Abstract

We present a reconfigurable terahertz (THz) resonator using double C-shape metamaterials (DCM) that can be used as filter and single-/dual-resonance switch. By changing the position of the C-shape metamaterial along x-axis and y-axis directions, the resonances can be modulated from single-resonance to dual-resonance in TE mode and the corresponding free spectrum range (FSR) can be changed from 0.19 THz to 0.09 THz. These results indicate the proposed DCM can be used as a single-/dual-resonance switch and polarization switch. To increase the tunability, flexibility, and applicability of DCM, the resonant frequency could be tuned by changing the gap between DCM with the dual-layer. The resonances are blue-shifted 0.04 THz from 0.22 THz to 0.26 THz (1st resonance) and 0.11 THz from 0.36 THz to 0.47 THz (2nd resonance) in TE mode. The relationship of resonance and gap variation is quite stable and linear. This design of DCM provides a potential possibility of feasible opto-electronics applications in the THz frequency range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Metamaterial is an artificial material with extraordinary electromagnetic properties that cannot found in natural materials. Metamaterial has the advantages of reducing the size and weight of optical devices compared to conventional materials. Among terahertz (THz) metamaterial designs, the classic metamaterial structure is considered as a ring with a common split, i.e. split-ring resonator (SRR), which was first theoretically proposed in 1999 and then experimentally verified in 2000 [1,2]. After that, some derivative designs such as U-shaped SRR, complementary SRR (cSRR), I-shaped SRR, V-shaped SRR, electric SRR (eSRR), and 3D SRR, etc. are presented and demonstrated [36]. The metamaterials are commonly used but not limited to metallic materials, e.g. gold (Au), silver (Ag), copper (Cu), and aluminum (Al) and 2D materials, e.g. graphene [7,8], molybdenum disulfide (MoS2) [9], barium strontium titanate [10,11], perovskite [12,13], vanadium dioxide (VO2) [1417], isotropic silicon [18], germanium antimony telluride (GST) [19], and so on. Among these materials, Ag and Au are the two most often used for metamaterial applications than other materials due to their relatively small ohmic losses or high conductivity in THz frequency range. Although Ag has the lowest loss, it will suffer the degradation in the fabrication process. Furthermore, the losses of Ag are strongly dependent on the surface roughness. Au has predominately been the materials for metamaterial applications [20]. Additionally, Au is anti-oxidative and chemically stable in many environments. It is unlike Ag, Al and Cu materials, which are easily oxidized and very rapidly come into being a metallic oxide layer under atmospheric conditions. Therefore, Au becomes the usual material of choice for most applications, especially for biological and chemical sensing applications [21,22].

Recently, tunable metamaterial is a hot research topic owing to its flexibility and applicability in real applications. The tuning approaches of metamaterial can be used to manipulate the amplitude, frequency and polarization of incident electromagnetic wave [2327], which are including thermal, ferroelectric materials, semiconductor materials or diodes, laser pumping, liquid crystal, electrostatic force, and so on [28]. Among these tuning approaches, reconfigurable metamaterial becomes feasible in many applications, which are other than the use of liquid crystal [29], ferroelectric materials [30,31], and semiconductor diodes [3234] are highly dependent on the nonlinear properties of nature material and limited the tuning range [3538].

In this study, we propose a THz resonator by using double C-shape metamaterial (DCM) microstructures. The C-shape structure is kept as the same as a semicircle. By changing the space configuration of DCM, the electromagnetic response can be modified from single-resonance to dual-resonance and the corresponding free spectrum range (FSR) can be also modified. To increase the flexibility of DCM device, two stacked DCM layers with a gap between top and bottom DCM is presented. The sophisticated parameter changes can be utilized micro-electro-mechanical systems (MEMS) technique to tune the electromagnetic response of DCM. This design can be realized the reconfigurable DCM to possess tunable resonance, transmission intensity, FSR, and single-/dual-resonance switch characteristics.

2. Designs and methods

Figure 1(a) shows the schematic drawing of proposed dual-layer DCM. The polarization configurations of transverse electric (TE) mode and transverse magnetic (TM) mode are also denoted in Fig. 1(a). The proposed dual-layer DCM device is composed of two stacked Au layers with 220 nm in thickness on Si substrate. There is a gap between top and bottom tailored Au layers. The height of gap is 1500 nm. The geometrical dimensions of dual-layer DCM device are the period along x-axis direction (Px = 120 µm) and y-axis direction (Py= 100 µm), diameter of C-shape microstructure (d), and metallic line width (w), respectively. The electromagnetic responses are investigated by changing x and y values along x-axis direction and y-axis direction, respectively. The merits of this design are that dual-layer DCM device exhibits polarization-dependence, single-/dual-resonance switch, and tunable FSR characteristics owing to the geometry of DCM is asymmetrical with different x and y values as shown in Fig. 1(b). To increase the flexibility of dual-layer DCM, the g value could be tuned along z-axis direction. Such approach makes dual-layer DCM showing actively tunable resonance by changing g value.

 

Fig. 1. (a) Schematic drawings of proposed dual-layer DCM device. (b) The denotations of dual-layer DCM unit cell.

Download Full Size | PPT Slide | PDF

The electromagnetic responses of dual-layer DCM are adopted by Lumerical Solution’s finite difference time domain (FDTD) based simulations to study the optical properties. The direction of incident light is set to be perpendicular to the x-y plane in the numerical simulations. Periodic boundary conditions are adopted in the x and y directions and perfectly matched layer (PML) boundaries conditions are assumed in the z direction. The mesh precision is 1 nm and the minimum clearance size is 0.1 µm. The transmission of incident electromagnetic waves is set a monitor on the bottom side of device. First, the single-layer DCM is presented to figure out the optimized geometrical parameters and discussed the interactions of incident THz wave and DCM. Second, according to the results of single-layer DCM, we can choose the suitable geometrical parameters to design dual-layer DCM with active tunability.

3. Results and discussions

Figure 2 shows the transmission spectra of single-layer DCM by changing x value at TE mode (Fig. 2(a)) and TM mode (Fig. 2(b)). The geometrical dimensions are kept as constant as d = 55 µm, w = 5 µm, and y = 0 µm, respectively. In Fig. 2(a), by changing x value from initial state (x = 0 µm) to x = 30 µm, the resonances are modulated from single resonance at 0.213 THz to dual-resonance at 0.306 THz to 0.494 THz at TE mode. When x value is increased to 40 µm, two resonances becomes closer and then merged gradually. It can be seen there will be an electromagnetically induced transparency (EIT) characteristic at 0.369 THz. By continuously increasing x value to 60 µm, there are two resonances at 0.236 THz and 0.602 THz. The corresponding FSR could be modified from 0.188 THz to 0.366 THz by changing x = 30 µm to 60 µm. At TM mode, there is only one resonance at 0.21 THz at initial state (x = 0 µm). By increasing x value to 30 µm, 40 µm, and 60 µm, the resonance is shift to 0.233 THz, 0.219 THz, and 0.178 THz, respectively as shown in Fig. 2(b).

 

Fig. 2. Transmission spectra of single-layer DCM with different x value at (a) TE mode and (b) TM mode.

Download Full Size | PPT Slide | PDF

In order to better understand the interaction of incident THz wave to DCM microstructures, the electric (E) and magnetic (H) fields distributions of single-layer DCM with different x value are monitored at TE mode as shown in Fig. 3. In Fig. 3(a), single-layer DCM with x = 0 µm shows a dipole resonance at 0.213 THz caused from the E-field and H-field energies concentrated on the arc-shape structures. When x = 30 µm, E- and H-fields energies are distributed on the arc-shape structure and vertices of the DCM. There will generate dipole resonances are 0.306 THz and 0.494 THz as shown in Fig. 3(b) and (c), respectively. By increasing x = 40 µm, two resonances are merged together at 0.369 THz as E- and H-fields distribution shown in Fig. 3(d). When x = 60 µm, there are two dipole resonances caused from fields energies distributed on the vertices of the DCM at 0.236 THz and 0.602 THz as shown in Fig. 3(e) and (f), respectively. At TM mode, the E- and H-fields distributions of single-layer DCM with different x value are shown in Fig. 4. It is clearly observed that E-field energies are concentrated on top and bottom side of DCM while H-field energies are concentrated on the arc-shape structures of DCM. Therefore, the resonance is single-resonance at 0.213 THz (Fig. 4(a)), 0.233 THz (Fig. 4(b)), 0.219 THz (Fig. 4(c)), and 0.178 THz (Fig. 4(d)) for single-layer DCM with x = 0 µm, 30 µm, 40 µm, and 60 µm, respectively.

 

Fig. 3. E-field and H-field distributions of single-layer DCM with different x value at TE mode. (a) x = 0 µm (f = 0.213 THz). (b) x = 30 µm (f = 0.306 THz). (c) x = 30 µm (f = 0.494 THz). (d) x = 40 µm (f = 0.369 THz). (e) x = 60 µm (f = 0.236 THz). (f) x = 60 µm (f = 0.602 THz). (f is monitored frequency.)

Download Full Size | PPT Slide | PDF

 

Fig. 4. E-field and H-field distributions of single-layer DCM with different x value at TM mode. (a) x = 0 µm (f = 0.213 THz). (b) x = 30 µm (f = 0.233 THz). (c) x = 40 µm (f = 0.219 THz). (d) x = 60 µm (f = 0.178 THz). (f is monitored frequency.)

Download Full Size | PPT Slide | PDF

Figure 5 shows the transmission spectra of single-layer DCM by changing y value at TE mode (Fig. 5(a)) and TM mode (Fig. 5(b)). The geometrical dimensions are kept as constant as d = 55 µm, w = 5 µm, and x = 30 µm, respectively. In the initial state (y = 0 µm), the resonances are at 0.306 THz and 0.494 THz. When y value is changed to 5 µm, the resonances are modulated at 0.306 THz and 0.448 THz. By increasing y value to 10 µm, the resonances are at 0.311 THz and 0.430 THz. Continuously increasing y value to 15 µm, the resonances are at 0.323 THz and 0.419 THz. It can be observed the first resonance is blue-shift 0.02 THz and second resonance is red-shift 0.08 THz. The corresponding FSR becomes narrower from 0.19 THz to 0.09 THz from y = 0 µm to 15 µm. At TM mode, the resonant frequencies are single resonances for y value changing from 0 µm to 15 µm, which are 0.233 THz, 0.227 THz, 0.215 THz, and 0.196 THz, respectively as shown in Fig. 5(b). The single-resonance is shift from 0.233 THz to 0.196 THz. The corresponding relationships of resonances and y value are plotted in Fig. 5(c) and (d) for TE and TM modes, respectively. It can be clearly seen that FSR is decreased gradually by increasing y value as shown in Fig. 5(c).

 

Fig. 5. Transmission spectra of single-layer DCM with different y value at (a) TE mode and (b) TM mode. (c) and (d) are the corresponding relationships of resonances and y value of (a) and (b), respectively.

Download Full Size | PPT Slide | PDF

The interaction of incident THz wave to DCM microstructures could be observed by E- and H-fields distributions of single-layer DCM with different y value monitored at TE mode as shown in Fig. 6. Single-layer DCM with y = 0 µm shows resonances are dipole resonances at 0.306 THz and 0.494 THz caused from the E-field and H-field energies concentrated on the arc-shape structures and apexes of DCM as shown in Fig. 6(a) and (b), respectively. When y = 5 µm, E- and H-fields energies are distributed on the arc-shape structure and vertices of the DCM. The dipole resonances are shift to 0.306 THz and 0.448 THz as shown in Fig. 6(c) and (d), respectively. By increasing y = 10 µm, dipole resonances are shift to 0.311 THz and 0.430 THz as shown in Fig. 6(e) and (f), respectively. E-field and H-field energies of second resonance are concentrated on the apexes and central arc-shape structures of DCM. When y = 15 µm, there are two dipole resonances caused from fields energies distributed on the vertices of the DCM at 0.323 THz and 0.419 THz as shown in Fig. 6(g) and (h), respectively. At TM mode, the E- and H-fields distributions of single-layer DCM with different y value are shown in Fig. 7. It is clearly observed that E-field energies are concentrated on top and bottom side of DCM while H-field energies are concentrated on the arc-shape structures of DCM. Therefore, the resonance is single-resonance at 0.233 THz (Fig. 7(a)), 0.227 THz (Fig. 7(b)), 0.215 THz (Fig. 7(c)), and 0.196 THz (Fig. 7(d)) for single-layer DCM with y = 0 µm, 5 µm, 10 µm, and 15 µm, respectively.

 

Fig. 6. E-field and H-field distributions of single-layer DCM with different y value at TE mode. (a) y = 0 µm (f = 0.306 THz). (b) y = 0 µm (f = 0.494 THz). (c) y = 5 µm (f = 0.306 THz). (d) y = 5 µm (f = 0.448 THz). (e) y = 10 µm (f = 0.311 THz). (f) y = 10 µm (f = 0.430 THz). (g) y = 15 µm (f = 0.323 THz). (h) y = 15 µm (f = 0.419 THz). (f is monitored frequency.)

Download Full Size | PPT Slide | PDF

 

Fig. 7. E-field and H-field distributions of single-layer DCM with different y value at TM mode. (a) y = 0 µm (f = 0.233 THz). (b) y = 5 µm (f = 0.227 THz). (c) y = 10 µm (f = 0.215 THz). (d) y = 15 µm (f = 0.196 THz). (f is monitored frequency.)

Download Full Size | PPT Slide | PDF

Figure 8 shows the transmission spectra of single-layer DCM by changing w value at TE mode (Fig. 8(a)) and TM mode (Fig. 8(b)). The geometrical dimensions are kept as constant as x = 60 µm, y = 0 µm, and d = 55 µm, respectively. In Fig. 8(a), by changing w value from 5 µm to 10 µm, there are dual-resonances with a linear blue-shift at TE mode. In the initial state (w = 5 µm), there is dual-resonance at 0.236 THz and 0.602 THz. When w is 7.5 µm, the dual-resonance is at 0.274 THz and 0.680 THz. By increasing w to 10 µm, the dual-resonance is at 0.303 THz and 0.750 THz. The corresponding FSR is varied from 0.36 THz to 0.45 THz by changing w from 5 µm to 10 µm at TE mode. At TM mode, the resonances are 0.178 THz, 0.195 THz, and 0.213 THz for w = 5 µm, 7.5 µm, and 10 µm, respectively. The single-resonance is a linear blue-shift at TM mode as shown in Fig. 8(b). The corresponding relationships of resonances and w value are summarized in Fig. 8(c) and (d) for TE and TM modes, respectively. It can be clearly seen from Fig. 8(c) that the FSR is increased slightly by changing the w value. The interactions of incident THz wave and DCM with different w value are plotted in Fig. 9 and Fig. 10 for TE and TM modes, respectively. Single-layer DCM with w = 5 µm shows resonances are dipole resonances at 0.236 THz and 0.602 THz as shown in Fig. 9(a) and (b), respectively. When w = 7.5 µm, the dipole resonances are shift to 0.274 THz and 0.680 THz as shown in Fig. 9(c) and (d), respectively. By increasing w = 10 µm, dipole resonances are shift to 0.303 THz and 0.750 THz as shown in Fig. 9(e) and (f), respectively. These resonances are caused from the E- and H-field energies concentrated on the apexes of DCM (first resonance) while those concentrated along the arc-shape of DCM (second resonance), respectively. At TM mode, the E- and H-fields distributions of single-layer DCM with different w value are shown in Fig. 10. The resonance is single-resonance at 0.178 THz (Fig. 10(a)), 0.195 THz (Fig. 10(b)), and 0.213 THz (Fig. 10(c)) for single-layer DCM with w = 5 µm, 7.5 µm, and 10 µm, respectively. These resonances are caused from the E-field energies concentrated on the apexes of DCM while the H-field energies concentrated on the arc-shape of DCM, respectively.

 

Fig. 8. Transmission spectra of DCM with different Au width (w) at (a) TE mode and (b) TM mode. (c) and (d) are the corresponding relationships of resonances and w parameter of (a) and (b), respectively.

Download Full Size | PPT Slide | PDF

 

Fig. 9. E-field and H-field distributions of DCM with single-layer at TE mode at the condition of (a) w = 5 µm (f = 0.236 THz), (b) w = 5 µm (f = 0.602 THz), (c) w = 7.5 µm (f = 0.274 THz), (d) w = 7.5 µm (f = 0.680 THz), (e) w = 10 µm (f = 0.303 THz), and (f) w = 10 µm (f = 0.750 THz), respectively. (f is monitored frequency.)

Download Full Size | PPT Slide | PDF

 

Fig. 10. E-field and H-field distributions of DCM with single-layer at TM mode at the condition of (a) w = 5 µm (f = 0.178 THz), (b) w = 7.5 µm (f = 0.195 THz), and (c) w = 10 µm (f = 0.213 THz), respectively. (f is monitored frequency.)

Download Full Size | PPT Slide | PDF

To increase the flexibility of DCM device, two stacked DCM layers with a gap between top and bottom DCM is presented. The transmission spectra of DCM with dual-layer by changing g value at TE mode are shown in Fig. 11(a). The geometrical dimensions are kept as constant as d = 55 µm, x = 30 µm, y = 0 µm, and w = 5 µm, respectively. There are two resonances blue-shift by changing g value from 0 nm to 1500 nm. The tuning mechanism can be realized by using MEMS technique to modify the g value. By increasing g value from 0 nm to 1500 nm, the tuning ranges of two resonances are 0.04 THz and 0.11 THz for first resonance and second resonance, respectively. The corresponding relationships of resonances and g value are summarized in Fig. 11(b). The tuning electromagnetic responses are quite stable and linear. In view of above-mentioned, the proposed DCM device exhibits tunable filter, single-/dual-resonance switch, tunable FSR, and polarization-dependent characteristics in THz frequency range. Such results pave a way to the devices used in THz spectroscopy, THz imaging, and THz sensor applications.

 

Fig. 11. (a) Transmission spectra of DCM with dual-layer by changing g value at TE mode. (b) is the corresponding relationships of resonances and g value.

Download Full Size | PPT Slide | PDF

4. Conclusions

In conclusion, we present a high-efficiency THz resonator by using DCM microstructures and investigate the electromagnetic characterizations. By changing x value from initial state (x = 0 µm) to x = 30 µm, the resonances are modulated from single-resonance at 0.22 THz to dual-resonance at 0.31 THz to 0.50 THz at TE mode. When x value is changed to 40 µm, two resonance will be merged together. Continuously increasing x value to 60 µm, FSR is modulated from 0.188 THz to 0.366 THz. By changing the y value from 0 µm to 15 µm, the second resonance is red-shift 0.08 THz and the first resonance is almost kept as constant. To achieve tuning capabilities, the distance between two DCM layers can be adjusted to achieve efficient tuning capabilities. The tuning range of second resonance is 0.11 THz, while the corresponding FSR can be tuned from 0.14 THz to 0.21 THz. By tailoring the geometrical dimensions, proposed device can be the filter, switch, and polarize in THz frequency range. It provides the capabilities for the use in widespread THz applications.

Funding

Sun Yat-sen University (76120-18841202).

Acknowledgment

The authors acknowledge the State Key Laboratory of Optoelectronic Materials and Technologies of Sun Yat-Sen University for the use of simulation codes.

References

1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]  

2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef]  

3. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett. 36(9), 1653–1655 (2011). [CrossRef]  

4. W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012). [CrossRef]  

5. K. Kishor, M. N. Baitha, R. K. Sinha, and B. Lahiri, “Tunable negative refractive index metamaterial from V-shaped SRR structure: fabrication and characterization,” J. Opt. Soc. Am. B 31(7), 1410–1414 (2014). [CrossRef]  

6. G. Govind, N. K. Tiwari, K. K. Agrawal, and M. J. Alchtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” IEEE Sens. J. 18(18), 7442–7449 (2018). [CrossRef]  

7. A. Andrei and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144 (2013). [CrossRef]  

8. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011). [CrossRef]  

9. S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017). [CrossRef]  

10. Y. Bian, C. Wu, H. Li, and J. Zhai, “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film,” Appl. Phys. Lett. 104(4), 042906 (2014). [CrossRef]  

11. T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008). [CrossRef]  

12. B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

13. X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010). [CrossRef]  

14. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012). [CrossRef]  

15. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008). [CrossRef]  

16. Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019). [CrossRef]  

17. Q. Chu, Z. Song, and Q. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018). [CrossRef]  

18. Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019). [CrossRef]  

19. M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019). [CrossRef]  

20. D. Yao, K. Yan, X. Liu, S. Liao, Y. Yu, and Y. S. Lin, “Tunable terahertz metamaterial by using asymmetrical double split-ring resonators (ADSRRs),” OSA Continuum 1(2), 349–357 (2018). [CrossRef]  

21. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011). [CrossRef]  

22. K. Y. Hong, J. W. Menezes, and A. G. Brolo, “Template-Stripping Fabricated Plasmonic Nanogratings for Chemical Sensing,” Plasmonics 13(1), 231–237 (2018). [CrossRef]  

23. W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011). [CrossRef]  

24. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743 (2014). [CrossRef]  

25. E. R. Brown, “RF-MEMS Switches for Reconfigurable Integrated Circuits,” IEEE Trans. Microwave Theory Tech. 46(11), 1868–1880 (1998). [CrossRef]  

26. X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430–433 (2017). [CrossRef]  

27. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004). [CrossRef]  

28. Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21(4), 93–99 (2015). [CrossRef]  

29. S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014). [CrossRef]  

30. R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016). [CrossRef]  

31. R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015). [CrossRef]  

32. L. Qi, C. Li, and G. Fang, “Tunable Terahertz Metamaterial Absorbers Using Active Diodes,” Int. J. Electromagn. Appl. 4(3), 57–60 (2014). [CrossRef]  

33. B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010). [CrossRef]  

34. J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013). [CrossRef]  

35. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006). [CrossRef]  

36. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007). [CrossRef]  

37. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007). [CrossRef]  

38. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786 (2008). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref]
  3. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett. 36(9), 1653–1655 (2011).
    [Crossref]
  4. W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
    [Crossref]
  5. K. Kishor, M. N. Baitha, R. K. Sinha, and B. Lahiri, “Tunable negative refractive index metamaterial from V-shaped SRR structure: fabrication and characterization,” J. Opt. Soc. Am. B 31(7), 1410–1414 (2014).
    [Crossref]
  6. G. Govind, N. K. Tiwari, K. K. Agrawal, and M. J. Alchtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” IEEE Sens. J. 18(18), 7442–7449 (2018).
    [Crossref]
  7. A. Andrei and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144 (2013).
    [Crossref]
  8. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref]
  9. S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
    [Crossref]
  10. Y. Bian, C. Wu, H. Li, and J. Zhai, “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film,” Appl. Phys. Lett. 104(4), 042906 (2014).
    [Crossref]
  11. T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
    [Crossref]
  12. B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).
  13. X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
    [Crossref]
  14. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
    [Crossref]
  15. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
    [Crossref]
  16. Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
    [Crossref]
  17. Q. Chu, Z. Song, and Q. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
    [Crossref]
  18. Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
    [Crossref]
  19. M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
    [Crossref]
  20. D. Yao, K. Yan, X. Liu, S. Liao, Y. Yu, and Y. S. Lin, “Tunable terahertz metamaterial by using asymmetrical double split-ring resonators (ADSRRs),” OSA Continuum 1(2), 349–357 (2018).
    [Crossref]
  21. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
    [Crossref]
  22. K. Y. Hong, J. W. Menezes, and A. G. Brolo, “Template-Stripping Fabricated Plasmonic Nanogratings for Chemical Sensing,” Plasmonics 13(1), 231–237 (2018).
    [Crossref]
  23. W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
    [Crossref]
  24. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743 (2014).
    [Crossref]
  25. E. R. Brown, “RF-MEMS Switches for Reconfigurable Integrated Circuits,” IEEE Trans. Microwave Theory Tech. 46(11), 1868–1880 (1998).
    [Crossref]
  26. X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430–433 (2017).
    [Crossref]
  27. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
    [Crossref]
  28. Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21(4), 93–99 (2015).
    [Crossref]
  29. S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
    [Crossref]
  30. R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
    [Crossref]
  31. R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
    [Crossref]
  32. L. Qi, C. Li, and G. Fang, “Tunable Terahertz Metamaterial Absorbers Using Active Diodes,” Int. J. Electromagn. Appl. 4(3), 57–60 (2014).
    [Crossref]
  33. B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
    [Crossref]
  34. J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
    [Crossref]
  35. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
    [Crossref]
  36. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
    [Crossref]
  37. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
    [Crossref]
  38. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786 (2008).
    [Crossref]

2019 (3)

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

2018 (4)

Q. Chu, Z. Song, and Q. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

K. Y. Hong, J. W. Menezes, and A. G. Brolo, “Template-Stripping Fabricated Plasmonic Nanogratings for Chemical Sensing,” Plasmonics 13(1), 231–237 (2018).
[Crossref]

D. Yao, K. Yan, X. Liu, S. Liao, Y. Yu, and Y. S. Lin, “Tunable terahertz metamaterial by using asymmetrical double split-ring resonators (ADSRRs),” OSA Continuum 1(2), 349–357 (2018).
[Crossref]

G. Govind, N. K. Tiwari, K. K. Agrawal, and M. J. Alchtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” IEEE Sens. J. 18(18), 7442–7449 (2018).
[Crossref]

2017 (2)

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430–433 (2017).
[Crossref]

2016 (1)

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

2015 (2)

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21(4), 93–99 (2015).
[Crossref]

2014 (5)

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

L. Qi, C. Li, and G. Fang, “Tunable Terahertz Metamaterial Absorbers Using Active Diodes,” Int. J. Electromagn. Appl. 4(3), 57–60 (2014).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743 (2014).
[Crossref]

Y. Bian, C. Wu, H. Li, and J. Zhai, “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film,” Appl. Phys. Lett. 104(4), 042906 (2014).
[Crossref]

K. Kishor, M. N. Baitha, R. K. Sinha, and B. Lahiri, “Tunable negative refractive index metamaterial from V-shaped SRR structure: fabrication and characterization,” J. Opt. Soc. Am. B 31(7), 1410–1414 (2014).
[Crossref]

2013 (2)

A. Andrei and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144 (2013).
[Crossref]

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

2012 (2)

W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

2011 (4)

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett. 36(9), 1653–1655 (2011).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
[Crossref]

2010 (2)

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

2008 (3)

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[Crossref]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786 (2008).
[Crossref]

2007 (2)

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

2006 (1)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

2004 (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1998 (1)

E. R. Brown, “RF-MEMS Switches for Reconfigurable Integrated Circuits,” IEEE Trans. Microwave Theory Tech. 46(11), 1868–1880 (1998).
[Crossref]

Adamo, G.

B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

Agrawal, K. K.

G. Govind, N. K. Tiwari, K. K. Agrawal, and M. J. Alchtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” IEEE Sens. J. 18(18), 7442–7449 (2018).
[Crossref]

Akosman, A. E.

Alchtar, M. J.

G. Govind, N. K. Tiwari, K. K. Agrawal, and M. J. Alchtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” IEEE Sens. J. 18(18), 7442–7449 (2018).
[Crossref]

Andreev, G. O.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

Andrei, A.

Arezoomandan, S.

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

Averitt, R. D.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Baitha, M. N.

Bao, Y. J.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Basov, D. N.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Bian, Y.

Y. Bian, C. Wu, H. Li, and J. Zhai, “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film,” Appl. Phys. Lett. 104(4), 042906 (2014).
[Crossref]

Bolivar, P. H.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

Brehm, M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Brener, I.

Brolo, A. G.

K. Y. Hong, J. W. Menezes, and A. G. Brolo, “Template-Stripping Fabricated Plasmonic Nanogratings for Chemical Sensing,” Plasmonics 13(1), 231–237 (2018).
[Crossref]

Brown, E. R.

E. R. Brown, “RF-MEMS Switches for Reconfigurable Integrated Circuits,” IEEE Trans. Microwave Theory Tech. 46(11), 1868–1880 (1998).
[Crossref]

Cai, G.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Cao, W. Q.

W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
[Crossref]

Chae, B. G.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Chanana, A.

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

Chen, J.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Chen, Q.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Cheng, Q.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Cho, S. Y.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

Chu, Q.

Q. Chu, Z. Song, and Q. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Cortecchia, D.

B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

Cui, T. J.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Cummer, S. A.

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[Crossref]

Damodaran, A. R.

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Debus, C.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

Deng, Y.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Driscoll, T.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Fan, K.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Fang, G.

L. Qi, C. Li, and G. Fang, “Tunable Terahertz Metamaterial Absorbers Using Active Diodes,” Int. J. Electromagn. Appl. 4(3), 57–60 (2014).
[Crossref]

Feng, Y.

Feng, Y. J.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Gholipour, B.

B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Gopalan, P.

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

Govind, G.

G. Govind, N. K. Tiwari, K. K. Agrawal, and M. J. Alchtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” IEEE Sens. J. 18(18), 7442–7449 (2018).
[Crossref]

Grinberg, I.

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Guo, D. S.

W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
[Crossref]

Han, J.

Han, Z. Y.

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

Hand, T. H.

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[Crossref]

Hao, J.

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

He, Q.

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Hong, K. Y.

K. Y. Hong, J. W. Menezes, and A. G. Brolo, “Template-Stripping Fabricated Plasmonic Nanogratings for Chemical Sensing,” Plasmonics 13(1), 231–237 (2018).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Huang, C.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Huang, C. Y.

Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21(4), 93–99 (2015).
[Crossref]

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Jiang, R.

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

Jiang, T.

Jiang, T. A.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Jiang, W. X.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Jokerst, N. M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Jung, H. S.

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

Karthik, J.

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Keilmann, F.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Keiser, G. R.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Kim, H. T.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Kishor, K.

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Krishnamoorthy, H. N. S.

B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

Lahiri, B.

Lavrinenko, A. V.

Lee, C.

Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21(4), 93–99 (2015).
[Crossref]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Li, C.

L. Qi, C. Li, and G. Fang, “Tunable Terahertz Metamaterial Absorbers Using Active Diodes,” Int. J. Electromagn. Appl. 4(3), 57–60 (2014).
[Crossref]

Li, D.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Li, H.

Y. Bian, C. Wu, H. Li, and J. Zhai, “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film,” Appl. Phys. Lett. 104(4), 042906 (2014).
[Crossref]

Li, Z. F.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Liao, S.

Lin, Y. S.

D. Yao, K. Yan, X. Liu, S. Liao, Y. Yu, and Y. S. Lin, “Tunable terahertz metamaterial by using asymmetrical double split-ring resonators (ADSRRs),” OSA Continuum 1(2), 349–357 (2018).
[Crossref]

Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21(4), 93–99 (2015).
[Crossref]

Linden, S.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Liu, A. J.

W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
[Crossref]

Liu, M.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Liu, Q.

Q. Chu, Z. Song, and Q. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Liu, S.

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Liu, X.

Liu, Y.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Lu, X.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Martin, L. W.

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Menezes, J. W.

K. Y. Hong, J. W. Menezes, and A. G. Brolo, “Template-Stripping Fabricated Plasmonic Nanogratings for Chemical Sensing,” Plasmonics 13(1), 231–237 (2018).
[Crossref]

Ming, N. B.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Mutlu, M.

Nahata, A.

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

Nelson, K. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

O’Hara, J. F.

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Ozbay, E.

Padilla, W. J.

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430–433 (2017).
[Crossref]

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Palit, S.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Peng, B.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Peng, R. W.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Qazilbash, M. M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Qi, L.

L. Qi, C. Li, and G. Fang, “Tunable Terahertz Metamaterial Absorbers Using Active Diodes,” Int. J. Electromagn. Appl. 4(3), 57–60 (2014).
[Crossref]

Qi, M. Q.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Rappe, A. M.

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Rodriguez, B. S.

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

Savo, S.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Serebryannikov, A. E.

Shao, J.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Shrekenhamer, D.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Singh, R.

Sinha, R. K.

Smirnova, E.

Smith, D. R.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Soci, C.

B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

Song, Z.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Q. Chu, Z. Song, and Q. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Soukolis, C. M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Strikwerda, A. C.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Sun, C.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Sun, W.

Sun, W. H.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Taylor, A. J.

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786 (2008).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Tian, K.

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

Tiwari, A.

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

Tiwari, N. K.

G. Govind, N. K. Tiwari, K. K. Agrawal, and M. J. Alchtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” IEEE Sens. J. 18(18), 7442–7449 (2018).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Wang, M.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Wang, S.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Wang, Z.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

Wegener, M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Wei, M.

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Wei, Y.

W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
[Crossref]

West, K. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Wong, L. M.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Wu, C.

Y. Bian, C. Wu, H. Li, and J. Zhai, “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film,” Appl. Phys. Lett. 104(4), 042906 (2014).
[Crossref]

Wu, Z. R.

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

Xiong, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Xiong, X.

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Xu, R.

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Xu, X.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Yan, K.

Yao, D.

Yin, J.

B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

Yu, T. B.

W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
[Crossref]

Yu, Y.

Yun, S. J.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Zett, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Zhai, J.

Y. Bian, C. Wu, H. Li, and J. Zhai, “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film,” Appl. Phys. Lett. 104(4), 042906 (2014).
[Crossref]

Zhang, B. N.

W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
[Crossref]

Zhang, J.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Zhang, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Zhang, W.

Zhang, X.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Zhang, Y.

Zhao, J.

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743 (2014).
[Crossref]

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Zhao, J. M.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Zheludev, N. I.

B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Zhou, L.

Zhou, Y.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Zhu, B.

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743 (2014).
[Crossref]

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Adv. Opt. Mater. (1)

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Appl. Phys. Express (1)

Q. Chu, Z. Song, and Q. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Appl. Phys. Lett. (5)

Y. Bian, C. Wu, H. Li, and J. Zhai, “A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film,” Appl. Phys. Lett. 104(4), 042906 (2014).
[Crossref]

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[Crossref]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Chin. Phys. B (1)

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

IEEE Antennas Wirel. Propag. Lett (1)

W. Q. Cao, B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and Y. Wei, “Broadband HighGain Periodic Endfire Antenna by Using I-Shaped Resonator (ISR) Structures,” IEEE Antennas Wirel. Propag. Lett 11, 1470–1473 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Arezoomandan, P. Gopalan, K. Tian, A. Chanana, A. Nahata, A. Tiwari, and B. S. Rodriguez, “Tunable Terahertz Metamaterials Employing Layered 2-D Materials Beyond Graphene,” IEEE J. Sel. Top. Quantum Electron. 23(1), 188–194 (2017).
[Crossref]

Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21(4), 93–99 (2015).
[Crossref]

IEEE Photonics J. (1)

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

IEEE Sens. J. (1)

G. Govind, N. K. Tiwari, K. K. Agrawal, and M. J. Alchtar, “Microwave Subsurface Imaging of Composite Structures Using Complementary Split Ring Resonators,” IEEE Sens. J. 18(18), 7442–7449 (2018).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

E. R. Brown, “RF-MEMS Switches for Reconfigurable Integrated Circuits,” IEEE Trans. Microwave Theory Tech. 46(11), 1868–1880 (1998).
[Crossref]

Int. J. Electromagn. Appl. (1)

L. Qi, C. Li, and G. Fang, “Tunable Terahertz Metamaterial Absorbers Using Active Diodes,” Int. J. Electromagn. Appl. 4(3), 57–60 (2014).
[Crossref]

J. Appl. Phys. (1)

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Mater. Lett. (2)

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Nano Lett. (1)

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref]

Nat. Mater. (1)

R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, “Ferroelectric polarization reversal via successive ferroelastic transitions,” Nat. Mater. 14(1), 79–86 (2015).
[Crossref]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zett, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Nature (1)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

New J. Phys. (1)

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

OSA Continuum (1)

Phys. Rev. B (1)

X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with u-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Phys. Rev. Lett. (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Plasmonics (1)

K. Y. Hong, J. W. Menezes, and A. G. Brolo, “Template-Stripping Fabricated Plasmonic Nanogratings for Chemical Sensing,” Plasmonics 13(1), 231–237 (2018).
[Crossref]

Science (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukolis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Other (1)

B. Gholipour, G. Adamo, D. Cortecchia, H. N. S. Krishnamoorthy, J. Yin, N. I. Zheludev, and C. Soci, “Perovskite metamaterials,” in Conference on Lasers and Electro-Optics (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Schematic drawings of proposed dual-layer DCM device. (b) The denotations of dual-layer DCM unit cell.
Fig. 2.
Fig. 2. Transmission spectra of single-layer DCM with different x value at (a) TE mode and (b) TM mode.
Fig. 3.
Fig. 3. E-field and H-field distributions of single-layer DCM with different x value at TE mode. (a) x = 0 µm (f = 0.213 THz). (b) x = 30 µm (f = 0.306 THz). (c) x = 30 µm (f = 0.494 THz). (d) x = 40 µm (f = 0.369 THz). (e) x = 60 µm (f = 0.236 THz). (f) x = 60 µm (f = 0.602 THz). (f is monitored frequency.)
Fig. 4.
Fig. 4. E-field and H-field distributions of single-layer DCM with different x value at TM mode. (a) x = 0 µm (f = 0.213 THz). (b) x = 30 µm (f = 0.233 THz). (c) x = 40 µm (f = 0.219 THz). (d) x = 60 µm (f = 0.178 THz). (f is monitored frequency.)
Fig. 5.
Fig. 5. Transmission spectra of single-layer DCM with different y value at (a) TE mode and (b) TM mode. (c) and (d) are the corresponding relationships of resonances and y value of (a) and (b), respectively.
Fig. 6.
Fig. 6. E-field and H-field distributions of single-layer DCM with different y value at TE mode. (a) y = 0 µm (f = 0.306 THz). (b) y = 0 µm (f = 0.494 THz). (c) y = 5 µm (f = 0.306 THz). (d) y = 5 µm (f = 0.448 THz). (e) y = 10 µm (f = 0.311 THz). (f) y = 10 µm (f = 0.430 THz). (g) y = 15 µm (f = 0.323 THz). (h) y = 15 µm (f = 0.419 THz). (f is monitored frequency.)
Fig. 7.
Fig. 7. E-field and H-field distributions of single-layer DCM with different y value at TM mode. (a) y = 0 µm (f = 0.233 THz). (b) y = 5 µm (f = 0.227 THz). (c) y = 10 µm (f = 0.215 THz). (d) y = 15 µm (f = 0.196 THz). (f is monitored frequency.)
Fig. 8.
Fig. 8. Transmission spectra of DCM with different Au width (w) at (a) TE mode and (b) TM mode. (c) and (d) are the corresponding relationships of resonances and w parameter of (a) and (b), respectively.
Fig. 9.
Fig. 9. E-field and H-field distributions of DCM with single-layer at TE mode at the condition of (a) w = 5 µm (f = 0.236 THz), (b) w = 5 µm (f = 0.602 THz), (c) w = 7.5 µm (f = 0.274 THz), (d) w = 7.5 µm (f = 0.680 THz), (e) w = 10 µm (f = 0.303 THz), and (f) w = 10 µm (f = 0.750 THz), respectively. (f is monitored frequency.)
Fig. 10.
Fig. 10. E-field and H-field distributions of DCM with single-layer at TM mode at the condition of (a) w = 5 µm (f = 0.178 THz), (b) w = 7.5 µm (f = 0.195 THz), and (c) w = 10 µm (f = 0.213 THz), respectively. (f is monitored frequency.)
Fig. 11.
Fig. 11. (a) Transmission spectra of DCM with dual-layer by changing g value at TE mode. (b) is the corresponding relationships of resonances and g value.

Metrics