the on-axis pulse duration vs propagation distance. The end points of each of the above three stages are denoted by the blue diamond, red square and black star respectively.

 

Fig. 3. (a) On-axis pulse duration at FHWM. Blue diamond (z=6 m), red square (z=6.6 m) and black star (z=10 m) denote the end points of each of the three propagation stages, and are potential gas cell extraction points. (b), (c) On axis electric field and radial-temporal intensity distribution at z = 6 m. (d), (e) at z = 6.6 m, (f), (g) at z = 10 m. Energy content: (c), (e) ∼2.2 J, (g) ∼1.8 J. Movies of (b) - (g) as a function of z can be found in the supplementary material (Visualization 1, Visualization 2). (h) Pulse spectrum at various positions along z.

Download Full Size | PPT Slide | PDF

In the first stage (pre-filamentation) we see that the pulse is compressed from 3.5 ps down to ∼1 ps duration due to the balance between SPM and the anomalous GVD of 13CO2. We can see the on-axis electric field and spatio-temporal intensity distribution at the end of the first stage at z = 6 m in Fig. 3(b), (c) respectively. Both on-axis electric field and spatio-temporal intensity profiles are of excellent quality resembling a steepened Gaussian, and devoid of any pulse splitting or beam breakup. The energy content of the wavepacket as depicted in Fig. 3(c) is ∼2.2 J (∼55% of initial) which corresponds to ∼2.2 TW of power. Notably, the spectral broadening up to this point is exclusively due to Kerr induced SPM as depicted in Fig. 3(h) (blue dashed curve), since plasma related effects from tunneling are negligible. While pulse duration is predicted to get much shorter downstream, extracting the pulse from the gas cell at the end of the first stage (z = 6 m) is much easier since no plasma related complications have to be accounted for.

Filamentation is abruptly initiated beyond z = 6 m, resulting in a spike in intensity and plasma density through tunnel ionization of CO2. The high plasma density causes the trailing edge of the pulse to be defocused and at the same time strong envelope steepening in the leading part of the pulse. As a result, the pulse is shortened in an asymmetric fashion as depicted in Fig. 3(d), (e) at z = 6.6 m, having an on-axis duration of roughly 300 fs right after the onset of filamentation. Spectral broadening is greatly enhanced compared to the first stage due higher intensity and significant plasma generation, as can be seen in Fig. 3(h) in the red dotted curve. Due to the rapid collapse of the pulse into a filament, overall energy losses are negligible in this stage, with the pulse carrying ∼2.2 J corresponding to ∼7 TW of power.

Beyond this point we enter the third stage, at which the wavepacket is propagating in the form of a filament, accompanied by typically high intensity, plasma generation and nonlinear losses. Spatially the beam is driven by the dynamic equilibrium between Kerr self-focusing and plasma defocusing, maintaining a narrow diameter of ∼3mm for the rest of the propagation in the gas cell. In the temporal domain we have a similar equilibrium, this time between SPM and anomalous dispersion resulting in a stable sub-300fs pulse duration for the rest of the propagation inside the gas cell. As can be seen in Fig. 3(f), (d), the spatial and temporal steepening in the trailing part, started in the previous stage, is further reshaping the wavepacket. As expected, the sustained plasma generation will lead to increased spectral broadening (gray dash-dotted curve in Fig. 3(h)). The energy in the pulse at the end of the gas cell as depicted in Fig. 3(g) is 1.8 J.

While each of the above described stages is driven by different dynamics, there are some key takeaways that apply to the setup as a whole. When considering the pulse’s on-axis electric field and radial-temporal intensity profiles at z = 6 m, z = 6.6 m, and z = 10 m (depicted in Fig. 3(b)-(g)), we can clearly see that both pulse and beam shapes show a gradual compression/reshaping without signs of splitting throughout this process. In addition, since the pulse is continuously and gradually compressing throughout all three stages, it should in principle be possible to control the output pulse duration by extracting at the appropriate distance. This process is fairly efficient in terms of energy loss in the temporal domain since the higher and lower newly generated frequencies do not walk-off (higher harmonic radiation is left in the wake of the pulse after the underlying optical carrier wave self-steepens) as would be the case in normal dispersive media, but instead are redirected towards the pulse temporal center. This leads to an increase of peak intensity and temporal gradients which in turn leads to further compression. While overall energy in the compressed wavepacket is roughly around 50% of the input depending on the pulse extraction point, we are predicting near 300 fs 10 µm pulses that carry multi-TW of power over laboratory scale distances.

Our goal is to extract the pulse on reaching a duration of ∼300 fs which would correspond to a cell length of around z = 6.6 m. This represents an optimal strategy for extracting a high power/energy, short duration pulse before nonlinear losses associated with filamentation will deplete energy throughout the rest of the cell. The relatively high energy fluence at the exit of the cell will require the introduction an alternative means of pulse extraction. Although this is not the focus of the present work an option could be to extract the pulse through a pressure gradient at the end of the cell and use of an aerodynamic window [27].

Figure 4 depicts a more desirable scenario where a 1.1 ps pulse (the shortest pulse that can be produced by CO2 lasers) with a 1 cm beam waist at 1/e2 radius carrying of 1.1 TW propagates in a 13CO2 filled cell. In a similar manner to the 3.5 ps case, the pulse initially compresses due to action of Kerr induced SPM and anomalous dispersion by the same factor of ∼3.5 but now down to ∼300 fs (FHWM) while avoiding filamentation. As can be seen in Fig. 4(a) the plasma density is negligible at ∼4 × 107 cm−3 (red dashed curve). The spatio-temporal intensity profile is depicted in the inset of Fig. 4(a) exhibiting a clean symmetric bell shape, carrying 0.8 J (∼58% of the starting energy) corresponding to a power of ∼2.7 TW. Figures 3 and 4 prove that our proposed approach is able to compress a pulse by a factor of 3 before the onset of filamentation for a variety of input pulse durations.

 

Fig. 4. Propagation dynamics of the 1.1 ps – 1.38 J – 1 cm – 10.3 µm collimated wavepacket in 13CO2. (a) Peak intensity (black curve) and peak plasma density (rad dashed curve) vs z. Inset: Spatio-temporal intensity at z = 5 m. Energy contained in the spatio-temporal box is 0.8J (58% of starting energy), corresponding to 2.7 TW. (b) On-axis electric field at z = 0 m (red curve) and z = 5 m (black curve). (c) Pulse duration at FHWM as a function of radius and z. Movies of the spatio-temporal intensity and on-axis E-field vs z can be found in the supplementary material (Visualization 3, Visualization 4).

Download Full Size | PPT Slide | PDF

In summary, we have shown an overall 12x compression of a multi-picosecond 10.3 µm CO2 laser pulses inside spectrally offset 13CO2 gas cells resulting in stable 300 fs pulse durations carrying ∼7 TWs of peak power. This extreme compression is possible by combining the well-known spectral broadening through SPM with the broad anomalous dispersion landscape of weakly absorbing 13CO2 in the vicinity of the 10.8 µm (100-001 band), followed by onset of filamentation in the final compression stage. Importantly, our compression scheme is scalable to shorter input pulses, and is able to compress 1 ps input pulses in a similar fashion to generate sub-300 fs pulse while avoiding filamentation, plasma generation and spatiotemporal distortion of the final pulse. One can envision a two-cell configuration where the pulse compression to ∼300 fs without filamentation is realized for ∼1 ps pulses generated in the first cell. The strong wavelength scaling of the ponderomotive driving of electrons and ions in laser generated plasmas is expected open up many exciting new applications including laser-wakefield generation. The demonstrated approach can also be used to scale the peak power of high-repetition rate picosecond ≥100GW CO2 lasers to TW level necessary for self-guiding in the atmosphere [13].

Funding

Office of Naval Research (N00014-17-1-2705); Air Force Office of Scientific Research (FA9550-18-1-0368, FA9550-19-1-0032).

Disclosures

The authors declare no conflicts of interest.

References

1. S. Y. Tochitsky, R. Narang, C. V. Filip, P. Musumeci, C. E. Clayton, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, “Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel,” Phys. Rev. Lett. 92(9), 095004 (2004). [CrossRef]  

2. D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. A. Fonseca, L. O. Silva, W. B. Mori, and C. Joshi, “Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams,” Nat. Phys. 8(1), 95–99 (2012). [CrossRef]  

3. J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014). [CrossRef]  

4. X. L. Xu, Y. P. Wu, C. J. Zhang, F. Li, Y. Wan, J. F. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi, and W. B. Mori, “Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths,” Phys. Rev. Spec. Top.--Accel. Beams 17(6), 061301 (2014). [CrossRef]  

5. L. Zhang, B. Shen, J. Xu, L. Ji, X. Zhang, W. Wang, X. Zhao, L. Yi, Y. Yu, Y. Shi, T. Xu, and Z. Xu, “High quality electron bunch generation with CO2-laser-plasma interaction,” Phys. Plasmas 22(2), 023101 (2015). [CrossRef]  

6. I. V. Pogorelsky, M. N. Polyanskiy, and W. D. Kimura, “Mid-infrared lasers for energy frontier plasma accelerators,” Phys. Rev. Accel. Beams 19(9), 091001 (2016). [CrossRef]  

7. D. Haberberger, S. Tochitsky, and C. Joshi, “Fifteen terawatt picosecond CO2 laser system,” Opt. Express 18(17), 17865–17875 (2010). [CrossRef]  

8. M. N. Polyanskiy, I. V. Pogorelsky, M. Babzien, and M. A. Palmer, “Demonstration of a 2 ps, 5 TW peak power, long-wave infrared laser based on chirped-pulse amplification with mixed-isotope CO2 amplifiers,” OSA Continuum 3(3), 459–472 (2020). [CrossRef]  

9. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004). [CrossRef]  

10. A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, S. I. Mitryukovsky, A. B. Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt few-cycle mid-infrared pulses from a single filament,” Optica 3(3), 299–302 (2016). [CrossRef]  

11. T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000). [CrossRef]  

12. J. C. Travers, T. F. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres,” Nat. Photonics 13(8), 547–554 (2019). [CrossRef]  

13. S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13(1), 41–46 (2019). [CrossRef]  

14. A. A. Voronin and A. M. Zheltikov, “Long-wavelength infrared solitons in air,” Opt. Lett. 42(18), 3614–3617 (2017). [CrossRef]  

15. P. Panagiotopoulos, M. Kolesik, S. Tochitsky, S. W. Koch, and J. V. Moloney, “Two-stage filamentation of 10 µm pulses as a broadband infrared backlighter in the atmosphere,” Opt. Lett. 44(12), 3122–3125 (2019). [CrossRef]  

16. A. V. Mitrofanov, A. A. Voronin, M. V. Rozhko, D. A. Sidorov-Biryukov, A. B. Fedotov, A. Pugžlys, V. Shumakova, S. Ališauskas, A. Baltuška, and A. M. Zheltikov, “Self-compression of high-peak-power mid-infrared pulses in anomalously dispersive air,” Optica 4(11), 1405–1408 (2017). [CrossRef]  

17. C. Freed, L. Bradley, and R. O. Donnell, “Absolute frequencies of lasing transitions in seven CO2isotopic species,” IEEE J. Quantum Electron. 16(11), 1195–1206 (1980). [CrossRef]  

18. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell's to unidirectional equations,” Phys. Rev. E 70(3), 036604 (2004). [CrossRef]  

19. P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015). [CrossRef]  

20. T. D. G. Walsh, J. E. Decker, and S. L. Chin, “Tunnel ionization of simple molecules by an intense CO 2 laser,” J. Phys. B: At., Mol. Opt. Phys. 26(4), L85–L90 (1993). [CrossRef]  

21. E. M. Wright, S. W. Koch, M. Kolesik, and J. V. Moloney, “Memory effects in the long-wave infrared avalanche ionization of gases: a review of recent progress,” Rep. Prog. Phys. 82(6), 064401 (2019). [CrossRef]  

22. P. Panagiotopoulos, M. Kolesik, S. W. Koch, E. M. Wright, S. Tochitsky, and J. V. Moloney, “Control of the filament dynamics of 10 µm pulses via designer pulse trains,” J. Opt. Soc. Am. B 36(10), G33–G39 (2019). [CrossRef]  

23. L.-S. Wang, J. E. Reutt, Y. T. Lee, and D. A. Shirley, “High resolution UV photoelectron spectroscopy of CO+2, COS+ and CS+2 using supersonic molecular beams,” J. Electron Spectrosc. Relat. Phenom. 47, 167–186 (1988). [CrossRef]  

24. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013). [CrossRef]  

25. R. R. Alfano and S. L. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970). [CrossRef]  

26. C. P. Hauri, R. B. Lopez-Martens, C. I. Blaga, K. D. Schultz, J. Cryan, R. Chirla, P. Colosimo, G. Doumy, A. M. March, C. Roedig, E. Sistrunk, J. Tate, J. Wheeler, L. F. DiMauro, and E. P. Power, “Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 ?m from an optical filament,” Opt. Lett. 32(7), 868–870 (2007). [CrossRef]  

27. E. M. Parmentier and R. A. Greenberg, “Supersonic Flow Aerodynamic Windows for High-Power Lasers,” AIAA J. 11(7), 943–949 (1973). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Tochitsky, R. Narang, C. V. Filip, P. Musumeci, C. E. Clayton, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, “Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel,” Phys. Rev. Lett. 92(9), 095004 (2004).
    [Crossref]
  2. D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. A. Fonseca, L. O. Silva, W. B. Mori, and C. Joshi, “Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams,” Nat. Phys. 8(1), 95–99 (2012).
    [Crossref]
  3. J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
    [Crossref]
  4. X. L. Xu, Y. P. Wu, C. J. Zhang, F. Li, Y. Wan, J. F. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi, and W. B. Mori, “Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths,” Phys. Rev. Spec. Top.--Accel. Beams 17(6), 061301 (2014).
    [Crossref]
  5. L. Zhang, B. Shen, J. Xu, L. Ji, X. Zhang, W. Wang, X. Zhao, L. Yi, Y. Yu, Y. Shi, T. Xu, and Z. Xu, “High quality electron bunch generation with CO2-laser-plasma interaction,” Phys. Plasmas 22(2), 023101 (2015).
    [Crossref]
  6. I. V. Pogorelsky, M. N. Polyanskiy, and W. D. Kimura, “Mid-infrared lasers for energy frontier plasma accelerators,” Phys. Rev. Accel. Beams 19(9), 091001 (2016).
    [Crossref]
  7. D. Haberberger, S. Tochitsky, and C. Joshi, “Fifteen terawatt picosecond CO2 laser system,” Opt. Express 18(17), 17865–17875 (2010).
    [Crossref]
  8. M. N. Polyanskiy, I. V. Pogorelsky, M. Babzien, and M. A. Palmer, “Demonstration of a 2 ps, 5 TW peak power, long-wave infrared laser based on chirped-pulse amplification with mixed-isotope CO2 amplifiers,” OSA Continuum 3(3), 459–472 (2020).
    [Crossref]
  9. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
    [Crossref]
  10. A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, S. I. Mitryukovsky, A. B. Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt few-cycle mid-infrared pulses from a single filament,” Optica 3(3), 299–302 (2016).
    [Crossref]
  11. T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
    [Crossref]
  12. J. C. Travers, T. F. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres,” Nat. Photonics 13(8), 547–554 (2019).
    [Crossref]
  13. S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13(1), 41–46 (2019).
    [Crossref]
  14. A. A. Voronin and A. M. Zheltikov, “Long-wavelength infrared solitons in air,” Opt. Lett. 42(18), 3614–3617 (2017).
    [Crossref]
  15. P. Panagiotopoulos, M. Kolesik, S. Tochitsky, S. W. Koch, and J. V. Moloney, “Two-stage filamentation of 10 µm pulses as a broadband infrared backlighter in the atmosphere,” Opt. Lett. 44(12), 3122–3125 (2019).
    [Crossref]
  16. A. V. Mitrofanov, A. A. Voronin, M. V. Rozhko, D. A. Sidorov-Biryukov, A. B. Fedotov, A. Pugžlys, V. Shumakova, S. Ališauskas, A. Baltuška, and A. M. Zheltikov, “Self-compression of high-peak-power mid-infrared pulses in anomalously dispersive air,” Optica 4(11), 1405–1408 (2017).
    [Crossref]
  17. C. Freed, L. Bradley, and R. O. Donnell, “Absolute frequencies of lasing transitions in seven CO2isotopic species,” IEEE J. Quantum Electron. 16(11), 1195–1206 (1980).
    [Crossref]
  18. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell's to unidirectional equations,” Phys. Rev. E 70(3), 036604 (2004).
    [Crossref]
  19. P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
    [Crossref]
  20. T. D. G. Walsh, J. E. Decker, and S. L. Chin, “Tunnel ionization of simple molecules by an intense CO 2 laser,” J. Phys. B: At., Mol. Opt. Phys. 26(4), L85–L90 (1993).
    [Crossref]
  21. E. M. Wright, S. W. Koch, M. Kolesik, and J. V. Moloney, “Memory effects in the long-wave infrared avalanche ionization of gases: a review of recent progress,” Rep. Prog. Phys. 82(6), 064401 (2019).
    [Crossref]
  22. P. Panagiotopoulos, M. Kolesik, S. W. Koch, E. M. Wright, S. Tochitsky, and J. V. Moloney, “Control of the filament dynamics of 10 µm pulses via designer pulse trains,” J. Opt. Soc. Am. B 36(10), G33–G39 (2019).
    [Crossref]
  23. L.-S. Wang, J. E. Reutt, Y. T. Lee, and D. A. Shirley, “High resolution UV photoelectron spectroscopy of CO+2, COS+ and CS+2 using supersonic molecular beams,” J. Electron Spectrosc. Relat. Phenom. 47, 167–186 (1988).
    [Crossref]
  24. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
    [Crossref]
  25. R. R. Alfano and S. L. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
    [Crossref]
  26. C. P. Hauri, R. B. Lopez-Martens, C. I. Blaga, K. D. Schultz, J. Cryan, R. Chirla, P. Colosimo, G. Doumy, A. M. March, C. Roedig, E. Sistrunk, J. Tate, J. Wheeler, L. F. DiMauro, and E. P. Power, “Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 ?m from an optical filament,” Opt. Lett. 32(7), 868–870 (2007).
    [Crossref]
  27. E. M. Parmentier and R. A. Greenberg, “Supersonic Flow Aerodynamic Windows for High-Power Lasers,” AIAA J. 11(7), 943–949 (1973).
    [Crossref]

2020 (1)

2019 (5)

J. C. Travers, T. F. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13(1), 41–46 (2019).
[Crossref]

P. Panagiotopoulos, M. Kolesik, S. Tochitsky, S. W. Koch, and J. V. Moloney, “Two-stage filamentation of 10 µm pulses as a broadband infrared backlighter in the atmosphere,” Opt. Lett. 44(12), 3122–3125 (2019).
[Crossref]

E. M. Wright, S. W. Koch, M. Kolesik, and J. V. Moloney, “Memory effects in the long-wave infrared avalanche ionization of gases: a review of recent progress,” Rep. Prog. Phys. 82(6), 064401 (2019).
[Crossref]

P. Panagiotopoulos, M. Kolesik, S. W. Koch, E. M. Wright, S. Tochitsky, and J. V. Moloney, “Control of the filament dynamics of 10 µm pulses via designer pulse trains,” J. Opt. Soc. Am. B 36(10), G33–G39 (2019).
[Crossref]

2017 (2)

2016 (2)

2015 (2)

L. Zhang, B. Shen, J. Xu, L. Ji, X. Zhang, W. Wang, X. Zhao, L. Yi, Y. Yu, Y. Shi, T. Xu, and Z. Xu, “High quality electron bunch generation with CO2-laser-plasma interaction,” Phys. Plasmas 22(2), 023101 (2015).
[Crossref]

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

2014 (2)

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

X. L. Xu, Y. P. Wu, C. J. Zhang, F. Li, Y. Wan, J. F. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi, and W. B. Mori, “Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths,” Phys. Rev. Spec. Top.--Accel. Beams 17(6), 061301 (2014).
[Crossref]

2013 (1)

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

2012 (1)

D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. A. Fonseca, L. O. Silva, W. B. Mori, and C. Joshi, “Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams,” Nat. Phys. 8(1), 95–99 (2012).
[Crossref]

2010 (1)

2007 (1)

2004 (3)

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

S. Y. Tochitsky, R. Narang, C. V. Filip, P. Musumeci, C. E. Clayton, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, “Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel,” Phys. Rev. Lett. 92(9), 095004 (2004).
[Crossref]

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell's to unidirectional equations,” Phys. Rev. E 70(3), 036604 (2004).
[Crossref]

2000 (1)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[Crossref]

1993 (1)

T. D. G. Walsh, J. E. Decker, and S. L. Chin, “Tunnel ionization of simple molecules by an intense CO 2 laser,” J. Phys. B: At., Mol. Opt. Phys. 26(4), L85–L90 (1993).
[Crossref]

1988 (1)

L.-S. Wang, J. E. Reutt, Y. T. Lee, and D. A. Shirley, “High resolution UV photoelectron spectroscopy of CO+2, COS+ and CS+2 using supersonic molecular beams,” J. Electron Spectrosc. Relat. Phenom. 47, 167–186 (1988).
[Crossref]

1980 (1)

C. Freed, L. Bradley, and R. O. Donnell, “Absolute frequencies of lasing transitions in seven CO2isotopic species,” IEEE J. Quantum Electron. 16(11), 1195–1206 (1980).
[Crossref]

1973 (1)

E. M. Parmentier and R. A. Greenberg, “Supersonic Flow Aerodynamic Windows for High-Power Lasers,” AIAA J. 11(7), 943–949 (1973).
[Crossref]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
[Crossref]

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
[Crossref]

Ališauskas, S.

Babikov, Y.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Babzien, M.

Baltuška, A.

Barbe, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Belli, F.

J. C. Travers, T. F. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

Bernath, P. F.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Biegert, J.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Birk, M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Bizzocchi, L.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Blaga, C. I.

Boudon, V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Brabec, T.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[Crossref]

Bradley, L.

C. Freed, L. Bradley, and R. O. Donnell, “Absolute frequencies of lasing transitions in seven CO2isotopic species,” IEEE J. Quantum Electron. 16(11), 1195–1206 (1980).
[Crossref]

Brahms, C.

J. C. Travers, T. F. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

Brown, L. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Campargue, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Chance, K.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Chin, S. L.

T. D. G. Walsh, J. E. Decker, and S. L. Chin, “Tunnel ionization of simple molecules by an intense CO 2 laser,” J. Phys. B: At., Mol. Opt. Phys. 26(4), L85–L90 (1993).
[Crossref]

Chirla, R.

Chris Benner, D.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Clayton, C. E.

S. Y. Tochitsky, R. Narang, C. V. Filip, P. Musumeci, C. E. Clayton, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, “Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel,” Phys. Rev. Lett. 92(9), 095004 (2004).
[Crossref]

Cohen, E. A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Colosimo, P.

Couairon, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Coudert, L. H.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Cryan, J.

Decker, J. E.

T. D. G. Walsh, J. E. Decker, and S. L. Chin, “Tunnel ionization of simple molecules by an intense CO 2 laser,” J. Phys. B: At., Mol. Opt. Phys. 26(4), L85–L90 (1993).
[Crossref]

Devi, V. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

DiMauro, L. F.

Donnell, R. O.

C. Freed, L. Bradley, and R. O. Donnell, “Absolute frequencies of lasing transitions in seven CO2isotopic species,” IEEE J. Quantum Electron. 16(11), 1195–1206 (1980).
[Crossref]

Doumy, G.

Drouin, B. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Elsaesser, T.

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

Fayt, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Fedotov, A. B.

Filip, C. V.

S. Y. Tochitsky, R. Narang, C. V. Filip, P. Musumeci, C. E. Clayton, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, “Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel,” Phys. Rev. Lett. 92(9), 095004 (2004).
[Crossref]

Fiuza, F.

D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. A. Fonseca, L. O. Silva, W. B. Mori, and C. Joshi, “Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams,” Nat. Phys. 8(1), 95–99 (2012).
[Crossref]

Flaud, J. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Fonseca, R. A.

D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. A. Fonseca, L. O. Silva, W. B. Mori, and C. Joshi, “Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams,” Nat. Phys. 8(1), 95–99 (2012).
[Crossref]

Freed, C.

C. Freed, L. Bradley, and R. O. Donnell, “Absolute frequencies of lasing transitions in seven CO2isotopic species,” IEEE J. Quantum Electron. 16(11), 1195–1206 (1980).
[Crossref]

Gamache, R. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Gong, C.

D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. A. Fonseca, L. O. Silva, W. B. Mori, and C. Joshi, “Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams,” Nat. Phys. 8(1), 95–99 (2012).
[Crossref]

Gordon, I. E.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Greenberg, R. A.

E. M. Parmentier and R. A. Greenberg, “Supersonic Flow Aerodynamic Windows for High-Power Lasers,” AIAA J. 11(7), 943–949 (1973).
[Crossref]

Grigorova, T. F.

J. C. Travers, T. F. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

Haberberger, D.

D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. A. Fonseca, L. O. Silva, W. B. Mori, and C. Joshi, “Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams,” Nat. Phys. 8(1), 95–99 (2012).
[Crossref]

D. Haberberger, S. Tochitsky, and C. Joshi, “Fifteen terawatt picosecond CO2 laser system,” Opt. Express 18(17), 17865–17875 (2010).
[Crossref]

Harrison, J. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Hartmann, J. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Hauri, C. P.

C. P. Hauri, R. B. Lopez-Martens, C. I. Blaga, K. D. Schultz, J. Cryan, R. Chirla, P. Colosimo, G. Doumy, A. M. March, C. Roedig, E. Sistrunk, J. Tate, J. Wheeler, L. F. DiMauro, and E. P. Power, “Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 ?m from an optical filament,” Opt. Lett. 32(7), 868–870 (2007).
[Crossref]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Heinrich, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Helbing, F. W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Hill, C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Hodges, J. T.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Holtz, M.

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

Hua, J. F.

X. L. Xu, Y. P. Wu, C. J. Zhang, F. Li, Y. Wan, J. F. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi, and W. B. Mori, “Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths,” Phys. Rev. Spec. Top.--Accel. Beams 17(6), 061301 (2014).
[Crossref]

Jacquemart, D.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Ji, L.

L. Zhang, B. Shen, J. Xu, L. Ji, X. Zhang, W. Wang, X. Zhao, L. Yi, Y. Yu, Y. Shi, T. Xu, and Z. Xu, “High quality electron bunch generation with CO2-laser-plasma interaction,” Phys. Plasmas 22(2), 023101 (2015).
[Crossref]

Jolly, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Joshi, C.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13(1), 41–46 (2019).
[Crossref]

X. L. Xu, Y. P. Wu, C. J. Zhang, F. Li, Y. Wan, J. F. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi, and W. B. Mori, “Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths,” Phys. Rev. Spec. Top.--Accel. Beams 17(6), 061301 (2014).
[Crossref]

D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. A. Fonseca, L. O. Silva, W. B. Mori, and C. Joshi, “Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams,” Nat. Phys. 8(1), 95–99 (2012).
[Crossref]

D. Haberberger, S. Tochitsky, and C. Joshi, “Fifteen terawatt picosecond CO2 laser system,” Opt. Express 18(17), 17865–17875 (2010).
[Crossref]

S. Y. Tochitsky, R. Narang, C. V. Filip, P. Musumeci, C. E. Clayton, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, “Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel,” Phys. Rev. Lett. 92(9), 095004 (2004).
[Crossref]

Juvé, V.

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

Keller, U.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Kimura, W. D.

I. V. Pogorelsky, M. N. Polyanskiy, and W. D. Kimura, “Mid-infrared lasers for energy frontier plasma accelerators,” Phys. Rev. Accel. Beams 19(9), 091001 (2016).
[Crossref]

Koch, S. W.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13(1), 41–46 (2019).
[Crossref]

E. M. Wright, S. W. Koch, M. Kolesik, and J. V. Moloney, “Memory effects in the long-wave infrared avalanche ionization of gases: a review of recent progress,” Rep. Prog. Phys. 82(6), 064401 (2019).
[Crossref]

P. Panagiotopoulos, M. Kolesik, S. W. Koch, E. M. Wright, S. Tochitsky, and J. V. Moloney, “Control of the filament dynamics of 10 µm pulses via designer pulse trains,” J. Opt. Soc. Am. B 36(10), G33–G39 (2019).
[Crossref]

P. Panagiotopoulos, M. Kolesik, S. Tochitsky, S. W. Koch, and J. V. Moloney, “Two-stage filamentation of 10 µm pulses as a broadband infrared backlighter in the atmosphere,” Opt. Lett. 44(12), 3122–3125 (2019).
[Crossref]

Kolesik, M.

P. Panagiotopoulos, M. Kolesik, S. W. Koch, E. M. Wright, S. Tochitsky, and J. V. Moloney, “Control of the filament dynamics of 10 µm pulses via designer pulse trains,” J. Opt. Soc. Am. B 36(10), G33–G39 (2019).
[Crossref]

E. M. Wright, S. W. Koch, M. Kolesik, and J. V. Moloney, “Memory effects in the long-wave infrared avalanche ionization of gases: a review of recent progress,” Rep. Prog. Phys. 82(6), 064401 (2019).
[Crossref]

P. Panagiotopoulos, M. Kolesik, S. Tochitsky, S. W. Koch, and J. V. Moloney, “Two-stage filamentation of 10 µm pulses as a broadband infrared backlighter in the atmosphere,” Opt. Lett. 44(12), 3122–3125 (2019).
[Crossref]

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13(1), 41–46 (2019).
[Crossref]

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell's to unidirectional equations,” Phys. Rev. E 70(3), 036604 (2004).
[Crossref]

Kornelis, W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Krausz, F.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[Crossref]

Ku, S.

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

Lamouroux, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Le Roy, R. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Lee, Y. T.

L.-S. Wang, J. E. Reutt, Y. T. Lee, and D. A. Shirley, “High resolution UV photoelectron spectroscopy of CO+2, COS+ and CS+2 using supersonic molecular beams,” J. Electron Spectrosc. Relat. Phenom. 47, 167–186 (1988).
[Crossref]

Li, F.

X. L. Xu, Y. P. Wu, C. J. Zhang, F. Li, Y. Wan, J. F. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi, and W. B. Mori, “Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths,” Phys. Rev. Spec. Top.--Accel. Beams 17(6), 061301 (2014).
[Crossref]

Li, G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Long, D. A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Lopez-Martens, R. B.

Lu, W.

X. L. Xu, Y. P. Wu, C. J. Zhang, F. Li, Y. Wan, J. F. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi, and W. B. Mori, “Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths,” Phys. Rev. Spec. Top.--Accel. Beams 17(6), 061301 (2014).
[Crossref]

Lyulin, O. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Mackie, C. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

March, A. M.

Marsh, K. A.

S. Y. Tochitsky, R. Narang, C. V. Filip, P. Musumeci, C. E. Clayton, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, “Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel,” Phys. Rev. Lett. 92(9), 095004 (2004).
[Crossref]

Massie, S. T.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Meshchankin, D. V.

Mikhailenko, S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Mitrofanov, A. V.

Mitryukovsky, S. I.

Moloney, J. V.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13(1), 41–46 (2019).
[Crossref]

P. Panagiotopoulos, M. Kolesik, S. Tochitsky, S. W. Koch, and J. V. Moloney, “Two-stage filamentation of 10 µm pulses as a broadband infrared backlighter in the atmosphere,” Opt. Lett. 44(12), 3122–3125 (2019).
[Crossref]

P. Panagiotopoulos, M. Kolesik, S. W. Koch, E. M. Wright, S. Tochitsky, and J. V. Moloney, “Control of the filament dynamics of 10 µm pulses via designer pulse trains,” J. Opt. Soc. Am. B 36(10), G33–G39 (2019).
[Crossref]

E. M. Wright, S. W. Koch, M. Kolesik, and J. V. Moloney, “Memory effects in the long-wave infrared avalanche ionization of gases: a review of recent progress,” Rep. Prog. Phys. 82(6), 064401 (2019).
[Crossref]

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell's to unidirectional equations,” Phys. Rev. E 70(3), 036604 (2004).
[Crossref]

Mori, W. B.

X. L. Xu, Y. P. Wu, C. J. Zhang, F. Li, Y. Wan, J. F. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi, and W. B. Mori, “Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths,” Phys. Rev. Spec. Top.--Accel. Beams 17(6), 061301 (2014).
[Crossref]

D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. A. Fonseca, L. O. Silva, W. B. Mori, and C. Joshi, “Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams,” Nat. Phys. 8(1), 95–99 (2012).
[Crossref]

Müller, H. S. P.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Musumeci, P.

S. Y. Tochitsky, R. Narang, C. V. Filip, P. Musumeci, C. E. Clayton, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, “Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel,” Phys. Rev. Lett. 92(9), 095004 (2004).
[Crossref]

Mysyrowicz, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Narang, R.

S. Y. Tochitsky, R. Narang, C. V. Filip, P. Musumeci, C. E. Clayton, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, “Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel,” Phys. Rev. Lett. 92(9), 095004 (2004).
[Crossref]

Naumenko, O. V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Nikitin, A. V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Orphal, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Pai, C. H.

X. L. Xu, Y. P. Wu, C. J. Zhang, F. Li, Y. Wan, J. F. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi, and W. B. Mori, “Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths,” Phys. Rev. Spec. Top.--Accel. Beams 17(6), 061301 (2014).
[Crossref]

Palmer, M. A.

Panagiotopoulos, P.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13(1), 41–46 (2019).
[Crossref]

P. Panagiotopoulos, M. Kolesik, S. Tochitsky, S. W. Koch, and J. V. Moloney, “Two-stage filamentation of 10 µm pulses as a broadband infrared backlighter in the atmosphere,” Opt. Lett. 44(12), 3122–3125 (2019).
[Crossref]

P. Panagiotopoulos, M. Kolesik, S. W. Koch, E. M. Wright, S. Tochitsky, and J. V. Moloney, “Control of the filament dynamics of 10 µm pulses via designer pulse trains,” J. Opt. Soc. Am. B 36(10), G33–G39 (2019).
[Crossref]

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

Panchenko, V. Y.

Parmentier, E. M.

E. M. Parmentier and R. A. Greenberg, “Supersonic Flow Aerodynamic Windows for High-Power Lasers,” AIAA J. 11(7), 943–949 (1973).
[Crossref]

Pellegrini, C.

S. Y. Tochitsky, R. Narang, C. V. Filip, P. Musumeci, C. E. Clayton, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, “Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel,” Phys. Rev. Lett. 92(9), 095004 (2004).
[Crossref]

Perevalov, V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Perrin, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Pigeon, J.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13(1), 41–46 (2019).
[Crossref]

Pogorelsky, I.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13(1), 41–46 (2019).
[Crossref]

Pogorelsky, I. V.

Polovtseva, E. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Polyanskiy, M.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13(1), 41–46 (2019).
[Crossref]

Polyanskiy, M. N.

Power, E. P.

Pugžlys, A.

Reutt, J. E.

L.-S. Wang, J. E. Reutt, Y. T. Lee, and D. A. Shirley, “High resolution UV photoelectron spectroscopy of CO+2, COS+ and CS+2 using supersonic molecular beams,” J. Electron Spectrosc. Relat. Phenom. 47, 167–186 (1988).
[Crossref]

Richard, C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Roedig, C.

Rosenzweig, J. B.

S. Y. Tochitsky, R. Narang, C. V. Filip, P. Musumeci, C. E. Clayton, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, “Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel,” Phys. Rev. Lett. 92(9), 095004 (2004).
[Crossref]

Rothman, L. S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Rozhko, M. V.

Schultz, K. D.

Serebryannikov, E. E.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
[Crossref]

Shen, B.

L. Zhang, B. Shen, J. Xu, L. Ji, X. Zhang, W. Wang, X. Zhao, L. Yi, Y. Yu, Y. Shi, T. Xu, and Z. Xu, “High quality electron bunch generation with CO2-laser-plasma interaction,” Phys. Plasmas 22(2), 023101 (2015).
[Crossref]

Shi, Y.

L. Zhang, B. Shen, J. Xu, L. Ji, X. Zhang, W. Wang, X. Zhao, L. Yi, Y. Yu, Y. Shi, T. Xu, and Z. Xu, “High quality electron bunch generation with CO2-laser-plasma interaction,” Phys. Plasmas 22(2), 023101 (2015).
[Crossref]

Shirley, D. A.

L.-S. Wang, J. E. Reutt, Y. T. Lee, and D. A. Shirley, “High resolution UV photoelectron spectroscopy of CO+2, COS+ and CS+2 using supersonic molecular beams,” J. Electron Spectrosc. Relat. Phenom. 47, 167–186 (1988).
[Crossref]

Shumakova, V.

Sidorov-Biryukov, D. A.

Silva, L. O.

D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. A. Fonseca, L. O. Silva, W. B. Mori, and C. Joshi, “Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams,” Nat. Phys. 8(1), 95–99 (2012).
[Crossref]

Sistrunk, E.

Smith, M. A. H.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Starikova, E.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Sung, K.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Tashkun, S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Tate, J.

Tennyson, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Tochitsky, S.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13(1), 41–46 (2019).
[Crossref]

P. Panagiotopoulos, M. Kolesik, S. Tochitsky, S. W. Koch, and J. V. Moloney, “Two-stage filamentation of 10 µm pulses as a broadband infrared backlighter in the atmosphere,” Opt. Lett. 44(12), 3122–3125 (2019).
[Crossref]

P. Panagiotopoulos, M. Kolesik, S. W. Koch, E. M. Wright, S. Tochitsky, and J. V. Moloney, “Control of the filament dynamics of 10 µm pulses via designer pulse trains,” J. Opt. Soc. Am. B 36(10), G33–G39 (2019).
[Crossref]

D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. A. Fonseca, L. O. Silva, W. B. Mori, and C. Joshi, “Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams,” Nat. Phys. 8(1), 95–99 (2012).
[Crossref]

D. Haberberger, S. Tochitsky, and C. Joshi, “Fifteen terawatt picosecond CO2 laser system,” Opt. Express 18(17), 17865–17875 (2010).
[Crossref]

Tochitsky, S. Y.

S. Y. Tochitsky, R. Narang, C. V. Filip, P. Musumeci, C. E. Clayton, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, “Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel,” Phys. Rev. Lett. 92(9), 095004 (2004).
[Crossref]

Toon, G. C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Travers, J. C.

J. C. Travers, T. F. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

Tyuterev, V. G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Voronin, A. A.

Wagner, G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Walsh, T. D. G.

T. D. G. Walsh, J. E. Decker, and S. L. Chin, “Tunnel ionization of simple molecules by an intense CO 2 laser,” J. Phys. B: At., Mol. Opt. Phys. 26(4), L85–L90 (1993).
[Crossref]

Wan, Y.

X. L. Xu, Y. P. Wu, C. J. Zhang, F. Li, Y. Wan, J. F. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi, and W. B. Mori, “Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths,” Phys. Rev. Spec. Top.--Accel. Beams 17(6), 061301 (2014).
[Crossref]

Wang, L.-S.

L.-S. Wang, J. E. Reutt, Y. T. Lee, and D. A. Shirley, “High resolution UV photoelectron spectroscopy of CO+2, COS+ and CS+2 using supersonic molecular beams,” J. Electron Spectrosc. Relat. Phenom. 47, 167–186 (1988).
[Crossref]

Wang, W.

L. Zhang, B. Shen, J. Xu, L. Ji, X. Zhang, W. Wang, X. Zhao, L. Yi, Y. Yu, Y. Shi, T. Xu, and Z. Xu, “High quality electron bunch generation with CO2-laser-plasma interaction,” Phys. Plasmas 22(2), 023101 (2015).
[Crossref]

Weisshaupt, J.

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

Welch, E.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13(1), 41–46 (2019).
[Crossref]

Whalen, P.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

Wheeler, J.

Woerner, M.

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

Wright, E. M.

P. Panagiotopoulos, M. Kolesik, S. W. Koch, E. M. Wright, S. Tochitsky, and J. V. Moloney, “Control of the filament dynamics of 10 µm pulses via designer pulse trains,” J. Opt. Soc. Am. B 36(10), G33–G39 (2019).
[Crossref]

E. M. Wright, S. W. Koch, M. Kolesik, and J. V. Moloney, “Memory effects in the long-wave infrared avalanche ionization of gases: a review of recent progress,” Rep. Prog. Phys. 82(6), 064401 (2019).
[Crossref]

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13(1), 41–46 (2019).
[Crossref]

Wu, Y. P.

X. L. Xu, Y. P. Wu, C. J. Zhang, F. Li, Y. Wan, J. F. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi, and W. B. Mori, “Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths,” Phys. Rev. Spec. Top.--Accel. Beams 17(6), 061301 (2014).
[Crossref]

Xu, J.

L. Zhang, B. Shen, J. Xu, L. Ji, X. Zhang, W. Wang, X. Zhao, L. Yi, Y. Yu, Y. Shi, T. Xu, and Z. Xu, “High quality electron bunch generation with CO2-laser-plasma interaction,” Phys. Plasmas 22(2), 023101 (2015).
[Crossref]

Xu, T.

L. Zhang, B. Shen, J. Xu, L. Ji, X. Zhang, W. Wang, X. Zhao, L. Yi, Y. Yu, Y. Shi, T. Xu, and Z. Xu, “High quality electron bunch generation with CO2-laser-plasma interaction,” Phys. Plasmas 22(2), 023101 (2015).
[Crossref]

Xu, X. L.

X. L. Xu, Y. P. Wu, C. J. Zhang, F. Li, Y. Wan, J. F. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi, and W. B. Mori, “Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths,” Phys. Rev. Spec. Top.--Accel. Beams 17(6), 061301 (2014).
[Crossref]

Xu, Z.

L. Zhang, B. Shen, J. Xu, L. Ji, X. Zhang, W. Wang, X. Zhao, L. Yi, Y. Yu, Y. Shi, T. Xu, and Z. Xu, “High quality electron bunch generation with CO2-laser-plasma interaction,” Phys. Plasmas 22(2), 023101 (2015).
[Crossref]

Yi, L.

L. Zhang, B. Shen, J. Xu, L. Ji, X. Zhang, W. Wang, X. Zhao, L. Yi, Y. Yu, Y. Shi, T. Xu, and Z. Xu, “High quality electron bunch generation with CO2-laser-plasma interaction,” Phys. Plasmas 22(2), 023101 (2015).
[Crossref]

Yoder, R. B.

S. Y. Tochitsky, R. Narang, C. V. Filip, P. Musumeci, C. E. Clayton, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, “Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel,” Phys. Rev. Lett. 92(9), 095004 (2004).
[Crossref]

Yu, P.

X. L. Xu, Y. P. Wu, C. J. Zhang, F. Li, Y. Wan, J. F. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi, and W. B. Mori, “Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths,” Phys. Rev. Spec. Top.--Accel. Beams 17(6), 061301 (2014).
[Crossref]

Yu, Y.

L. Zhang, B. Shen, J. Xu, L. Ji, X. Zhang, W. Wang, X. Zhao, L. Yi, Y. Yu, Y. Shi, T. Xu, and Z. Xu, “High quality electron bunch generation with CO2-laser-plasma interaction,” Phys. Plasmas 22(2), 023101 (2015).
[Crossref]

Zhang, C. J.

X. L. Xu, Y. P. Wu, C. J. Zhang, F. Li, Y. Wan, J. F. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi, and W. B. Mori, “Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths,” Phys. Rev. Spec. Top.--Accel. Beams 17(6), 061301 (2014).
[Crossref]

Zhang, L.

L. Zhang, B. Shen, J. Xu, L. Ji, X. Zhang, W. Wang, X. Zhao, L. Yi, Y. Yu, Y. Shi, T. Xu, and Z. Xu, “High quality electron bunch generation with CO2-laser-plasma interaction,” Phys. Plasmas 22(2), 023101 (2015).
[Crossref]

Zhang, X.

L. Zhang, B. Shen, J. Xu, L. Ji, X. Zhang, W. Wang, X. Zhao, L. Yi, Y. Yu, Y. Shi, T. Xu, and Z. Xu, “High quality electron bunch generation with CO2-laser-plasma interaction,” Phys. Plasmas 22(2), 023101 (2015).
[Crossref]

Zhao, X.

L. Zhang, B. Shen, J. Xu, L. Ji, X. Zhang, W. Wang, X. Zhao, L. Yi, Y. Yu, Y. Shi, T. Xu, and Z. Xu, “High quality electron bunch generation with CO2-laser-plasma interaction,” Phys. Plasmas 22(2), 023101 (2015).
[Crossref]

Zheltikov, A. M.

AIAA J. (1)

E. M. Parmentier and R. A. Greenberg, “Supersonic Flow Aerodynamic Windows for High-Power Lasers,” AIAA J. 11(7), 943–949 (1973).
[Crossref]

Appl. Phys. B (1)

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Freed, L. Bradley, and R. O. Donnell, “Absolute frequencies of lasing transitions in seven CO2isotopic species,” IEEE J. Quantum Electron. 16(11), 1195–1206 (1980).
[Crossref]

J. Electron Spectrosc. Relat. Phenom. (1)

L.-S. Wang, J. E. Reutt, Y. T. Lee, and D. A. Shirley, “High resolution UV photoelectron spectroscopy of CO+2, COS+ and CS+2 using supersonic molecular beams,” J. Electron Spectrosc. Relat. Phenom. 47, 167–186 (1988).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B: At., Mol. Opt. Phys. (1)

T. D. G. Walsh, J. E. Decker, and S. L. Chin, “Tunnel ionization of simple molecules by an intense CO 2 laser,” J. Phys. B: At., Mol. Opt. Phys. 26(4), L85–L90 (1993).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Nat. Photonics (4)

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

J. C. Travers, T. F. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13(1), 41–46 (2019).
[Crossref]

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

Nat. Phys. (1)

D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. A. Fonseca, L. O. Silva, W. B. Mori, and C. Joshi, “Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams,” Nat. Phys. 8(1), 95–99 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Optica (2)

OSA Continuum (1)

Phys. Plasmas (1)

L. Zhang, B. Shen, J. Xu, L. Ji, X. Zhang, W. Wang, X. Zhao, L. Yi, Y. Yu, Y. Shi, T. Xu, and Z. Xu, “High quality electron bunch generation with CO2-laser-plasma interaction,” Phys. Plasmas 22(2), 023101 (2015).
[Crossref]

Phys. Rev. Accel. Beams (1)

I. V. Pogorelsky, M. N. Polyanskiy, and W. D. Kimura, “Mid-infrared lasers for energy frontier plasma accelerators,” Phys. Rev. Accel. Beams 19(9), 091001 (2016).
[Crossref]

Phys. Rev. E (1)

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell's to unidirectional equations,” Phys. Rev. E 70(3), 036604 (2004).
[Crossref]

Phys. Rev. Lett. (2)

S. Y. Tochitsky, R. Narang, C. V. Filip, P. Musumeci, C. E. Clayton, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, “Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel,” Phys. Rev. Lett. 92(9), 095004 (2004).
[Crossref]

R. R. Alfano and S. L. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
[Crossref]

Phys. Rev. Spec. Top.--Accel. Beams (1)

X. L. Xu, Y. P. Wu, C. J. Zhang, F. Li, Y. Wan, J. F. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi, and W. B. Mori, “Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths,” Phys. Rev. Spec. Top.--Accel. Beams 17(6), 061301 (2014).
[Crossref]

Rep. Prog. Phys. (1)

E. M. Wright, S. W. Koch, M. Kolesik, and J. V. Moloney, “Memory effects in the long-wave infrared avalanche ionization of gases: a review of recent progress,” Rep. Prog. Phys. 82(6), 064401 (2019).
[Crossref]

Rev. Mod. Phys. (1)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[Crossref]

Supplementary Material (4)

NameDescription
» Visualization 1       On-axis electric field as a function of propagation distance z. Input pulse duration 3.5ps.
» Visualization 2       Radial temporal intensity as a function of propagation distance z. Input pulse duration 3.5ps.
» Visualization 3       On-axis electric field as a function of propagation distance z. Input pulse duration 1.1ps.
» Visualization 4       Radial temporal intensity as a function of propagation distance z. Input pulse duration 1.1ps.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Blue curve: real (a) and imaginary (b) linear susceptibility of 13CO2. Black curve: input pulse spectrum of a 10.3 µm Fourier limited 3.5 ps (FWHM) laser pulse. Inset: zoom-in of imaginary χ of 12CO2 (red curve) and 13CO2 (blue curve) gases. In this work only 13CO2 was used.
Fig. 2.
Fig. 2. Propagation dynamics of the 3.5 ps – 4.1 J – 1 cm – 10.3 µm collimated wavepacket in 13CO2 gas. (a) Peak intensity (black curve) and peak plasma density (rad dashed curve), (b) beam waist at FWHM diameter calculated on intensity (black curve) and fluence (blue dashed curve).
Fig. 3.
Fig. 3. (a) On-axis pulse duration at FHWM. Blue diamond (z=6 m), red square (z=6.6 m) and black star (z=10 m) denote the end points of each of the three propagation stages, and are potential gas cell extraction points. (b), (c) On axis electric field and radial-temporal intensity distribution at z = 6 m. (d), (e) at z = 6.6 m, (f), (g) at z = 10 m. Energy content: (c), (e) ∼2.2 J, (g) ∼1.8 J. Movies of (b) - (g) as a function of z can be found in the supplementary material (Visualization 1, Visualization 2). (h) Pulse spectrum at various positions along z.
Fig. 4.
Fig. 4. Propagation dynamics of the 1.1 ps – 1.38 J – 1 cm – 10.3 µm collimated wavepacket in 13CO2. (a) Peak intensity (black curve) and peak plasma density (rad dashed curve) vs z. Inset: Spatio-temporal intensity at z = 5 m. Energy contained in the spatio-temporal box is 0.8J (58% of starting energy), corresponding to 2.7 TW. (b) On-axis electric field at z = 0 m (red curve) and z = 5 m (black curve). (c) Pulse duration at FHWM as a function of radius and z. Movies of the spatio-temporal intensity and on-axis E-field vs z can be found in the supplementary material (Visualization 3, Visualization 4).

Metrics