M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109(3), 033601 (2012).
[Crossref]
M.-A. T. Vu, T. Adalı, D. Ba, G. Buzsáki, D. Carlson, K. Heller, C. Liston, C. Rudin, V. S. Sohal, A. S. Widge, H. S. Mayberg, G. Sapiro, and K. Dzirasa, “A Shared Vision for Machine Learning in Neuroscience,” J. Neurosci. 38(7), 1601–1607 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
M.-A. T. Vu, T. Adalı, D. Ba, G. Buzsáki, D. Carlson, K. Heller, C. Liston, C. Rudin, V. S. Sohal, A. S. Widge, H. S. Mayberg, G. Sapiro, and K. Dzirasa, “A Shared Vision for Machine Learning in Neuroscience,” J. Neurosci. 38(7), 1601–1607 (2018).
[Crossref]
A. Karpatne, I. Ebert-Uphoff, S. Ravela, H. A. Babaie, and V. Kumar, “Machine Learning for the Geosciences: Challenges and Opportunities,” IEEE Trans. Knowl. Data Eng. 31(8), 1544–1554 (2019).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled Images from Four-Wave Mixing,” Science 321(5888), 544–547 (2008).
[Crossref]
C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32(2), 178–180 (2007).
[Crossref]
A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109(3), 033601 (2012).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
A. D. Tranter, H. J. Slatyer, M. R. Hush, A. C. Leung, J. L. Everett, K. V. Paul, P. Vernaz-Gris, P. K. Lam, B. C. Buchler, and G. T. Campbell, “Multiparameter optimisation of a magneto-optical trap using deep learning,” Nat. Commun. 9(1), 4360 (2018).
[Crossref]
K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning for molecular and materials science,” Nature 559(7715), 547–555 (2018).
[Crossref]
M.-A. T. Vu, T. Adalı, D. Ba, G. Buzsáki, D. Carlson, K. Heller, C. Liston, C. Rudin, V. S. Sohal, A. S. Widge, H. S. Mayberg, G. Sapiro, and K. Dzirasa, “A Shared Vision for Machine Learning in Neuroscience,” J. Neurosci. 38(7), 1601–1607 (2018).
[Crossref]
W. Diao, C. Cai, W. Yang, X. Song, and C. Duan, “Theoretical Aspects of Continuous Variables Quantum Teleportation Based on Phase-Sensitive Four-Wave Mixing,” Int. J. Theor. Phys. 58(1), 323–331 (2019).
[Crossref]
Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91(1), 013843 (2015).
[Crossref]
R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3(2), 103–106 (2009).
[Crossref]
A. D. Tranter, H. J. Slatyer, M. R. Hush, A. C. Leung, J. L. Everett, K. V. Paul, P. Vernaz-Gris, P. K. Lam, B. C. Buchler, and G. T. Campbell, “Multiparameter optimisation of a magneto-optical trap using deep learning,” Nat. Commun. 9(1), 4360 (2018).
[Crossref]
L. Cao, J. Du, J. Feng, Z. Qin, A. M. Marino, M. I. Kolobov, and J. Jing, “Experimental observation of quantum correlations in four-wave mixing with a conical pump,” Opt. Lett. 42(7), 1201–1204 (2017).
[Crossref]
Z. Qin, L. Cao, and J. Jing, “Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes,” Appl. Phys. Lett. 106(21), 211104 (2015).
[Crossref]
Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]
M.-A. T. Vu, T. Adalı, D. Ba, G. Buzsáki, D. Carlson, K. Heller, C. Liston, C. Rudin, V. S. Sohal, A. S. Widge, H. S. Mayberg, G. Sapiro, and K. Dzirasa, “A Shared Vision for Machine Learning in Neuroscience,” J. Neurosci. 38(7), 1601–1607 (2018).
[Crossref]
G. R. Steinbrecher, J. P. Olson, D. Englund, and J. Carolan, “Quantum optical neural networks,” npj Quantum Inf. 5(1), 60 (2019).
[Crossref]
K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning for molecular and materials science,” Nature 559(7715), 547–555 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
Y. Xu, J. Du, L. Dai, and C. Lee, “A Regression Approach to Speech Enhancement Based on Deep Neural Networks,” IEEE/ACM Trans. Audio Speech Lang. Process. 23(1), 7–19 (2015).
[Crossref]
O. Danaci, C. Rios, and R. T. Glasser, “All-optical mode conversion via spatially multimode four-wave mixing,” New J. Phys. 18(7), 073032 (2016).
[Crossref]
J. D. Swaim, E. M. Knutson, O. Danaci, and R. T. Glasser, “Multi-mode four-wave mixing with a spatially-structured pump,” arXiv:1802.03412 [physics, physics:quant-ph] (2018).
K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning for molecular and materials science,” Nature 559(7715), 547–555 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
J. Lv, Z. Na, X. Liu, and Z. Deng, “Machine Learning and Its Applications in Wireless Communications,” in Communications, Signal Processing, and Systems, Q. Liang, J. Mu, M. Jia, W. Wang, X. Feng, and B. Zhang, eds. (Springer, Singapore, 2019), Lecture Notes in Electrical Engineering, pp. 2429–2436.
R. C. Deo, “Machine Learning in Medicine,” Circulation 132(20), 1920–1930 (2015).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
W. Diao, C. Cai, W. Yang, X. Song, and C. Duan, “Theoretical Aspects of Continuous Variables Quantum Teleportation Based on Phase-Sensitive Four-Wave Mixing,” Int. J. Theor. Phys. 58(1), 323–331 (2019).
[Crossref]
L. Cao, J. Du, J. Feng, Z. Qin, A. M. Marino, M. I. Kolobov, and J. Jing, “Experimental observation of quantum correlations in four-wave mixing with a conical pump,” Opt. Lett. 42(7), 1201–1204 (2017).
[Crossref]
Y. Xu, J. Du, L. Dai, and C. Lee, “A Regression Approach to Speech Enhancement Based on Deep Neural Networks,” IEEE/ACM Trans. Audio Speech Lang. Process. 23(1), 7–19 (2015).
[Crossref]
W. Diao, C. Cai, W. Yang, X. Song, and C. Duan, “Theoretical Aspects of Continuous Variables Quantum Teleportation Based on Phase-Sensitive Four-Wave Mixing,” Int. J. Theor. Phys. 58(1), 323–331 (2019).
[Crossref]
M.-A. T. Vu, T. Adalı, D. Ba, G. Buzsáki, D. Carlson, K. Heller, C. Liston, C. Rudin, V. S. Sohal, A. S. Widge, H. S. Mayberg, G. Sapiro, and K. Dzirasa, “A Shared Vision for Machine Learning in Neuroscience,” J. Neurosci. 38(7), 1601–1607 (2018).
[Crossref]
A. Karpatne, I. Ebert-Uphoff, S. Ravela, H. A. Babaie, and V. Kumar, “Machine Learning for the Geosciences: Challenges and Opportunities,” IEEE Trans. Knowl. Data Eng. 31(8), 1544–1554 (2019).
[Crossref]
G. R. Steinbrecher, J. P. Olson, D. Englund, and J. Carolan, “Quantum optical neural networks,” npj Quantum Inf. 5(1), 60 (2019).
[Crossref]
A. D. Tranter, H. J. Slatyer, M. R. Hush, A. C. Leung, J. L. Everett, K. V. Paul, P. Vernaz-Gris, P. K. Lam, B. C. Buchler, and G. T. Campbell, “Multiparameter optimisation of a magneto-optical trap using deep learning,” Nat. Commun. 9(1), 4360 (2018).
[Crossref]
H. Wang, C. Fabre, and J. Jing, “Single-step fabrication of scalable multimode quantum resources using four-wave mixing with a spatially structured pump,” Phys. Rev. A 95(5), 051802 (2017).
[Crossref]
L. Cao, J. Du, J. Feng, Z. Qin, A. M. Marino, M. I. Kolobov, and J. Jing, “Experimental observation of quantum correlations in four-wave mixing with a conical pump,” Opt. Lett. 42(7), 1201–1204 (2017).
[Crossref]
Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91(1), 013843 (2015).
[Crossref]
Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91(1), 013843 (2015).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
S. Lohani, E. M. Knutson, M. O’Donnell, S. D. Huver, and R. T. Glasser, “On the use of deep neural networks in optical communications,” Appl. Opt. 57(15), 4180–4190 (2018).
[Crossref]
S. Lohani and R. T. Glasser, “Turbulence correction with artificial neural networks,” Opt. Lett. 43(11), 2611–2614 (2018).
[Crossref]
E. M. Knutson, J. D. Swaim, S. Wyllie, and R. T. Glasser, “Optimal mode configuration for multiple phase-matched four-wave-mixing processes,” Phys. Rev. A 98(1), 013828 (2018).
[Crossref]
O. Danaci, C. Rios, and R. T. Glasser, “All-optical mode conversion via spatially multimode four-wave mixing,” New J. Phys. 18(7), 073032 (2016).
[Crossref]
J. D. Swaim, E. M. Knutson, O. Danaci, and R. T. Glasser, “Multi-mode four-wave mixing with a spatially-structured pump,” arXiv:1802.03412 [physics, physics:quant-ph] (2018).
S. Lohani and R. T. Glasser, “Robust free space oam communications with unsupervised machine learning,” in Frontiers in Optics (Optical Society of America, 2019), pp. FTu5B–3.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
C. Hegde and K. E. Gray, “Use of machine learning and data analytics to increase drilling efficiency for nearby wells,” J. Nat. Gas Sci. Eng. 40, 327–335 (2017).
[Crossref]
M. M. Lotfinejad, R. Hafezi, M. Khanali, S. S. Hosseini, M. Mehrpooya, and S. Shamshirband, “A Comparative Assessment of Predicting Daily Solar Radiation Using Bat Neural Network (BNN), Generalized Regression Neural Network (GRNN), and Neuro-Fuzzy (NF) System: A Case Study,” Energies 11(5), 1188 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
C. Hegde and K. E. Gray, “Use of machine learning and data analytics to increase drilling efficiency for nearby wells,” J. Nat. Gas Sci. Eng. 40, 327–335 (2017).
[Crossref]
M.-A. T. Vu, T. Adalı, D. Ba, G. Buzsáki, D. Carlson, K. Heller, C. Liston, C. Rudin, V. S. Sohal, A. S. Widge, H. S. Mayberg, G. Sapiro, and K. Dzirasa, “A Shared Vision for Machine Learning in Neuroscience,” J. Neurosci. 38(7), 1601–1607 (2018).
[Crossref]
M. M. Lotfinejad, R. Hafezi, M. Khanali, S. S. Hosseini, M. Mehrpooya, and S. Shamshirband, “A Comparative Assessment of Predicting Daily Solar Radiation Using Bat Neural Network (BNN), Generalized Regression Neural Network (GRNN), and Neuro-Fuzzy (NF) System: A Case Study,” Energies 11(5), 1188 (2018).
[Crossref]
R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3(2), 103–106 (2009).
[Crossref]
H. Ye, Q. Ren, X. Hu, T. Lin, L. Shi, G. Zhang, and X. Li, “Modeling energy-related CO2 emissions from office buildings using general regression neural network,” Resour. Conserv. Recycl. 129, 168–174 (2018).
[Crossref]
W. Huang, Y. Mao, C. Xie, and D. Huang, “Quantum hacking of free-space continuous-variable quantum key distribution by using a machine-learning technique,” Phys. Rev. A 100(1), 012316 (2019).
[Crossref]
W. Huang, Y. Mao, C. Xie, and D. Huang, “Quantum hacking of free-space continuous-variable quantum key distribution by using a machine-learning technique,” Phys. Rev. A 100(1), 012316 (2019).
[Crossref]
F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5(1), 3049 (2014).
[Crossref]
A. D. Tranter, H. J. Slatyer, M. R. Hush, A. C. Leung, J. L. Everett, K. V. Paul, P. Vernaz-Gris, P. K. Lam, B. C. Buchler, and G. T. Campbell, “Multiparameter optimisation of a magneto-optical trap using deep learning,” Nat. Commun. 9(1), 4360 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning for molecular and materials science,” Nature 559(7715), 547–555 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
S. Liu, H. Wang, and J. Jing, “Two-beam pumped cascaded four-wave-mixing process for producing multiple-beam quantum correlation,” Phys. Rev. A 97(4), 043846 (2018).
[Crossref]
L. Wang, S. Lv, and J. Jing, “Quantum steering in cascaded four-wave mixing processes,” Opt. Express 25(15), 17457 (2017).
[Crossref]
L. Cao, J. Du, J. Feng, Z. Qin, A. M. Marino, M. I. Kolobov, and J. Jing, “Experimental observation of quantum correlations in four-wave mixing with a conical pump,” Opt. Lett. 42(7), 1201–1204 (2017).
[Crossref]
H. Wang, C. Fabre, and J. Jing, “Single-step fabrication of scalable multimode quantum resources using four-wave mixing with a spatially structured pump,” Phys. Rev. A 95(5), 051802 (2017).
[Crossref]
Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91(1), 013843 (2015).
[Crossref]
Z. Qin, L. Cao, and J. Jing, “Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes,” Appl. Phys. Lett. 106(21), 211104 (2015).
[Crossref]
F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5(1), 3049 (2014).
[Crossref]
Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
A. Karpatne, I. Ebert-Uphoff, S. Ravela, H. A. Babaie, and V. Kumar, “Machine Learning for the Geosciences: Challenges and Opportunities,” IEEE Trans. Knowl. Data Eng. 31(8), 1544–1554 (2019).
[Crossref]
M. M. Lotfinejad, R. Hafezi, M. Khanali, S. S. Hosseini, M. Mehrpooya, and S. Shamshirband, “A Comparative Assessment of Predicting Daily Solar Radiation Using Bat Neural Network (BNN), Generalized Regression Neural Network (GRNN), and Neuro-Fuzzy (NF) System: A Case Study,” Energies 11(5), 1188 (2018).
[Crossref]
E. M. Knutson, J. D. Swaim, S. Wyllie, and R. T. Glasser, “Optimal mode configuration for multiple phase-matched four-wave-mixing processes,” Phys. Rev. A 98(1), 013828 (2018).
[Crossref]
S. Lohani, E. M. Knutson, M. O’Donnell, S. D. Huver, and R. T. Glasser, “On the use of deep neural networks in optical communications,” Appl. Opt. 57(15), 4180–4190 (2018).
[Crossref]
J. D. Swaim, E. M. Knutson, O. Danaci, and R. T. Glasser, “Multi-mode four-wave mixing with a spatially-structured pump,” arXiv:1802.03412 [physics, physics:quant-ph] (2018).
L. Cao, J. Du, J. Feng, Z. Qin, A. M. Marino, M. I. Kolobov, and J. Jing, “Experimental observation of quantum correlations in four-wave mixing with a conical pump,” Opt. Lett. 42(7), 1201–1204 (2017).
[Crossref]
J. Shi, G. Patera, M. I. Kolobov, and S. Han, “Quantum temporal imaging by four-wave mixing,” Opt. Lett. 42(16), 3121–3124 (2017).
[Crossref]
F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5(1), 3049 (2014).
[Crossref]
B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light: Sci. Appl. 7(1), 69 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
A. Karpatne, I. Ebert-Uphoff, S. Ravela, H. A. Babaie, and V. Kumar, “Machine Learning for the Geosciences: Challenges and Opportunities,” IEEE Trans. Knowl. Data Eng. 31(8), 1544–1554 (2019).
[Crossref]
A. D. Tranter, H. J. Slatyer, M. R. Hush, A. C. Leung, J. L. Everett, K. V. Paul, P. Vernaz-Gris, P. K. Lam, B. C. Buchler, and G. T. Campbell, “Multiparameter optimisation of a magneto-optical trap using deep learning,” Nat. Commun. 9(1), 4360 (2018).
[Crossref]
Y. Xu, J. Du, L. Dai, and C. Lee, “A Regression Approach to Speech Enhancement Based on Deep Neural Networks,” IEEE/ACM Trans. Audio Speech Lang. Process. 23(1), 7–19 (2015).
[Crossref]
N. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor,” Opt. Express 19(22), 21358 (2011).
[Crossref]
V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled Images from Four-Wave Mixing,” Science 321(5888), 544–547 (2008).
[Crossref]
C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32(2), 178–180 (2007).
[Crossref]
A. D. Tranter, H. J. Slatyer, M. R. Hush, A. C. Leung, J. L. Everett, K. V. Paul, P. Vernaz-Gris, P. K. Lam, B. C. Buchler, and G. T. Campbell, “Multiparameter optimisation of a magneto-optical trap using deep learning,” Nat. Commun. 9(1), 4360 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
H. Ye, Q. Ren, X. Hu, T. Lin, L. Shi, G. Zhang, and X. Li, “Modeling energy-related CO2 emissions from office buildings using general regression neural network,” Resour. Conserv. Recycl. 129, 168–174 (2018).
[Crossref]
L. K. Tan, Y. M. Liew, E. Lim, and R. A. McLaughlin, “Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences,” Med. Image Anal. 39, 78–86 (2017).
[Crossref]
L. K. Tan, Y. M. Liew, E. Lim, and R. A. McLaughlin, “Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences,” Med. Image Anal. 39, 78–86 (2017).
[Crossref]
H. Ye, Q. Ren, X. Hu, T. Lin, L. Shi, G. Zhang, and X. Li, “Modeling energy-related CO2 emissions from office buildings using general regression neural network,” Resour. Conserv. Recycl. 129, 168–174 (2018).
[Crossref]
M.-A. T. Vu, T. Adalı, D. Ba, G. Buzsáki, D. Carlson, K. Heller, C. Liston, C. Rudin, V. S. Sohal, A. S. Widge, H. S. Mayberg, G. Sapiro, and K. Dzirasa, “A Shared Vision for Machine Learning in Neuroscience,” J. Neurosci. 38(7), 1601–1607 (2018).
[Crossref]
F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5(1), 3049 (2014).
[Crossref]
S. Liu, H. Wang, and J. Jing, “Two-beam pumped cascaded four-wave-mixing process for producing multiple-beam quantum correlation,” Phys. Rev. A 97(4), 043846 (2018).
[Crossref]
J. Lv, Z. Na, X. Liu, and Z. Deng, “Machine Learning and Its Applications in Wireless Communications,” in Communications, Signal Processing, and Systems, Q. Liang, J. Mu, M. Jia, W. Wang, X. Feng, and B. Zhang, eds. (Springer, Singapore, 2019), Lecture Notes in Electrical Engineering, pp. 2429–2436.
S. Lohani and R. T. Glasser, “Turbulence correction with artificial neural networks,” Opt. Lett. 43(11), 2611–2614 (2018).
[Crossref]
S. Lohani, E. M. Knutson, M. O’Donnell, S. D. Huver, and R. T. Glasser, “On the use of deep neural networks in optical communications,” Appl. Opt. 57(15), 4180–4190 (2018).
[Crossref]
S. Lohani and R. T. Glasser, “Robust free space oam communications with unsupervised machine learning,” in Frontiers in Optics (Optical Society of America, 2019), pp. FTu5B–3.
B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light: Sci. Appl. 7(1), 69 (2018).
[Crossref]
M. M. Lotfinejad, R. Hafezi, M. Khanali, S. S. Hosseini, M. Mehrpooya, and S. Shamshirband, “A Comparative Assessment of Predicting Daily Solar Radiation Using Bat Neural Network (BNN), Generalized Regression Neural Network (GRNN), and Neuro-Fuzzy (NF) System: A Case Study,” Energies 11(5), 1188 (2018).
[Crossref]
J. Lv, Z. Na, X. Liu, and Z. Deng, “Machine Learning and Its Applications in Wireless Communications,” in Communications, Signal Processing, and Systems, Q. Liang, J. Mu, M. Jia, W. Wang, X. Feng, and B. Zhang, eds. (Springer, Singapore, 2019), Lecture Notes in Electrical Engineering, pp. 2429–2436.
A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109(3), 033601 (2012).
[Crossref]
A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation,” Phys. Rev. Lett. 109(3), 033601 (2012).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
W. Huang, Y. Mao, C. Xie, and D. Huang, “Quantum hacking of free-space continuous-variable quantum key distribution by using a machine-learning technique,” Phys. Rev. A 100(1), 012316 (2019).
[Crossref]
L. Cao, J. Du, J. Feng, Z. Qin, A. M. Marino, M. I. Kolobov, and J. Jing, “Experimental observation of quantum correlations in four-wave mixing with a conical pump,” Opt. Lett. 42(7), 1201–1204 (2017).
[Crossref]
Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]
N. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor,” Opt. Express 19(22), 21358 (2011).
[Crossref]
V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled Images from Four-Wave Mixing,” Science 321(5888), 544–547 (2008).
[Crossref]
M.-A. T. Vu, T. Adalı, D. Ba, G. Buzsáki, D. Carlson, K. Heller, C. Liston, C. Rudin, V. S. Sohal, A. S. Widge, H. S. Mayberg, G. Sapiro, and K. Dzirasa, “A Shared Vision for Machine Learning in Neuroscience,” J. Neurosci. 38(7), 1601–1607 (2018).
[Crossref]
L. K. Tan, Y. M. Liew, E. Lim, and R. A. McLaughlin, “Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences,” Med. Image Anal. 39, 78–86 (2017).
[Crossref]
M. M. Lotfinejad, R. Hafezi, M. Khanali, S. S. Hosseini, M. Mehrpooya, and S. Shamshirband, “A Comparative Assessment of Predicting Daily Solar Radiation Using Bat Neural Network (BNN), Generalized Regression Neural Network (GRNN), and Neuro-Fuzzy (NF) System: A Case Study,” Energies 11(5), 1188 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light: Sci. Appl. 7(1), 69 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
J. Lv, Z. Na, X. Liu, and Z. Deng, “Machine Learning and Its Applications in Wireless Communications,” in Communications, Signal Processing, and Systems, Q. Liang, J. Mu, M. Jia, W. Wang, X. Feng, and B. Zhang, eds. (Springer, Singapore, 2019), Lecture Notes in Electrical Engineering, pp. 2429–2436.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
G. R. Steinbrecher, J. P. Olson, D. Englund, and J. Carolan, “Quantum optical neural networks,” npj Quantum Inf. 5(1), 60 (2019).
[Crossref]
F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5(1), 3049 (2014).
[Crossref]
A. D. Tranter, H. J. Slatyer, M. R. Hush, A. C. Leung, J. L. Everett, K. V. Paul, P. Vernaz-Gris, P. K. Lam, B. C. Buchler, and G. T. Campbell, “Multiparameter optimisation of a magneto-optical trap using deep learning,” Nat. Commun. 9(1), 4360 (2018).
[Crossref]
V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled Images from Four-Wave Mixing,” Science 321(5888), 544–547 (2008).
[Crossref]
B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light: Sci. Appl. 7(1), 69 (2018).
[Crossref]
L. Cao, J. Du, J. Feng, Z. Qin, A. M. Marino, M. I. Kolobov, and J. Jing, “Experimental observation of quantum correlations in four-wave mixing with a conical pump,” Opt. Lett. 42(7), 1201–1204 (2017).
[Crossref]
Z. Qin, L. Cao, and J. Jing, “Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes,” Appl. Phys. Lett. 106(21), 211104 (2015).
[Crossref]
Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]
B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light: Sci. Appl. 7(1), 69 (2018).
[Crossref]
A. Karpatne, I. Ebert-Uphoff, S. Ravela, H. A. Babaie, and V. Kumar, “Machine Learning for the Geosciences: Challenges and Opportunities,” IEEE Trans. Knowl. Data Eng. 31(8), 1544–1554 (2019).
[Crossref]
H. Ye, Q. Ren, X. Hu, T. Lin, L. Shi, G. Zhang, and X. Li, “Modeling energy-related CO2 emissions from office buildings using general regression neural network,” Resour. Conserv. Recycl. 129, 168–174 (2018).
[Crossref]
O. Danaci, C. Rios, and R. T. Glasser, “All-optical mode conversion via spatially multimode four-wave mixing,” New J. Phys. 18(7), 073032 (2016).
[Crossref]
M.-A. T. Vu, T. Adalı, D. Ba, G. Buzsáki, D. Carlson, K. Heller, C. Liston, C. Rudin, V. S. Sohal, A. S. Widge, H. S. Mayberg, G. Sapiro, and K. Dzirasa, “A Shared Vision for Machine Learning in Neuroscience,” J. Neurosci. 38(7), 1601–1607 (2018).
[Crossref]
M.-A. T. Vu, T. Adalı, D. Ba, G. Buzsáki, D. Carlson, K. Heller, C. Liston, C. Rudin, V. S. Sohal, A. S. Widge, H. S. Mayberg, G. Sapiro, and K. Dzirasa, “A Shared Vision for Machine Learning in Neuroscience,” J. Neurosci. 38(7), 1601–1607 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
M. M. Lotfinejad, R. Hafezi, M. Khanali, S. S. Hosseini, M. Mehrpooya, and S. Shamshirband, “A Comparative Assessment of Predicting Daily Solar Radiation Using Bat Neural Network (BNN), Generalized Regression Neural Network (GRNN), and Neuro-Fuzzy (NF) System: A Case Study,” Energies 11(5), 1188 (2018).
[Crossref]
H. Ye, Q. Ren, X. Hu, T. Lin, L. Shi, G. Zhang, and X. Li, “Modeling energy-related CO2 emissions from office buildings using general regression neural network,” Resour. Conserv. Recycl. 129, 168–174 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
A. D. Tranter, H. J. Slatyer, M. R. Hush, A. C. Leung, J. L. Everett, K. V. Paul, P. Vernaz-Gris, P. K. Lam, B. C. Buchler, and G. T. Campbell, “Multiparameter optimisation of a magneto-optical trap using deep learning,” Nat. Commun. 9(1), 4360 (2018).
[Crossref]
M.-A. T. Vu, T. Adalı, D. Ba, G. Buzsáki, D. Carlson, K. Heller, C. Liston, C. Rudin, V. S. Sohal, A. S. Widge, H. S. Mayberg, G. Sapiro, and K. Dzirasa, “A Shared Vision for Machine Learning in Neuroscience,” J. Neurosci. 38(7), 1601–1607 (2018).
[Crossref]
W. Diao, C. Cai, W. Yang, X. Song, and C. Duan, “Theoretical Aspects of Continuous Variables Quantum Teleportation Based on Phase-Sensitive Four-Wave Mixing,” Int. J. Theor. Phys. 58(1), 323–331 (2019).
[Crossref]
G. R. Steinbrecher, J. P. Olson, D. Englund, and J. Carolan, “Quantum optical neural networks,” npj Quantum Inf. 5(1), 60 (2019).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
E. M. Knutson, J. D. Swaim, S. Wyllie, and R. T. Glasser, “Optimal mode configuration for multiple phase-matched four-wave-mixing processes,” Phys. Rev. A 98(1), 013828 (2018).
[Crossref]
J. D. Swaim, E. M. Knutson, O. Danaci, and R. T. Glasser, “Multi-mode four-wave mixing with a spatially-structured pump,” arXiv:1802.03412 [physics, physics:quant-ph] (2018).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
L. K. Tan, Y. M. Liew, E. Lim, and R. A. McLaughlin, “Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences,” Med. Image Anal. 39, 78–86 (2017).
[Crossref]
C. Thiel, “Four-wave mixing and its applications,” Fac. Washington, Wash. DC (2008).
A. D. Tranter, H. J. Slatyer, M. R. Hush, A. C. Leung, J. L. Everett, K. V. Paul, P. Vernaz-Gris, P. K. Lam, B. C. Buchler, and G. T. Campbell, “Multiparameter optimisation of a magneto-optical trap using deep learning,” Nat. Commun. 9(1), 4360 (2018).
[Crossref]
Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91(1), 013843 (2015).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
M. Turnbull, “Multi-spatial-mode quadrature squeezing from four-wave mixing in a hot atomic vapour,” d_ph, University of Birmingham (2014).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
A. D. Tranter, H. J. Slatyer, M. R. Hush, A. C. Leung, J. L. Everett, K. V. Paul, P. Vernaz-Gris, P. K. Lam, B. C. Buchler, and G. T. Campbell, “Multiparameter optimisation of a magneto-optical trap using deep learning,” Nat. Commun. 9(1), 4360 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
M.-A. T. Vu, T. Adalı, D. Ba, G. Buzsáki, D. Carlson, K. Heller, C. Liston, C. Rudin, V. S. Sohal, A. S. Widge, H. S. Mayberg, G. Sapiro, and K. Dzirasa, “A Shared Vision for Machine Learning in Neuroscience,” J. Neurosci. 38(7), 1601–1607 (2018).
[Crossref]
R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3(2), 103–106 (2009).
[Crossref]
K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning for molecular and materials science,” Nature 559(7715), 547–555 (2018).
[Crossref]
S. Liu, H. Wang, and J. Jing, “Two-beam pumped cascaded four-wave-mixing process for producing multiple-beam quantum correlation,” Phys. Rev. A 97(4), 043846 (2018).
[Crossref]
H. Wang, C. Fabre, and J. Jing, “Single-step fabrication of scalable multimode quantum resources using four-wave mixing with a spatially structured pump,” Phys. Rev. A 95(5), 051802 (2017).
[Crossref]
Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91(1), 013843 (2015).
[Crossref]
Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
M.-A. T. Vu, T. Adalı, D. Ba, G. Buzsáki, D. Carlson, K. Heller, C. Liston, C. Rudin, V. S. Sohal, A. S. Widge, H. S. Mayberg, G. Sapiro, and K. Dzirasa, “A Shared Vision for Machine Learning in Neuroscience,” J. Neurosci. 38(7), 1601–1607 (2018).
[Crossref]
E. M. Knutson, J. D. Swaim, S. Wyllie, and R. T. Glasser, “Optimal mode configuration for multiple phase-matched four-wave-mixing processes,” Phys. Rev. A 98(1), 013828 (2018).
[Crossref]
W. Huang, Y. Mao, C. Xie, and D. Huang, “Quantum hacking of free-space continuous-variable quantum key distribution by using a machine-learning technique,” Phys. Rev. A 100(1), 012316 (2019).
[Crossref]
Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91(1), 013843 (2015).
[Crossref]
Y. Xu, J. Du, L. Dai, and C. Lee, “A Regression Approach to Speech Enhancement Based on Deep Neural Networks,” IEEE/ACM Trans. Audio Speech Lang. Process. 23(1), 7–19 (2015).
[Crossref]
W. Diao, C. Cai, W. Yang, X. Song, and C. Duan, “Theoretical Aspects of Continuous Variables Quantum Teleportation Based on Phase-Sensitive Four-Wave Mixing,” Int. J. Theor. Phys. 58(1), 323–331 (2019).
[Crossref]
H. Ye, Q. Ren, X. Hu, T. Lin, L. Shi, G. Zhang, and X. Li, “Modeling energy-related CO2 emissions from office buildings using general regression neural network,” Resour. Conserv. Recycl. 129, 168–174 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.
H. Ye, Q. Ren, X. Hu, T. Lin, L. Shi, G. Zhang, and X. Li, “Modeling energy-related CO2 emissions from office buildings using general regression neural network,” Resour. Conserv. Recycl. 129, 168–174 (2018).
[Crossref]
F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5(1), 3049 (2014).
[Crossref]
Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org.