Abstract

We present an apodized bilayer low-temperature plasma enhanced chemical vapor deposition (PECVD) SiNx grating coupler for foundry-based, dual SiNx layer, photonic applications. The grating coupler was designed for TE polarization in the C-band (1530–1565 nm). It has a simulated fiber-to-chip efficiency of −2.28 dB (59.1%) and a −1 dB bandwidth of 57.7 nm. Its measured fiber-to-chip efficiency and −1 dB bandwidth were −2.56 dB (55.4%) and 46.9 nm respectively. It was fabricated in a state-of-the-art 300 mm CMOS foundry with 193 nm deep UV argon-fluoride (DUV ArF) excimer-laser immersion lithography.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Photonic circuitry is frequently designed and fabricated on silicon-on-insulator (SOI) wafers due to the large difference in refractive indices between silicon and silicon dioxide. However, silicon nitride photonics is also of interest due to several reasons: (a) its transparency reaches as low as 500 nm (Si is transparent >1.1 µm), enabling applications in biophotonics and sensing, in addition to datacom [1–3]; it has a lower index contrast with SiO2, which (b) enables lower waveguiding losses achievable with the material (lab-based losses of < 0.1 dB/m) [4] as opposed to SOI (0.27 dB/cm) [5]; and (c) relaxed fabrication tolerances [3,6–8]; (d) silicon nitride has negligible two-photon absorption in the infrared spectrum, enabling nonlinear applications [1–3]; (e) it has 5 times better temperature-tolerance [9–11] due to a thermo-optic coefficient a seventh that of Si [12–14]; (f) additionally, there is greater design freedom compared to SOI wafers as more than one waveguiding layer can be deposited.

At 1550 nm, low pressure chemical vapor deposition (LPCVD) Si3N4 has a refractive index of n = 1.977, while plasma-enhanced chemical vapor deposition (PECVD) SiO2—usually its cladding material—has a refractive index of n = 1.428 [12]. This difference in index of refraction is significantly less than between silicon (n = 3.476) and silicon dioxide, which limits the scattering strength of individual periods in a grating coupler [6]. Additionally, silicon nitride’s lower refractive index (compared to silicon) increases the grating pitch and thus decreases the number of periods (scatterers) in a given fiber mode width [15]. These reasons unfortunately limit the maximum power that can be diffracted from a single mode fiber (SMF-28, 10.4 µm mode field diameter) into a waveguide; conversely, the fewer periods simultaneously increase the bandwidth [15,16].

LPCVD Si3N4 requires high temperatures (~800°C) and is stoichiometric, whereas PECVD SiNx can be deposited at lower temperatures (200–400°C), induces less stress (particularly in thick films), and depending on the recipe, could result in non-uniform, non-stoichiometric SiNx [2,7,8]. Consequently, SiNx’s refractive index can be > 2 for Si-rich films and < 2 for N-rich films [17,18]. Despite these issues, PECVD SiNx’s lower deposition temperature makes it the preferred material for integrated applications, which have a limited thermal budget to avoid dopant-diffusion at p-n junctions.

Generally, grating couplers based on thicker silicon nitride waveguiding layers (550nm–700nm) have higher grating strengths and thus smaller modal mismatches with the SMF-28, resulting in higher maximum fiber-to-chip efficiencies (32.0% - 70.8%) [19–22]. Indeed, partially-etched Si3N4 grating couplers generally require > 800 nm thicknesses to achieve > 80% upwards directionality [16,23], though this can be bypassed by ingenious design of a two-step staircase-shaped grating profile and forgoing top cladding to increase the grating strength [19]. Conversely, grating couplers based on a thinner (400 nm) waveguiding layer have an increased modal mismatch and a lower maximum fiber-to-chip efficiency (28.8–38.0%) [15,24], as seen in Table 1 below.

Tables Icon

Table 1. Comparing SiNx Grating Couplers in the Literature

Generally, thicker (400–2500 nm) silicon nitride layers are used to enhance the non-linear response of the material for nonlinear signal processing applications at near infrared (1550–3700 nm) wavelengths, whereas thinner (100–180 nm) layers are used for visible (532–900 nm) wavelength applications. Moderately thick (~200–400 nm) layers allow for versatile multi-project wafers with reduced performances for either wavelength extreme, while also avoiding fabrication issues like film cracking [1,3].

Additionally, several nanophotonic devices operating within the C- (1530–1565 nm) and L-bands (1565–1625 nm) use thin-moderate (100–400 nm) silicon nitride layers in their construction: microring filters [44,45], microring bolometers [46], polarization splitters [47,48], integrated lasers [49–53], and phased antenna arrays [54], further increasing the versatility and importance of thin-moderate silicon nitride layers.

This work presents—to the best of the authors’ knowledge—a silicon nitride-only grating coupler design with the highest experimentally confirmed coupling efficiency of 53.3% to a silicon nitride waveguiding layer of only 220 nm. Its primary application is as a medium-efficiency, fast turnaround grating coupler for more rapid measurements on short loop wafers. It is one of three new grating coupler designs compatible with SUNY Poly’s state of the art 300 mm silicon photonics foundry. Emphatically, the grating coupler was fabricated in a 300 mm foundry without the use of high-resolution, low-throughput alternatives like e-beam or focused ion beam (FIB) lithography.

2. Methodology and simulated design

The grating coupler was built on an American Institute for Manufacturing Integrated Photonics (“AIM Photonics”) multiproject wafer (MPW) with the following layer stack: bulk Si, 2.32 µm SiO2 (as tetraethoxysilicate (TEOS)), 220 nm PECVD SiNx, 100 nm TEOS, 220 nm PECVD SiNx, and 5.1 µm of TEOS, as shown in the Fig. 1.

 figure: Fig. 1

Fig. 1 Layer stack of the Multi-Project Wafer (MPW) service used for this work.

Download Full Size | PPT Slide | PDF

To reduce the initial modal mismatch, both 220 nm SiNx layers, as well as the sandwiched 100 nm TEOS layer in between, were used as a temporary bilayer waveguide, with interlayer coupling facilitated by an interlayer taper of either one of the SiNx layers [c.f. Fig. 5(d)].

Three initial designs were simulated: Fig. 2(a) top-only through-etch, Fig. 2(b) top-and-bottom parallel through-etches, and Fig. 2(c) displaced bilayer through-etches. These designs are based on partial-etch [32], through-etch [15,21,24,31], and antenna array designs [16,27,55] from literature. The uniform period designs were optimized based upon maximizing TE-polarized 1550 nm light from a 9°-tilted SMF-28 into the SiNx bilayer waveguide. 2D optimization was done with Lumerical FDTD, a commercially available finite-difference time-domain (FDTD) solver, using its in-built particle swarm optimization algorithm. The maximal fiber-to-chip coupling efficiencies for top-only, top-and-bottom parallel, and displaced bilayer etch designs were 27.8%, 10.4%, and 55.1% respectively, as shown in Fig. 2.

 figure: Fig. 2

Fig. 2 Optimized simulated fiber-to-chip coupling efficiencies of the (a) top-only, (b) top-and-bottom parallel and (c) displaced bilayer etch designs.

Download Full Size | PPT Slide | PDF

The details and dimensions of the displaced bilayer etch, design 2(c), are as shown in Fig. 3 and Table 2:

 figure: Fig. 3

Fig. 3 Details of the uniform SiNx bilayer etch design.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 2. Uniform Bilayer Design’s Dimensions

Popović et al. [56,57] showed that offsetting the bottom layer by λ/4 produced ‘array nano-antenna grating couplers’ with unidirectional (99%) radiation patterns on a crystalline-Si and polysilicon platform, thereby achieving a measured −1.16 dB (76.6%) fiber-to-chip coupling loss at 1178 nm [55]. Similarly, design 2(c) [72.4% upwards directionality according to 2D FDTD, c.f. Fig. 4(a)] confirms that this phenomenon holds for a lower index platform like SiNx.

 figure: Fig. 4

Fig. 4 (a). Directionality of uniform 2.32 µm BOX SiNx bilayer etch design. (b) 2D FDTD simulation of the output E-fields of Uniform and Apodized 6 µm BOX designs with a fitted Gaussian and exponential decay to show the modal overlap.

Download Full Size | PPT Slide | PDF

Apodization was done via maximizing the fiber-to-chip coupling efficiency in a nearest-period-to-waveguide-first approach, i.e. period 1’s dimensions were optimized, then period 2’s, and so on. In terms of design simplicity, fiber-to-chip apodization—also used in [58–60]—is more straightforward as only the optimal x-position of the SMF-28 is varied. In contrast, chip-to-fiber apodization—used in [61–69]—attempts to match the radiated mode to a 5.2 µm-radius Gaussian, which is further complicated by locating the Gaussian’s optimal position, shape modifications due to fiber tilt, etc.

Apodization increased the coupling efficiency to 58.2%. Theoretically, if the optimum coupling efficiency of a uniform grating coupler—with its exponentially decaying diffracted field—is 0.81D, then an apodized grating coupler’s efficiency should approach D [70]. The increase from 55.1% to 58.2% may seem underwhelming in light of this, but it should be noted that the uniform grating coupler’s radiated mode is already Gaussian-like as it is composed of two grating couplers with different periods, duty cycles, and an offset. The apodization of individual periods is therefore limited in increasing the modal overlap of such a field. The output E-fields of the uniform and apodized designs, along with a fitted Gaussian, are shown in Fig. 4(b).

The optimal center position of the SMF-28 during apodization was x = 8.25 ± 0.25 µm. The optimization boundaries for each period’s four dimensions were the preceding and succeeding periods’ limiting dimensions ± 0.100 µm as 0.100 µm is the minimum fabricable dimension in the 300 mm foundry process. Each apodization step consisted of 20 generations with 40 children per generation, at a mesh accuracy setting of 4 (18 points per wavelength, a variable Lumerical uses to determine the FDTD mesh size). The dimensions of the apodized design, given as the distance from x = 0 in Fig. 3, can be found in Table 3:

Tables Icon

Table 3. Apodized Bilayer Design’s Dimensions

Both uniform and apodized designs had three lateral layouts: rectangular, circular focusing and elliptical focusing. Rectangular designs were invariant in the y-direction for 20 µm with a 500 µm-long linear taper, which also functions as its interlayer taper. Circular focusingdesigns were comprised of concentric 50° circular arcs. Elliptical focusing designs were comprised of 50° elliptical arcs curved according to the design procedure from [71] with a minimum grating order of 11. The interlayer taper for both focusing designs is linear, 27 µm long and terminates with a 100 nm tip [c.f. Fig. 5(d)].

 figure: Fig. 5

Fig. 5 (a)–(b). SEM micrograph of apodized rectangular grating couplers: (a) after first SiNx etch, (b) after second SiNx etch. (c)–(d) apodized circular: (c) after first SiNx etch, (d) after second SiNx etch. (e)–(f) apodized elliptical: (e) after first SiNx etch, (f) after second SiNx etch. Figure 5(d) shows the interlayer taper for curved designs which confines the temporary bilayer SiNx’s taper mode to just the bottom SiNx layer. It is linear, 27 µm long and terminates with a 100 nm tip.

Download Full Size | PPT Slide | PDF

A similar approach was used to design SiNx bilayer grating couplers for 6.0 µm BOX, the results of which are shown in Fig. 7.

3. Device fabrication and experimental characterization

The devices were fabricated on AIM MPW runs on a 300 mm SOI wafer using standard CMOS processing techniques. After silicon waveguide formation (not used in this design), 220 nm of near-stoichiometric silicon nitride (refractive index ≈2.0) was deposited via PECVD directly on the silicon waveguide cladding layer. The SiNx was patterned with state of the art ASML 193 nm deep UV argon-fluoride (DUV ArF) immersion lithography and etched with reactive ion etching (RIE). It was then capped with 100 nm of PECVD TEOS. Subsequently, a second layer of 220 nm of SiNx was deposited and patterned as the first SiNx layer. Lastly, a 5.1 µm-thick capping layer of SiO2 was deposited via PECVD TEOS.

Representative scanning electron microscopy (SEM) images of the rectangular, circular, and elliptical layouts of the apodized design are shown in Fig. 5, after each SiNx etch step.

Grating couplers of the same design were laid out as pairs with a 2 cm-long, 1.5 µm-wide SiNx waveguide connecting them. Waveguide loss was measured on a separate structure and subtracted from the measured insertion loss. The remaining insertion loss was divided by 2 to obtain the insertion loss per grating coupler.

The grating coupler pairs were measured on an optical bench with a Keysight Technologies (Santa Rosa, CA) 81980A Compact Tunable Laser Source external cavity InGaAsP laser with a wavelength range of 1465–1575 nm. The single mode fibers (SMF-28s) were tilted at a nominal 9° from surface normal and their x & y positions (c.f. Fig. 3) were optimized to maximize power throughput at a wavelength of 1550 nm. Subsequently, the laser source was swept from 1470 to 1570 nm to measure the bandwidth performance of the grating coupler.

The results of the insertion loss of the grating couplers are shown in Fig. 6 below, along with the 2D simulated coupling efficiencies from an ideal grating coupler. Reference [71] has shown that elliptical lateral layouts can shorten the taper length while still maintaining similar coupling efficiencies to rectangular layouts. Reference [32] has shown that focusing layouts can sometimes match or even outperform rectangular layouts by as much as 0.7 dB. However, in this bilayer design,elliptical consistently performed best amongst the 3 lateral layouts. It is possible that with the width of the rectangular lateral layout (20 µm) and the thickness of the temporary bilayer SiNx waveguide (0.540 µm), the 500 µm-long linear taper does not provide an acute enough taper angle to prevent higher order waveguide modes from being excited and their power subsequently lost when coupling to the single mode 220 nm × 1.5 µm strip waveguide.

 figure: Fig. 6

Fig. 6 Simulated and measured coupling efficiencies of SiNx bilayer grating coupler with 2.32 µm bottom oxide for (a) uniform and (b) apodized designs with different lateral layouts (circular, elliptical, and rectangular). Blue error bars indicate the 1 standard deviation of the elliptical layout’s average insertion loss.

Download Full Size | PPT Slide | PDF

Without phase-correction, circular layouts were expected to perform poorer than elliptical ones. However, circular arcs are easier to manipulate in layout programs and in industrial designs, the loss in efficiency could be justified by the footprint reduction (compared to rectangular layouts) and the ease of manipulation (compared to elliptical layouts).

Of the six designs, the apodized elliptical was the most efficient with an experimental efficiency of −2.56 dB (55.4%) and a −1 dB bandwidth of 46.9 nm. The results for other lateral layouts are shown in Fig. 6. Blue error bars indicate the 1 standard deviation of the elliptical layout’s average insertion loss. Departures from the simulated ideal are attributed to fabrication tolerances and measurement variations.

While this grating coupler was designed for the AIM MPW layer stack, the same process could be used to design SiNx-only circuits on bulk silicon wafers. Similar experiments were conducted with 6.0 µm bottom oxide. The apodized design had a simulated efficiency and −1 dB bandwidth of −2.35 dB (58.2%) and 52.1 nm, and an experimental efficiency of −2.73 dB (53.3%) and 54.1 nm for the apodized elliptical layout. The results for other lateral layouts are shown in Fig. 7. The 6 µm BOX designs had larger insertion loss variances and are attributed to larger variation in deposited oxide thickness across the wafer as compared to those on the 2.32 µm BOX platform.

 figure: Fig. 7

Fig. 7 Simulated and measured coupling efficiencies of SiNx bilayer grating coupler with 6.0 µm bottom oxide for (a) uniform and (b) apodized designs with different lateral layouts (circular, elliptical, and rectangular). Blue error bars indicate the 1 standard deviation of the elliptical layout’s average insertion loss. Variances in the 6 µm BOX designs are attributed to larger variation in deposited oxide thickness as compared to those on the 2.32 µm BOX platform.

Download Full Size | PPT Slide | PDF

It is known that a grating coupler’s efficiency can be significantly improved by optimizing the BOX thickness to obtain a constructive reflection from the BOX-Si interface [31,33,34,38,62,72–74]. To a lesser extent, efficiency can also be improved by optimizing the top oxide thickness to function as an anti-reflective film [31,33,34]. However, in either layer stack reported here, the BOX thicknesses (2.32 µm and 6.0 µm) and top oxide thickness (5.1 µm) were constrained by other photonic devices’ design considerations and were not optimized for a SiNx bi-layer grating coupler. Nevertheless, bi-layer designs of reasonable efficiencies and bandwidths were borne out of the optimization process discussed in this paper, which is as much as once can hope for in a foundry-compatible design.

4. Conclusions

We have demonstrated a bilayer SiNx, medium-efficiency, through-etched grating coupler which couples light to a 220 nm-thin SiNx waveguiding layer on a bulk Si wafer, with zero change to the AIM MPW layer stack platform. The use of through-etch designs allows the SiO2 to act as a natural etch-stop, thus ensuring the reliability of the design in a 300 mm foundry without relying on high-resolution, low-throughput e-beam or focused ion beam lithography.

The grating coupler has a theoretical 2D coupling efficiency of −2.28 dB and a −1 dB bandwidth of 57.7 nm. For the uniform designs, the elliptical layout performed the best with a peak coupling efficiency of −2.61 dB and a −1 dB bandwidth of 50.7 nm. For the apodized designs, the best layout was also elliptical with a measured a coupling efficiency of −2.56 dB with a −1 dB bandwidth of 46.9 nm, which demonstrates—to the best of our knowledge—the highest coupling efficiency to a 220 nm-thick SiNx waveguide layer.

Funding

Air Force Research Laboratory (FA8650-15-2-5220).

Acknowledgments

This material is based on work by the Integrated Photonics Institute for Manufacturing Innovation operating under the name of the American Institute for Manufacturing Integrated Photonics (“AIM Photonics”). The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory, the U.S. Government, or AIM Photonics.

References and links

1. P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017). [CrossRef]   [PubMed]  

2. A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013). [CrossRef]  

3. C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(1), 22 (2017). [CrossRef]   [PubMed]  

4. J. F. Bauters, M. J. Heck Jr., D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011). [CrossRef]   [PubMed]  

5. P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18(14), 14474–14479 (2010). [CrossRef]   [PubMed]  

6. R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, and S. Severi, “Silicon photonics. silicon nitride versus silicon-on-insulator,” in Optical Fiber Communications Conference and Exhibition (OFC), 2016 (2016), pp. 1–3.

7. J. K. S. Poon, W. D. Sacher, Y. Huang, and G.-Q. Lo, “Integrated photonic devices and circuits in multilayer silicon nitride-on-silicon platforms,” in Optical Fiber Communication Conference (OSA, 2015), paper Th3F.1. [CrossRef]  

8. W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol. 33(4), 901–910 (2015). [CrossRef]  

9. R. Amatya, C. W. Holzwarth, M. A. Popović, F. Gan, H. I. Smith, F. X. Kärtner, and R. J. Ram, “Low power thermal tuning of second-order microring resonators,” in Lasers and Electro-Optics, 2007. CLEO 2007. Conference on (2007), pp. 1–2. [CrossRef]  

10. G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999). [CrossRef]  

11. J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter 49(11), 7408–7417 (1994). [CrossRef]   [PubMed]  

12. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013). [CrossRef]   [PubMed]  

13. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012). [CrossRef]  

14. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992). [CrossRef]  

15. C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010). [CrossRef]  

16. W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22(9), 10938–10947 (2014). [CrossRef]   [PubMed]  

17. L. Cai, A. Rohatgi, D. Yang, and M. A. El-Sayed, “Effects of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films,” J. Appl. Phys. 80(9), 5384–5388 (1996). [CrossRef]  

18. V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009). [CrossRef]  

19. Y. Chen, T. Domínguez Bucio, A. Z. Khokhar, M. Banakar, K. Grabska, F. Y. Gardes, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides,” Opt. Lett. 42(18), 3566–3569 (2017). [CrossRef]   [PubMed]  

20. S. Ura, K. Mori, R. Tsujimoto, J. Inoue, and K. Kintaka, “Position dependence of coupling efficiency of grating coupler in waveguide cavity,” in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) (IEEE, 2017), pp. 1619–1626. [CrossRef]  

21. J. Litvik, I. Dolnak, and M. Dado, “Waveguide silicon nitride grating coupler,” Proc. SPIE 10142, 1014213 (2016). [CrossRef]  

22. D. Li, X. Zhao, C. Zeng, G. Gao, Z. Huang, and J. Xia, “Compact grating coupler for thick silicon nitride,” in Optical Fiber Communications Conference and Exhibition (OFC), 2016 (2016), pp. 1–3.

23. W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Ultra-Efficient and Broadband Dual-Level Si3N4-on-SOI Grating Coupler,” in CLEO:2014 (OSA, 2014), paper STh3M.4.

24. S. Dwivedi, B. Song, Y. Liu, R. Moreira, S. Estrella, L. Johansson, and J. Klamkin, “Integrated silicon nitride fan-in/fan-out for multi-core fiber interconnects,” in Integrated Photonics Research, Silicon and Nanophotonics (2017), paper IW2A–3.

25. X. Zhao, D. Li, C. Zeng, G. Gao, Z. Huang, Q. Huang, Y. Wang, and J. Xia, “Compact grating coupler for 700-nm silicon nitride strip waveguides,” J. Lightwave Technol. 34(4), 1322–1327 (2016). [CrossRef]  

26. S. Nambiar, M. Hemalatha, T. Sharma, and S. K. Selvaraja, “Integrated silicon nitride based TE dual-band grating coupler,” in The European Conference on Lasers and Electro-Optics (2017), paper CI_P_4. [CrossRef]  

27. Y. Chen, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “High-efficiency apodized-imaging chip-fiber grating coupler for silicon nitride waveguides,” Opt. Lett. 41(21), 5059–5062 (2016). [CrossRef]   [PubMed]  

28. S. Dwivedi, B. Song, Y. Liu, R. Moreira, L. Johanson, and J. Klamkin, “Demonstration of compact silicon nitride grating coupler arrays for fan-out of multicore fibers,” in Conference on Lasers and Electro-Optics (OSA, 2017), paper ATh3B.4. [CrossRef]  

29. C. Xu, M. Khajavikhan, and P. LiKamWa, “A silicon nitride grating coupler for efficient coupling between waveguide and fiber,” in Photonics Conference (IPC), 2017 IEEE (2017), pp. 425–426.

30. J. Hong and S. Yokoyama, “Efficient silicon nitride grating coupler with a dielectric multilayer reflector,” in 201722nd Microoptics Conference (MOC) (IEEE, 2017), pp. 58–59. [CrossRef]  

31. G. Maire, L. Vivien, G. Sattler, A. Kazmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express 16(1), 328–333 (2008). [CrossRef]   [PubMed]  

32. A. Z. Subramanian, S. K. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012). [CrossRef]  

33. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013). [CrossRef]   [PubMed]  

34. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Visible wavelength silicon nitride focusing grating coupler with AlCu/TiN reflector,” Opt. Lett. 38(14), 2521–2523 (2013). [CrossRef]   [PubMed]  

35. Y. Zhu, J. Wang, W. Xie, B. Tian, Y. Li, E. Brainis, Y. Jiao, and D. van Thourhout, “Ultra-compact silicon nitride grating coupler for microscopy systems,” Opt. Express 25(26), 33297 (2017). [CrossRef]  

36. P. Xu, Y. Zhang, Z. Shao, L. Liu, L. Zhou, C. Yang, Y. Chen, and S. Yu, “Fabrication-friendly high-efficiency silicon nitride grating coupler,” in Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2017 Conference on (2017), pp. 1–3. [CrossRef]  

37. P. Xu, Y. Zhang, Z. Shao, L. Liu, L. Zhou, C. Yang, Y. Chen, and S. Yu, “High-efficiency wideband SiNx-on-SOI grating coupler with low fabrication complexity,” Opt. Lett. 42(17), 3391–3394 (2017). [CrossRef]   [PubMed]  

38. J. Zou, Y. Yu, M. Ye, L. Liu, S. Deng, and X. Zhang, “Ultra efficient silicon nitride grating coupler with bottom grating reflector,” Opt. Express 23(20), 26305–26312 (2015). [CrossRef]   [PubMed]  

39. H. Zhang, C. Li, X. Tu, J. Song, H. Zhou, X. Luo, Y. Huang, M. Yu, and G.-Q. Lo, “Efficient silicon nitride grating coupler with distributed Bragg reflectors,” Opt. Express 22(18), 21800–21805 (2014). [CrossRef]   [PubMed]  

40. J. C. C. Mak, Q. Wilmart, S. Olivier, S. Menezo, and J. K. S. Poon, “Optimization design of efficient broadband bi-layer grating couplers for a silicon nitride-on-silicon foundry platform,” in Optical Fiber Communication Conference (OSA, 2018), paper Tu2A.5. [CrossRef]  

41. J. C. C. Mak, Q. Wilmart, S. Olivier, S. Menezo, and J. K. S. Poon, “Silicon nitride-on-silicon bi-layer grating couplers designed by a global optimization method,” Opt. Express 26(10), 13656–13665 (2018). [CrossRef]   [PubMed]  

42. A. Chatterjee and S. K. Selvaraja, “Waveguide integration silicon MSM photodetector in silicon nitride-on-SOI platform for visible and NIR wavelength band,” in Optical Components and Materials XV (2018), paper 105280X.

43. H.-Y. Chen and K.-C. Yang, “Design of a high-efficiency grating coupler based on a silicon nitride overlay for silicon-on-insulator waveguides,” Appl. Opt. 49(33), 6455–6462 (2010). [CrossRef]   [PubMed]  

44. G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17(6), 1190–1192 (2005). [CrossRef]  

45. T. Barwicz, M. Popović, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express 12(7), 1437–1442 (2004). [CrossRef]   [PubMed]  

46. M. R. Watts, M. J. Shaw, and G. N. Nielson, “Microphotonic thermal imaging,” Nat. Photonics 1(11), 632–634 (2007). [CrossRef]  

47. M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communication Conference (2005), paper PDP11. [CrossRef]  

48. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007). [CrossRef]  

49. J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. J. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. D. Coolbaugh, and M. R. Watts, “1.8-μm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 97440U (2016). [CrossRef]  

50. P. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013). [CrossRef]   [PubMed]  

51. E. S. Hosseini, P. Purnawirman, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106–3109 (2014). [CrossRef]   [PubMed]  

52. J. Sun, P. Purnawirman, E. S. Hosseini, J. D. B. Bradley, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Uniformly spaced λ/4-shifted Bragg grating array with wafer-scale CMOS-compatible process,” Opt. Lett. 38(20), 4002–4004 (2013). [CrossRef]   [PubMed]  

53. Z. Su, N. Li, E. Salih Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016). [CrossRef]   [PubMed]  

54. C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017). [CrossRef]   [PubMed]  

55. J. Notaros, F. Pavanello, M. T. Wade, C. M. Gentry, A. Atabaki, L. Alloatti, R. J. Ram, and M. A. Popović, “Ultra-efficient CMOS fiber-to-chip grating couplers,” in Optical Fiber Communication Conference (OSA, 2016), M2I.5. [CrossRef]  

56. M. T. Wade, R. Kumar, K. Nammari, C. M. Gentry, J. M. Shainline, J. S. Orcutt, A. Tamma, R. J. Ram, V. Stojanović, and M. A. Popović, “Unidirectional chip-to-fiber grating couplers in unmodified 45nm CMOS technology,” in Lasers and Electro-Optics (CLEO), 2014 Conference on (2014), pp. 1–2. [CrossRef]  

57. M. A. Popović, M. T. Wade, J. Notaros, F. Pavanello, J. M. Shainline, C. Sun, M. Georgas, B. Moss, S. Lin, V. Stojanović, J. S. Orcutt, L. Alloatti, A. Atabaki, and R. J. Ram, “Efficient photonic devices and monolithic transmitters in sub-100 nm SOI CMOS,” in IEEE Summer Topical Meeting on On-Chip Optical Interconnects (OCOI), (2015).

58. A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimising apodized grating couplers in a pure SOI platform to -0.5 dB coupling efficiency,” Opt. Express 23(12), 16289–16304 (2015). [CrossRef]   [PubMed]  

59. R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7(1), 16670 (2017). [CrossRef]   [PubMed]  

60. R. Orobtchouk, A. Layadi, H. Gualous, D. Pascal, A. Koster, and S. Laval, “High-efficiency light coupling in a submicrometric silicon-on-insulator waveguide,” Appl. Opt. 39(31), 5773–5777 (2000). [CrossRef]   [PubMed]  

61. X. Chen, C. Li, S. M. G. Lo, K. Fung, and H. K. Tsang, “Silicon waveguide grating couplers with engineered coupling strength for optimized coupling,” in European Conference on Integrated Optics (2010).

62. Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013). [CrossRef]   [PubMed]  

63. M. H. Lee, J. Y. Jo, D. W. Kim, Y. Kim, and K. H. Kim, “Comparative study of uniform and nonuniform grating couplers for optimized fiber coupling to silicon waveguides,” J. Opt. Soc. Korea 20(2), 291–299 (2016). [CrossRef]  

64. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011). [CrossRef]  

65. S. Miyanaga and T. Asakura, “Intensity profile of outgoing beams from uniform and linearly tapered grating couplers,” Appl. Opt. 20(4), 688–695 (1981). [CrossRef]   [PubMed]  

66. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004). [CrossRef]   [PubMed]  

67. D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006). [CrossRef]  

68. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014). [CrossRef]   [PubMed]  

69. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101(10), 101104 (2012). [CrossRef]  

70. G. Roelkens, D. Taillaert, F. Van Laere, D. Vermeulen, J. Schrauwen, S. Scheerlinck, T. Claes, W. Bogaerts, P. Dumon, S. Selvaraja, D. Van Thourhout, and R. Baets, “Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers,” Proc. SPIE 7218, 721808 (2009). [CrossRef]  

71. F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007). [CrossRef]  

72. D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015). [CrossRef]   [PubMed]  

73. D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photon. Rev. 8(6), L93–L97 (2014). [CrossRef]  

74. L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010). [CrossRef]   [PubMed]  

References

  • View by:

  1. P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
    [Crossref] [PubMed]
  2. A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
    [Crossref]
  3. C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(1), 22 (2017).
    [Crossref] [PubMed]
  4. J. F. Bauters, M. J. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
    [Crossref] [PubMed]
  5. P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18(14), 14474–14479 (2010).
    [Crossref] [PubMed]
  6. R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, and S. Severi, “Silicon photonics. silicon nitride versus silicon-on-insulator,” in Optical Fiber Communications Conference and Exhibition (OFC), 2016 (2016), pp. 1–3.
  7. J. K. S. Poon, W. D. Sacher, Y. Huang, and G.-Q. Lo, “Integrated photonic devices and circuits in multilayer silicon nitride-on-silicon platforms,” in Optical Fiber Communication Conference (OSA, 2015), paper Th3F.1.
    [Crossref]
  8. W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol. 33(4), 901–910 (2015).
    [Crossref]
  9. R. Amatya, C. W. Holzwarth, M. A. Popović, F. Gan, H. I. Smith, F. X. Kärtner, and R. J. Ram, “Low power thermal tuning of second-order microring resonators,” in Lasers and Electro-Optics, 2007. CLEO 2007. Conference on (2007), pp. 1–2.
    [Crossref]
  10. G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
    [Crossref]
  11. J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter 49(11), 7408–7417 (1994).
    [Crossref] [PubMed]
  12. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
    [Crossref] [PubMed]
  13. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
    [Crossref]
  14. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
    [Crossref]
  15. C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
    [Crossref]
  16. W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22(9), 10938–10947 (2014).
    [Crossref] [PubMed]
  17. L. Cai, A. Rohatgi, D. Yang, and M. A. El-Sayed, “Effects of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films,” J. Appl. Phys. 80(9), 5384–5388 (1996).
    [Crossref]
  18. V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009).
    [Crossref]
  19. Y. Chen, T. Domínguez Bucio, A. Z. Khokhar, M. Banakar, K. Grabska, F. Y. Gardes, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides,” Opt. Lett. 42(18), 3566–3569 (2017).
    [Crossref] [PubMed]
  20. S. Ura, K. Mori, R. Tsujimoto, J. Inoue, and K. Kintaka, “Position dependence of coupling efficiency of grating coupler in waveguide cavity,” in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) (IEEE, 2017), pp. 1619–1626.
    [Crossref]
  21. J. Litvik, I. Dolnak, and M. Dado, “Waveguide silicon nitride grating coupler,” Proc. SPIE 10142, 1014213 (2016).
    [Crossref]
  22. D. Li, X. Zhao, C. Zeng, G. Gao, Z. Huang, and J. Xia, “Compact grating coupler for thick silicon nitride,” in Optical Fiber Communications Conference and Exhibition (OFC), 2016 (2016), pp. 1–3.
  23. W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Ultra-Efficient and Broadband Dual-Level Si3N4-on-SOI Grating Coupler,” in CLEO:2014 (OSA, 2014), paper STh3M.4.
  24. S. Dwivedi, B. Song, Y. Liu, R. Moreira, S. Estrella, L. Johansson, and J. Klamkin, “Integrated silicon nitride fan-in/fan-out for multi-core fiber interconnects,” in Integrated Photonics Research, Silicon and Nanophotonics (2017), paper IW2A–3.
  25. X. Zhao, D. Li, C. Zeng, G. Gao, Z. Huang, Q. Huang, Y. Wang, and J. Xia, “Compact grating coupler for 700-nm silicon nitride strip waveguides,” J. Lightwave Technol. 34(4), 1322–1327 (2016).
    [Crossref]
  26. S. Nambiar, M. Hemalatha, T. Sharma, and S. K. Selvaraja, “Integrated silicon nitride based TE dual-band grating coupler,” in The European Conference on Lasers and Electro-Optics (2017), paper CI_P_4.
    [Crossref]
  27. Y. Chen, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “High-efficiency apodized-imaging chip-fiber grating coupler for silicon nitride waveguides,” Opt. Lett. 41(21), 5059–5062 (2016).
    [Crossref] [PubMed]
  28. S. Dwivedi, B. Song, Y. Liu, R. Moreira, L. Johanson, and J. Klamkin, “Demonstration of compact silicon nitride grating coupler arrays for fan-out of multicore fibers,” in Conference on Lasers and Electro-Optics (OSA, 2017), paper ATh3B.4.
    [Crossref]
  29. C. Xu, M. Khajavikhan, and P. LiKamWa, “A silicon nitride grating coupler for efficient coupling between waveguide and fiber,” in Photonics Conference (IPC), 2017 IEEE (2017), pp. 425–426.
  30. J. Hong and S. Yokoyama, “Efficient silicon nitride grating coupler with a dielectric multilayer reflector,” in 201722nd Microoptics Conference (MOC) (IEEE, 2017), pp. 58–59.
    [Crossref]
  31. G. Maire, L. Vivien, G. Sattler, A. Kazmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express 16(1), 328–333 (2008).
    [Crossref] [PubMed]
  32. A. Z. Subramanian, S. K. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
    [Crossref]
  33. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
    [Crossref] [PubMed]
  34. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Visible wavelength silicon nitride focusing grating coupler with AlCu/TiN reflector,” Opt. Lett. 38(14), 2521–2523 (2013).
    [Crossref] [PubMed]
  35. Y. Zhu, J. Wang, W. Xie, B. Tian, Y. Li, E. Brainis, Y. Jiao, and D. van Thourhout, “Ultra-compact silicon nitride grating coupler for microscopy systems,” Opt. Express 25(26), 33297 (2017).
    [Crossref]
  36. P. Xu, Y. Zhang, Z. Shao, L. Liu, L. Zhou, C. Yang, Y. Chen, and S. Yu, “Fabrication-friendly high-efficiency silicon nitride grating coupler,” in Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2017 Conference on (2017), pp. 1–3.
    [Crossref]
  37. P. Xu, Y. Zhang, Z. Shao, L. Liu, L. Zhou, C. Yang, Y. Chen, and S. Yu, “High-efficiency wideband SiNx-on-SOI grating coupler with low fabrication complexity,” Opt. Lett. 42(17), 3391–3394 (2017).
    [Crossref] [PubMed]
  38. J. Zou, Y. Yu, M. Ye, L. Liu, S. Deng, and X. Zhang, “Ultra efficient silicon nitride grating coupler with bottom grating reflector,” Opt. Express 23(20), 26305–26312 (2015).
    [Crossref] [PubMed]
  39. H. Zhang, C. Li, X. Tu, J. Song, H. Zhou, X. Luo, Y. Huang, M. Yu, and G.-Q. Lo, “Efficient silicon nitride grating coupler with distributed Bragg reflectors,” Opt. Express 22(18), 21800–21805 (2014).
    [Crossref] [PubMed]
  40. J. C. C. Mak, Q. Wilmart, S. Olivier, S. Menezo, and J. K. S. Poon, “Optimization design of efficient broadband bi-layer grating couplers for a silicon nitride-on-silicon foundry platform,” in Optical Fiber Communication Conference (OSA, 2018), paper Tu2A.5.
    [Crossref]
  41. J. C. C. Mak, Q. Wilmart, S. Olivier, S. Menezo, and J. K. S. Poon, “Silicon nitride-on-silicon bi-layer grating couplers designed by a global optimization method,” Opt. Express 26(10), 13656–13665 (2018).
    [Crossref] [PubMed]
  42. A. Chatterjee and S. K. Selvaraja, “Waveguide integration silicon MSM photodetector in silicon nitride-on-SOI platform for visible and NIR wavelength band,” in Optical Components and Materials XV (2018), paper 105280X.
  43. H.-Y. Chen and K.-C. Yang, “Design of a high-efficiency grating coupler based on a silicon nitride overlay for silicon-on-insulator waveguides,” Appl. Opt. 49(33), 6455–6462 (2010).
    [Crossref] [PubMed]
  44. G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17(6), 1190–1192 (2005).
    [Crossref]
  45. T. Barwicz, M. Popović, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express 12(7), 1437–1442 (2004).
    [Crossref] [PubMed]
  46. M. R. Watts, M. J. Shaw, and G. N. Nielson, “Microphotonic thermal imaging,” Nat. Photonics 1(11), 632–634 (2007).
    [Crossref]
  47. M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communication Conference (2005), paper PDP11.
    [Crossref]
  48. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [Crossref]
  49. J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. J. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. D. Coolbaugh, and M. R. Watts, “1.8-μm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 97440U (2016).
    [Crossref]
  50. P. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
    [Crossref] [PubMed]
  51. E. S. Hosseini, P. Purnawirman, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106–3109 (2014).
    [Crossref] [PubMed]
  52. J. Sun, P. Purnawirman, E. S. Hosseini, J. D. B. Bradley, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Uniformly spaced λ/4-shifted Bragg grating array with wafer-scale CMOS-compatible process,” Opt. Lett. 38(20), 4002–4004 (2013).
    [Crossref] [PubMed]
  53. Z. Su, N. Li, E. Salih Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
    [Crossref] [PubMed]
  54. C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
    [Crossref] [PubMed]
  55. J. Notaros, F. Pavanello, M. T. Wade, C. M. Gentry, A. Atabaki, L. Alloatti, R. J. Ram, and M. A. Popović, “Ultra-efficient CMOS fiber-to-chip grating couplers,” in Optical Fiber Communication Conference (OSA, 2016), M2I.5.
    [Crossref]
  56. M. T. Wade, R. Kumar, K. Nammari, C. M. Gentry, J. M. Shainline, J. S. Orcutt, A. Tamma, R. J. Ram, V. Stojanović, and M. A. Popović, “Unidirectional chip-to-fiber grating couplers in unmodified 45nm CMOS technology,” in Lasers and Electro-Optics (CLEO), 2014 Conference on (2014), pp. 1–2.
    [Crossref]
  57. M. A. Popović, M. T. Wade, J. Notaros, F. Pavanello, J. M. Shainline, C. Sun, M. Georgas, B. Moss, S. Lin, V. Stojanović, J. S. Orcutt, L. Alloatti, A. Atabaki, and R. J. Ram, “Efficient photonic devices and monolithic transmitters in sub-100 nm SOI CMOS,” in IEEE Summer Topical Meeting on On-Chip Optical Interconnects (OCOI), (2015).
  58. A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimising apodized grating couplers in a pure SOI platform to -0.5 dB coupling efficiency,” Opt. Express 23(12), 16289–16304 (2015).
    [Crossref] [PubMed]
  59. R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7(1), 16670 (2017).
    [Crossref] [PubMed]
  60. R. Orobtchouk, A. Layadi, H. Gualous, D. Pascal, A. Koster, and S. Laval, “High-efficiency light coupling in a submicrometric silicon-on-insulator waveguide,” Appl. Opt. 39(31), 5773–5777 (2000).
    [Crossref] [PubMed]
  61. X. Chen, C. Li, S. M. G. Lo, K. Fung, and H. K. Tsang, “Silicon waveguide grating couplers with engineered coupling strength for optimized coupling,” in European Conference on Integrated Optics (2010).
  62. Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
    [Crossref] [PubMed]
  63. M. H. Lee, J. Y. Jo, D. W. Kim, Y. Kim, and K. H. Kim, “Comparative study of uniform and nonuniform grating couplers for optimized fiber coupling to silicon waveguides,” J. Opt. Soc. Korea 20(2), 291–299 (2016).
    [Crossref]
  64. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
    [Crossref]
  65. S. Miyanaga and T. Asakura, “Intensity profile of outgoing beams from uniform and linearly tapered grating couplers,” Appl. Opt. 20(4), 688–695 (1981).
    [Crossref] [PubMed]
  66. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [Crossref] [PubMed]
  67. D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
    [Crossref]
  68. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
    [Crossref] [PubMed]
  69. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101(10), 101104 (2012).
    [Crossref]
  70. G. Roelkens, D. Taillaert, F. Van Laere, D. Vermeulen, J. Schrauwen, S. Scheerlinck, T. Claes, W. Bogaerts, P. Dumon, S. Selvaraja, D. Van Thourhout, and R. Baets, “Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers,” Proc. SPIE 7218, 721808 (2009).
    [Crossref]
  71. F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
    [Crossref]
  72. D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
    [Crossref] [PubMed]
  73. D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photon. Rev. 8(6), L93–L97 (2014).
    [Crossref]
  74. L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010).
    [Crossref] [PubMed]

2018 (1)

2017 (7)

Y. Zhu, J. Wang, W. Xie, B. Tian, Y. Li, E. Brainis, Y. Jiao, and D. van Thourhout, “Ultra-compact silicon nitride grating coupler for microscopy systems,” Opt. Express 25(26), 33297 (2017).
[Crossref]

P. Xu, Y. Zhang, Z. Shao, L. Liu, L. Zhou, C. Yang, Y. Chen, and S. Yu, “High-efficiency wideband SiNx-on-SOI grating coupler with low fabrication complexity,” Opt. Lett. 42(17), 3391–3394 (2017).
[Crossref] [PubMed]

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
[Crossref] [PubMed]

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

Y. Chen, T. Domínguez Bucio, A. Z. Khokhar, M. Banakar, K. Grabska, F. Y. Gardes, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides,” Opt. Lett. 42(18), 3566–3569 (2017).
[Crossref] [PubMed]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[Crossref] [PubMed]

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7(1), 16670 (2017).
[Crossref] [PubMed]

2016 (6)

2015 (4)

2014 (5)

2013 (7)

J. Sun, P. Purnawirman, E. S. Hosseini, J. D. B. Bradley, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Uniformly spaced λ/4-shifted Bragg grating array with wafer-scale CMOS-compatible process,” Opt. Lett. 38(20), 4002–4004 (2013).
[Crossref] [PubMed]

P. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
[Crossref] [PubMed]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Visible wavelength silicon nitride focusing grating coupler with AlCu/TiN reflector,” Opt. Lett. 38(14), 2521–2523 (2013).
[Crossref] [PubMed]

A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
[Crossref] [PubMed]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
[Crossref] [PubMed]

2012 (3)

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101(10), 101104 (2012).
[Crossref]

A. Z. Subramanian, S. K. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[Crossref]

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

2011 (2)

J. F. Bauters, M. J. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

2010 (4)

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010).
[Crossref] [PubMed]

P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18(14), 14474–14479 (2010).
[Crossref] [PubMed]

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[Crossref]

H.-Y. Chen and K.-C. Yang, “Design of a high-efficiency grating coupler based on a silicon nitride overlay for silicon-on-insulator waveguides,” Appl. Opt. 49(33), 6455–6462 (2010).
[Crossref] [PubMed]

2009 (2)

V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009).
[Crossref]

G. Roelkens, D. Taillaert, F. Van Laere, D. Vermeulen, J. Schrauwen, S. Scheerlinck, T. Claes, W. Bogaerts, P. Dumon, S. Selvaraja, D. Van Thourhout, and R. Baets, “Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers,” Proc. SPIE 7218, 721808 (2009).
[Crossref]

2008 (1)

2007 (3)

M. R. Watts, M. J. Shaw, and G. N. Nielson, “Microphotonic thermal imaging,” Nat. Photonics 1(11), 632–634 (2007).
[Crossref]

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

2006 (1)

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

2005 (1)

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17(6), 1190–1192 (2005).
[Crossref]

2004 (2)

2000 (1)

1999 (1)

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

1996 (1)

L. Cai, A. Rohatgi, D. Yang, and M. A. El-Sayed, “Effects of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films,” J. Appl. Phys. 80(9), 5384–5388 (1996).
[Crossref]

1994 (1)

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter 49(11), 7408–7417 (1994).
[Crossref] [PubMed]

1992 (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

1981 (1)

Adam, T. N.

Alemany, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
[Crossref] [PubMed]

Andreani, L. C.

Arbabi, A.

Arnoldbik, W. M.

V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009).
[Crossref]

Asakura, T.

Asghari, M.

Avrahami, Y.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17(6), 1190–1192 (2005).
[Crossref]

Ayre, M.

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Baets, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

A. Z. Subramanian, S. K. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[Crossref]

G. Roelkens, D. Taillaert, F. Van Laere, D. Vermeulen, J. Schrauwen, S. Scheerlinck, T. Claes, W. Bogaerts, P. Dumon, S. Selvaraja, D. Van Thourhout, and R. Baets, “Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers,” Proc. SPIE 7218, 721808 (2009).
[Crossref]

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

Bakker, R.

V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009).
[Crossref]

Banakar, M.

Baños, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
[Crossref] [PubMed]

Barbastathis, G.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17(6), 1190–1192 (2005).
[Crossref]

Barton, J. S.

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

T. Barwicz, M. Popović, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express 12(7), 1437–1442 (2004).
[Crossref] [PubMed]

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communication Conference (2005), paper PDP11.
[Crossref]

Bauters, J. F.

Benedikovic, D.

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photon. Rev. 8(6), L93–L97 (2014).
[Crossref]

Berroth, M.

Bienstman, P.

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

Blumenthal, D. J.

Bogaerts, W.

G. Roelkens, D. Taillaert, F. Van Laere, D. Vermeulen, J. Schrauwen, S. Scheerlinck, T. Claes, W. Bogaerts, P. Dumon, S. Selvaraja, D. Van Thourhout, and R. Baets, “Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers,” Proc. SPIE 7218, 721808 (2009).
[Crossref]

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Borsa, D. M.

V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009).
[Crossref]

Bowers, J. E.

Bozzola, A.

Bradley, J. D. B.

Brainis, E.

Bru, L. A.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
[Crossref] [PubMed]

Bruinink, C. M.

Bucio, T. D.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

Buhl, L. L.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[Crossref]

Burghartz, J.

Butschke, J.

Byrd, M.

Byrd, M. J.

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[Crossref] [PubMed]

J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. J. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. D. Coolbaugh, and M. R. Watts, “1.8-μm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 97440U (2016).
[Crossref]

Cai, L.

L. Cai, A. Rohatgi, D. Yang, and M. A. El-Sayed, “Effects of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films,” J. Appl. Phys. 80(9), 5384–5388 (1996).
[Crossref]

Carroll, L.

Cassan, E.

Cheben, P.

Chen, H.-Y.

Chen, L.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[Crossref]

Chen, X.

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7(1), 16670 (2017).
[Crossref] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101(10), 101104 (2012).
[Crossref]

X. Chen, C. Li, S. M. G. Lo, K. Fung, and H. K. Tsang, “Silicon waveguide grating couplers with engineered coupling strength for optimized coupling,” in European Conference on Integrated Optics (2010).

Chen, Y.

Chen, Y.-K.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[Crossref]

Cheng, Z.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101(10), 101104 (2012).
[Crossref]

Cirera, J. M.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
[Crossref] [PubMed]

Claes, T.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

G. Roelkens, D. Taillaert, F. Van Laere, D. Vermeulen, J. Schrauwen, S. Scheerlinck, T. Claes, W. Bogaerts, P. Dumon, S. Selvaraja, D. Van Thourhout, and R. Baets, “Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers,” Proc. SPIE 7218, 721808 (2009).
[Crossref]

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

Coolbaugh, D.

Coolbaugh, D. D.

J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. J. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. D. Coolbaugh, and M. R. Watts, “1.8-μm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 97440U (2016).
[Crossref]

E. S. Hosseini, P. Purnawirman, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106–3109 (2014).
[Crossref] [PubMed]

Cristiani, I.

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7(1), 16670 (2017).
[Crossref] [PubMed]

A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimising apodized grating couplers in a pure SOI platform to -0.5 dB coupling efficiency,” Opt. Express 23(12), 16289–16304 (2015).
[Crossref] [PubMed]

Dado, M.

J. Litvik, I. Dolnak, and M. Dado, “Waveguide silicon nitride grating coupler,” Proc. SPIE 10142, 1014213 (2016).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photon. Rev. 8(6), L93–L97 (2014).
[Crossref]

de Dobbelaere, P.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Dekkers, H. F. W.

V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009).
[Crossref]

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

Deng, S.

Deshpande, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Dhakal, A.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

A. Z. Subramanian, S. K. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[Crossref]

Ding, L.

Ding, Y.

Doerr, C. R.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[Crossref]

Dolnak, I.

J. Litvik, I. Dolnak, and M. Dado, “Waveguide silicon nitride grating coupler,” Proc. SPIE 10142, 1014213 (2016).
[Crossref]

Doménech, J. D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
[Crossref] [PubMed]

Domínguez, C.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
[Crossref] [PubMed]

Domínguez Bucio, T.

Dong, P.

Donnelly, V. M.

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter 49(11), 7408–7417 (1994).
[Crossref] [PubMed]

Du Bois, B.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Dumon, P.

G. Roelkens, D. Taillaert, F. Van Laere, D. Vermeulen, J. Schrauwen, S. Scheerlinck, T. Claes, W. Bogaerts, P. Dumon, S. Selvaraja, D. Van Thourhout, and R. Baets, “Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers,” Proc. SPIE 7218, 721808 (2009).
[Crossref]

El-Sayed, M. A.

L. Cai, A. Rohatgi, D. Yang, and M. A. El-Sayed, “Effects of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films,” J. Appl. Phys. 80(9), 5384–5388 (1996).
[Crossref]

Feng, D.

Feng, N.-N.

Fernández, J.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
[Crossref] [PubMed]

Finkelstein, H.

Fong, J.

Fung, K.

X. Chen, C. Li, S. M. G. Lo, K. Fung, and H. K. Tsang, “Silicon waveguide grating couplers with engineered coupling strength for optimized coupling,” in European Conference on Integrated Optics (2010).

Gao, G.

Gardes, F. Y.

Y. Chen, T. Domínguez Bucio, A. Z. Khokhar, M. Banakar, K. Grabska, F. Y. Gardes, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides,” Opt. Lett. 42(18), 3566–3569 (2017).
[Crossref] [PubMed]

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

Gargallo, B.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
[Crossref] [PubMed]

Gerace, D.

Giannone, D.

Gloeckner, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Goddard, L. L.

Grabska, K.

Griol, A.

Gualous, H.

Gylfason, K. B.

Halir, R.

Haus, H.

Haus, H. A.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17(6), 1190–1192 (2005).
[Crossref]

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communication Conference (2005), paper PDP11.
[Crossref]

He, J.-J.

Heck, M. J.

Heideman, R. G.

Heinert, D.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Helin, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Hemalatha, M.

S. Nambiar, M. Hemalatha, T. Sharma, and S. K. Selvaraja, “Integrated silicon nitride based TE dual-band grating coupler,” in The European Conference on Lasers and Electro-Optics (2017), paper CI_P_4.
[Crossref]

Hill, D.

Hofmann, G.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Hosseini, E. S.

Houweling, Z. S.

V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009).
[Crossref]

Huang, Q.

Huang, Y.

Huang, Z.

Hvam, J. M.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010).
[Crossref] [PubMed]

Ippen, E.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communication Conference (2005), paper PDP11.
[Crossref]

Jansen, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Janz, S.

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photon. Rev. 8(6), L93–L97 (2014).
[Crossref]

Jayatilleka, H.

Jiao, Y.

Jo, J. Y.

John, D. D.

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Kazmierczak, A.

Khokhar, A.

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7(1), 16670 (2017).
[Crossref] [PubMed]

Khokhar, A. Z.

Y. Chen, T. Domínguez Bucio, A. Z. Khokhar, M. Banakar, K. Grabska, F. Y. Gardes, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides,” Opt. Lett. 42(18), 3566–3569 (2017).
[Crossref] [PubMed]

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

Kim, D. W.

Kim, K. H.

Kim, Y.

Komma, J.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Komorowska, K.

A. Z. Subramanian, S. K. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[Crossref]

Koster, A.

Krishnamoorthy, A. V.

Kung, C.-C.

Kunze, A.

Lacava, C.

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7(1), 16670 (2017).
[Crossref] [PubMed]

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

Lamontagne, B.

Lapointe, J.

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photon. Rev. 8(6), L93–L97 (2014).
[Crossref]

Laval, S.

Layadi, A.

Leake, G.

Lee, M. H.

Leinse, A.

Letzkus, F.

Leyssens, K.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Li, C.

H. Zhang, C. Li, X. Tu, J. Song, H. Zhou, X. Luo, Y. Huang, M. Yu, and G.-Q. Lo, “Efficient silicon nitride grating coupler with distributed Bragg reflectors,” Opt. Express 22(18), 21800–21805 (2014).
[Crossref] [PubMed]

X. Chen, C. Li, S. M. G. Lo, K. Fung, and H. K. Tsang, “Silicon waveguide grating couplers with engineered coupling strength for optimized coupling,” in European Conference on Integrated Optics (2010).

Li, D.

Li, N.

Li, Y.

Liang, H.

Liao, S.

Litvik, J.

J. Litvik, I. Dolnak, and M. Dado, “Waveguide silicon nitride grating coupler,” Proc. SPIE 10142, 1014213 (2016).
[Crossref]

Liu, L.

Lo, G.-Q.

Lo, S. M. G.

X. Chen, C. Li, S. M. G. Lo, K. Fung, and H. K. Tsang, “Silicon waveguide grating couplers with engineered coupling strength for optimized coupling,” in European Conference on Integrated Optics (2010).

Lopez-Royo, F.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17(6), 1190–1192 (2005).
[Crossref]

Luo, X.

Luxembourg, S. L.

V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009).
[Crossref]

Magden, E. S.

J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. J. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. D. Coolbaugh, and M. R. Watts, “1.8-μm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 97440U (2016).
[Crossref]

Maire, G.

Mak, J. C. C.

Marchetti, R.

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7(1), 16670 (2017).
[Crossref] [PubMed]

Marris-Morini, D.

Mas, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
[Crossref] [PubMed]

Masini, G.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

McCaulley, J. A.

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter 49(11), 7408–7417 (1994).
[Crossref] [PubMed]

Mekis, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Menezo, S.

Merget, F.

Micó, G.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
[Crossref] [PubMed]

Minzioni, P.

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7(1), 16670 (2017).
[Crossref] [PubMed]

Miyanaga, S.

Molina-Fernández, Í.

Muñoz, P.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
[Crossref] [PubMed]

Nambiar, S.

S. Nambiar, M. Hemalatha, T. Sharma, and S. K. Selvaraja, “Integrated silicon nitride based TE dual-band grating coupler,” in The European Conference on Lasers and Electro-Optics (2017), paper CI_P_4.
[Crossref]

Narasimha, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Nawrodt, R.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Neutens, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Nielson, G. N.

M. R. Watts, M. J. Shaw, and G. N. Nielson, “Microphotonic thermal imaging,” Nat. Photonics 1(11), 632–634 (2007).
[Crossref]

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17(6), 1190–1192 (2005).
[Crossref]

O’Faolain, L.

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Olivier, S.

Orobtchouk, R.

Ortega-Moñux, A.

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photon. Rev. 8(6), L93–L97 (2014).
[Crossref]

Ou, H.

Pascal, D.

Pastor, D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
[Crossref] [PubMed]

Pérez, D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
[Crossref] [PubMed]

Petropoulos, P.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7(1), 16670 (2017).
[Crossref] [PubMed]

Peucheret, C.

Peyskens, F.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Pinguet, T.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Poon, J. K. S.

Popovic, M.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Poulton, C. V.

Pu, M.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010).
[Crossref] [PubMed]

Purnawirman, P.

Qi, M.

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communication Conference (2005), paper PDP11.
[Crossref]

Qian, W.

Rakich, P.

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17(6), 1190–1192 (2005).
[Crossref]

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communication Conference (2005), paper PDP11.
[Crossref]

Raval, M.

Reed, G. T.

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7(1), 16670 (2017).
[Crossref] [PubMed]

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

Rendina, I.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

Richardson, D. J.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7(1), 16670 (2017).
[Crossref] [PubMed]

Roelkens, G.

G. Roelkens, D. Taillaert, F. Van Laere, D. Vermeulen, J. Schrauwen, S. Scheerlinck, T. Claes, W. Bogaerts, P. Dumon, S. Selvaraja, D. Van Thourhout, and R. Baets, “Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers,” Proc. SPIE 7218, 721808 (2009).
[Crossref]

Rohatgi, A.

L. Cai, A. Rohatgi, D. Yang, and M. A. El-Sayed, “Effects of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films,” J. Appl. Phys. 80(9), 5384–5388 (1996).
[Crossref]

Romero-García, S.

Romijn, I. G.

V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009).
[Crossref]

Rottenberg, X.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Sacher, W. D.

Sahni, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Salih Magden, E.

Sanchez, B.

Sánchez, A. M.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
[Crossref] [PubMed]

Sattler, G.

Scheerlinck, S.

G. Roelkens, D. Taillaert, F. Van Laere, D. Vermeulen, J. Schrauwen, S. Scheerlinck, T. Claes, W. Bogaerts, P. Dumon, S. Selvaraja, D. Van Thourhout, and R. Baets, “Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers,” Proc. SPIE 7218, 721808 (2009).
[Crossref]

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Schmid, J. H.

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photon. Rev. 8(6), L93–L97 (2014).
[Crossref]

Schrauwen, J.

G. Roelkens, D. Taillaert, F. Van Laere, D. Vermeulen, J. Schrauwen, S. Scheerlinck, T. Claes, W. Bogaerts, P. Dumon, S. Selvaraja, D. Van Thourhout, and R. Baets, “Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers,” Proc. SPIE 7218, 721808 (2009).
[Crossref]

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Schropp, R. E. I.

V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009).
[Crossref]

Schwarz, C.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Selvaraja, S.

G. Roelkens, D. Taillaert, F. Van Laere, D. Vermeulen, J. Schrauwen, S. Scheerlinck, T. Claes, W. Bogaerts, P. Dumon, S. Selvaraja, D. Van Thourhout, and R. Baets, “Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers,” Proc. SPIE 7218, 721808 (2009).
[Crossref]

Selvaraja, S. K.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

A. Z. Subramanian, S. K. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[Crossref]

S. Nambiar, M. Hemalatha, T. Sharma, and S. K. Selvaraja, “Integrated silicon nitride based TE dual-band grating coupler,” in The European Conference on Lasers and Electro-Optics (2017), paper CI_P_4.
[Crossref]

Seneviratne, D.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17(6), 1190–1192 (2005).
[Crossref]

Severi, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Shafiiha, R.

Shah Hosseini, E.

Shao, Z.

Sharma, T.

S. Nambiar, M. Hemalatha, T. Sharma, and S. K. Selvaraja, “Integrated silicon nitride based TE dual-band grating coupler,” in The European Conference on Lasers and Electro-Optics (2017), paper CI_P_4.
[Crossref]

Shaw, M. J.

M. R. Watts, M. J. Shaw, and G. N. Nielson, “Microphotonic thermal imaging,” Nat. Photonics 1(11), 632–634 (2007).
[Crossref]

Smith, H.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communication Conference (2005), paper PDP11.
[Crossref]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communication Conference (2005), paper PDP11.
[Crossref]

Sohlström, H.

Song, J.

Stankovic, S.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

Su, Z.

Subramanian, A. Z.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

A. Z. Subramanian, S. K. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[Crossref]

Sun, J.

Taha, I.

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter 49(11), 7408–7417 (1994).
[Crossref] [PubMed]

Taillaert, D.

G. Roelkens, D. Taillaert, F. Van Laere, D. Vermeulen, J. Schrauwen, S. Scheerlinck, T. Claes, W. Bogaerts, P. Dumon, S. Selvaraja, D. Van Thourhout, and R. Baets, “Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers,” Proc. SPIE 7218, 721808 (2009).
[Crossref]

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

Taylor, B. J. F.

Tian, B.

Timurdogan, E.

Tsang, H. K.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101(10), 101104 (2012).
[Crossref]

X. Chen, C. Li, S. M. G. Lo, K. Fung, and H. K. Tsang, “Silicon waveguide grating couplers with engineered coupling strength for optimized coupling,” in European Conference on Integrated Optics (2010).

Tu, X.

Tuller, H. L.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17(6), 1190–1192 (2005).
[Crossref]

van der Werf, C. H. M.

V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009).
[Crossref]

Van Dorpe, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Van Laere, F.

G. Roelkens, D. Taillaert, F. Van Laere, D. Vermeulen, J. Schrauwen, S. Scheerlinck, T. Claes, W. Bogaerts, P. Dumon, S. Selvaraja, D. Van Thourhout, and R. Baets, “Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers,” Proc. SPIE 7218, 721808 (2009).
[Crossref]

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

van Thourhout, D.

Y. Zhu, J. Wang, W. Xie, B. Tian, Y. Li, E. Brainis, Y. Jiao, and D. van Thourhout, “Ultra-compact silicon nitride grating coupler for microscopy systems,” Opt. Express 25(26), 33297 (2017).
[Crossref]

G. Roelkens, D. Taillaert, F. Van Laere, D. Vermeulen, J. Schrauwen, S. Scheerlinck, T. Claes, W. Bogaerts, P. Dumon, S. Selvaraja, D. Van Thourhout, and R. Baets, “Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers,” Proc. SPIE 7218, 721808 (2009).
[Crossref]

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Verheyen, P.

A. Z. Subramanian, S. K. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[Crossref]

Verkerk, A. D.

V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009).
[Crossref]

Verlaan, V.

V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009).
[Crossref]

Vermeulen, D.

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[Crossref] [PubMed]

G. Roelkens, D. Taillaert, F. Van Laere, D. Vermeulen, J. Schrauwen, S. Scheerlinck, T. Claes, W. Bogaerts, P. Dumon, S. Selvaraja, D. Van Thourhout, and R. Baets, “Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers,” Proc. SPIE 7218, 721808 (2009).
[Crossref]

Vernon, M.

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter 49(11), 7408–7417 (1994).
[Crossref] [PubMed]

Vivien, L.

Vogel, W.

Wang, J.

Wang, S.

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photon. Rev. 8(6), L93–L97 (2014).
[Crossref]

Wang, Y.

Watts, M.

Watts, M. R.

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[Crossref] [PubMed]

J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. J. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. D. Coolbaugh, and M. R. Watts, “1.8-μm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 97440U (2016).
[Crossref]

Z. Su, N. Li, E. Salih Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
[Crossref] [PubMed]

E. S. Hosseini, P. Purnawirman, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106–3109 (2014).
[Crossref] [PubMed]

P. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
[Crossref] [PubMed]

J. Sun, P. Purnawirman, E. S. Hosseini, J. D. B. Bradley, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Uniformly spaced λ/4-shifted Bragg grating array with wafer-scale CMOS-compatible process,” Opt. Lett. 38(20), 4002–4004 (2013).
[Crossref] [PubMed]

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

M. R. Watts, M. J. Shaw, and G. N. Nielson, “Microphotonic thermal imaging,” Nat. Photonics 1(11), 632–634 (2007).
[Crossref]

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17(6), 1190–1192 (2005).
[Crossref]

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communication Conference (2005), paper PDP11.
[Crossref]

Weeber, A. W.

V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009).
[Crossref]

Wilmart, Q.

Witzens, J.

Wong, C. Y.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101(10), 101104 (2012).
[Crossref]

Xia, J.

Xie, W.

Xu, D.-X.

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photon. Rev. 8(6), L93–L97 (2014).
[Crossref]

Xu, K.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101(10), 101104 (2012).
[Crossref]

Xu, P.

Yang, C.

Yang, D.

L. Cai, A. Rohatgi, D. Yang, and M. A. El-Sayed, “Effects of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films,” J. Appl. Phys. 80(9), 5384–5388 (1996).
[Crossref]

Yang, K.-C.

Ye, M.

Yu, M.

Yu, S.

Yu, Y.

Yvind, K.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010).
[Crossref] [PubMed]

Zaoui, W. S.

Zeman, M.

V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009).
[Crossref]

Zeng, C.

Zhang, H.

Zhang, X.

Zhang, Y.

Zhao, X.

Zhong, F.

Zhou, H.

Zhou, L.

Zhu, Y.

Zou, J.

Appl. Opt. (3)

Appl. Phys. Lett. (4)

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101(10), 101104 (2012).
[Crossref]

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051126 (2010).
[Crossref] [PubMed]

Electron. Lett. (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. de Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

IEEE Photon. J. (1)

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. K. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (4)

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[Crossref]

A. Z. Subramanian, S. K. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[Crossref]

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17(6), 1190–1192 (2005).
[Crossref]

F. van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

J. Appl. Phys. (1)

L. Cai, A. Rohatgi, D. Yang, and M. A. El-Sayed, “Effects of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films,” J. Appl. Phys. 80(9), 5384–5388 (1996).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Korea (1)

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Laser Photon. Rev. (1)

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “High-efficiency single etch step apodized surface grating coupler using subwavelength structure,” Laser Photon. Rev. 8(6), L93–L97 (2014).
[Crossref]

Nat. Photonics (2)

M. R. Watts, M. J. Shaw, and G. N. Nielson, “Microphotonic thermal imaging,” Nat. Photonics 1(11), 632–634 (2007).
[Crossref]

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Opt. Express (13)

A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimising apodized grating couplers in a pure SOI platform to -0.5 dB coupling efficiency,” Opt. Express 23(12), 16289–16304 (2015).
[Crossref] [PubMed]

T. Barwicz, M. Popović, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express 12(7), 1437–1442 (2004).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
[Crossref] [PubMed]

Y. Zhu, J. Wang, W. Xie, B. Tian, Y. Li, E. Brainis, Y. Jiao, and D. van Thourhout, “Ultra-compact silicon nitride grating coupler for microscopy systems,” Opt. Express 25(26), 33297 (2017).
[Crossref]

G. Maire, L. Vivien, G. Sattler, A. Kazmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express 16(1), 328–333 (2008).
[Crossref] [PubMed]

J. Zou, Y. Yu, M. Ye, L. Liu, S. Deng, and X. Zhang, “Ultra efficient silicon nitride grating coupler with bottom grating reflector,” Opt. Express 23(20), 26305–26312 (2015).
[Crossref] [PubMed]

H. Zhang, C. Li, X. Tu, J. Song, H. Zhou, X. Luo, Y. Huang, M. Yu, and G.-Q. Lo, “Efficient silicon nitride grating coupler with distributed Bragg reflectors,” Opt. Express 22(18), 21800–21805 (2014).
[Crossref] [PubMed]

J. C. C. Mak, Q. Wilmart, S. Olivier, S. Menezo, and J. K. S. Poon, “Silicon nitride-on-silicon bi-layer grating couplers designed by a global optimization method,” Opt. Express 26(10), 13656–13665 (2018).
[Crossref] [PubMed]

J. F. Bauters, M. J. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18(14), 14474–14479 (2010).
[Crossref] [PubMed]

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22(9), 10938–10947 (2014).
[Crossref] [PubMed]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

Opt. Lett. (12)

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Visible wavelength silicon nitride focusing grating coupler with AlCu/TiN reflector,” Opt. Lett. 38(14), 2521–2523 (2013).
[Crossref] [PubMed]

Y. Chen, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “High-efficiency apodized-imaging chip-fiber grating coupler for silicon nitride waveguides,” Opt. Lett. 41(21), 5059–5062 (2016).
[Crossref] [PubMed]

Y. Chen, T. Domínguez Bucio, A. Z. Khokhar, M. Banakar, K. Grabska, F. Y. Gardes, R. Halir, Í. Molina-Fernández, P. Cheben, and J.-J. He, “Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides,” Opt. Lett. 42(18), 3566–3569 (2017).
[Crossref] [PubMed]

A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
[Crossref] [PubMed]

P. Xu, Y. Zhang, Z. Shao, L. Liu, L. Zhou, C. Yang, Y. Chen, and S. Yu, “High-efficiency wideband SiNx-on-SOI grating coupler with low fabrication complexity,” Opt. Lett. 42(17), 3391–3394 (2017).
[Crossref] [PubMed]

P. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
[Crossref] [PubMed]

E. S. Hosseini, P. Purnawirman, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106–3109 (2014).
[Crossref] [PubMed]

J. Sun, P. Purnawirman, E. S. Hosseini, J. D. B. Bradley, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Uniformly spaced λ/4-shifted Bragg grating array with wafer-scale CMOS-compatible process,” Opt. Lett. 38(20), 4002–4004 (2013).
[Crossref] [PubMed]

Z. Su, N. Li, E. Salih Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
[Crossref] [PubMed]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[Crossref] [PubMed]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter (1)

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter 49(11), 7408–7417 (1994).
[Crossref] [PubMed]

Proc. SPIE (3)

J. Litvik, I. Dolnak, and M. Dado, “Waveguide silicon nitride grating coupler,” Proc. SPIE 10142, 1014213 (2016).
[Crossref]

J. D. B. Bradley, Z. Su, E. S. Magden, N. Li, M. J. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. D. Coolbaugh, and M. R. Watts, “1.8-μm thulium microlasers integrated on silicon,” Proc. SPIE 9744, 97440U (2016).
[Crossref]

G. Roelkens, D. Taillaert, F. Van Laere, D. Vermeulen, J. Schrauwen, S. Scheerlinck, T. Claes, W. Bogaerts, P. Dumon, S. Selvaraja, D. Van Thourhout, and R. Baets, “Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers,” Proc. SPIE 7218, 721808 (2009).
[Crossref]

Sci. Rep. (2)

R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, “High-efficiency grating-couplers: demonstration of a new design strategy,” Sci. Rep. 7(1), 16670 (2017).
[Crossref] [PubMed]

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(1), 22 (2017).
[Crossref] [PubMed]

Sensors (Basel) (1)

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel) 17(9), 2088 (2017).
[Crossref] [PubMed]

Thin Solid Films (1)

V. Verlaan, A. D. Verkerk, W. M. Arnoldbik, C. H. M. van der Werf, R. Bakker, Z. S. Houweling, I. G. Romijn, D. M. Borsa, A. W. Weeber, S. L. Luxembourg, M. Zeman, H. F. W. Dekkers, and R. E. I. Schropp, “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD,” Thin Solid Films 517(12), 3499–3502 (2009).
[Crossref]

Other (19)

S. Ura, K. Mori, R. Tsujimoto, J. Inoue, and K. Kintaka, “Position dependence of coupling efficiency of grating coupler in waveguide cavity,” in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) (IEEE, 2017), pp. 1619–1626.
[Crossref]

D. Li, X. Zhao, C. Zeng, G. Gao, Z. Huang, and J. Xia, “Compact grating coupler for thick silicon nitride,” in Optical Fiber Communications Conference and Exhibition (OFC), 2016 (2016), pp. 1–3.

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Ultra-Efficient and Broadband Dual-Level Si3N4-on-SOI Grating Coupler,” in CLEO:2014 (OSA, 2014), paper STh3M.4.

S. Dwivedi, B. Song, Y. Liu, R. Moreira, S. Estrella, L. Johansson, and J. Klamkin, “Integrated silicon nitride fan-in/fan-out for multi-core fiber interconnects,” in Integrated Photonics Research, Silicon and Nanophotonics (2017), paper IW2A–3.

S. Dwivedi, B. Song, Y. Liu, R. Moreira, L. Johanson, and J. Klamkin, “Demonstration of compact silicon nitride grating coupler arrays for fan-out of multicore fibers,” in Conference on Lasers and Electro-Optics (OSA, 2017), paper ATh3B.4.
[Crossref]

C. Xu, M. Khajavikhan, and P. LiKamWa, “A silicon nitride grating coupler for efficient coupling between waveguide and fiber,” in Photonics Conference (IPC), 2017 IEEE (2017), pp. 425–426.

J. Hong and S. Yokoyama, “Efficient silicon nitride grating coupler with a dielectric multilayer reflector,” in 201722nd Microoptics Conference (MOC) (IEEE, 2017), pp. 58–59.
[Crossref]

S. Nambiar, M. Hemalatha, T. Sharma, and S. K. Selvaraja, “Integrated silicon nitride based TE dual-band grating coupler,” in The European Conference on Lasers and Electro-Optics (2017), paper CI_P_4.
[Crossref]

R. Amatya, C. W. Holzwarth, M. A. Popović, F. Gan, H. I. Smith, F. X. Kärtner, and R. J. Ram, “Low power thermal tuning of second-order microring resonators,” in Lasers and Electro-Optics, 2007. CLEO 2007. Conference on (2007), pp. 1–2.
[Crossref]

R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, and S. Severi, “Silicon photonics. silicon nitride versus silicon-on-insulator,” in Optical Fiber Communications Conference and Exhibition (OFC), 2016 (2016), pp. 1–3.

J. K. S. Poon, W. D. Sacher, Y. Huang, and G.-Q. Lo, “Integrated photonic devices and circuits in multilayer silicon nitride-on-silicon platforms,” in Optical Fiber Communication Conference (OSA, 2015), paper Th3F.1.
[Crossref]

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communication Conference (2005), paper PDP11.
[Crossref]

X. Chen, C. Li, S. M. G. Lo, K. Fung, and H. K. Tsang, “Silicon waveguide grating couplers with engineered coupling strength for optimized coupling,” in European Conference on Integrated Optics (2010).

J. Notaros, F. Pavanello, M. T. Wade, C. M. Gentry, A. Atabaki, L. Alloatti, R. J. Ram, and M. A. Popović, “Ultra-efficient CMOS fiber-to-chip grating couplers,” in Optical Fiber Communication Conference (OSA, 2016), M2I.5.
[Crossref]

M. T. Wade, R. Kumar, K. Nammari, C. M. Gentry, J. M. Shainline, J. S. Orcutt, A. Tamma, R. J. Ram, V. Stojanović, and M. A. Popović, “Unidirectional chip-to-fiber grating couplers in unmodified 45nm CMOS technology,” in Lasers and Electro-Optics (CLEO), 2014 Conference on (2014), pp. 1–2.
[Crossref]

M. A. Popović, M. T. Wade, J. Notaros, F. Pavanello, J. M. Shainline, C. Sun, M. Georgas, B. Moss, S. Lin, V. Stojanović, J. S. Orcutt, L. Alloatti, A. Atabaki, and R. J. Ram, “Efficient photonic devices and monolithic transmitters in sub-100 nm SOI CMOS,” in IEEE Summer Topical Meeting on On-Chip Optical Interconnects (OCOI), (2015).

P. Xu, Y. Zhang, Z. Shao, L. Liu, L. Zhou, C. Yang, Y. Chen, and S. Yu, “Fabrication-friendly high-efficiency silicon nitride grating coupler,” in Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2017 Conference on (2017), pp. 1–3.
[Crossref]

A. Chatterjee and S. K. Selvaraja, “Waveguide integration silicon MSM photodetector in silicon nitride-on-SOI platform for visible and NIR wavelength band,” in Optical Components and Materials XV (2018), paper 105280X.

J. C. C. Mak, Q. Wilmart, S. Olivier, S. Menezo, and J. K. S. Poon, “Optimization design of efficient broadband bi-layer grating couplers for a silicon nitride-on-silicon foundry platform,” in Optical Fiber Communication Conference (OSA, 2018), paper Tu2A.5.
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Layer stack of the Multi-Project Wafer (MPW) service used for this work.
Fig. 2
Fig. 2 Optimized simulated fiber-to-chip coupling efficiencies of the (a) top-only, (b) top-and-bottom parallel and (c) displaced bilayer etch designs.
Fig. 3
Fig. 3 Details of the uniform SiNx bilayer etch design.
Fig. 4
Fig. 4 (a). Directionality of uniform 2.32 µm BOX SiNx bilayer etch design. (b) 2D FDTD simulation of the output E-fields of Uniform and Apodized 6 µm BOX designs with a fitted Gaussian and exponential decay to show the modal overlap.
Fig. 5
Fig. 5 (a)–(b). SEM micrograph of apodized rectangular grating couplers: (a) after first SiNx etch, (b) after second SiNx etch. (c)–(d) apodized circular: (c) after first SiNx etch, (d) after second SiNx etch. (e)–(f) apodized elliptical: (e) after first SiNx etch, (f) after second SiNx etch. Figure 5(d) shows the interlayer taper for curved designs which confines the temporary bilayer SiNx’s taper mode to just the bottom SiNx layer. It is linear, 27 µm long and terminates with a 100 nm tip.
Fig. 6
Fig. 6 Simulated and measured coupling efficiencies of SiNx bilayer grating coupler with 2.32 µm bottom oxide for (a) uniform and (b) apodized designs with different lateral layouts (circular, elliptical, and rectangular). Blue error bars indicate the 1 standard deviation of the elliptical layout’s average insertion loss.
Fig. 7
Fig. 7 Simulated and measured coupling efficiencies of SiNx bilayer grating coupler with 6.0 µm bottom oxide for (a) uniform and (b) apodized designs with different lateral layouts (circular, elliptical, and rectangular). Blue error bars indicate the 1 standard deviation of the elliptical layout’s average insertion loss. Variances in the 6 µm BOX designs are attributed to larger variation in deposited oxide thickness as compared to those on the 2.32 µm BOX platform.

Tables (3)

Tables Icon

Table 1 Comparing SiNx Grating Couplers in the Literature

Tables Icon

Table 2 Uniform Bilayer Design’s Dimensions

Tables Icon

Table 3 Apodized Bilayer Design’s Dimensions