Abstract

We are proposing next-generation lab-on-a-chip plasmonic tweezers with a built-in optical source that can be activated electrically. The building block of these tweezers is composed of an Au/p+-InAs/p+-AlAs0.16Sb0.84 Schottky diode, with a circular air-hole opened in the Au layer. Under an appropriate forward bias, the interband optical transitions in InAs, acting as a built-in optical source that can excite the localized surface plasmons (LSPs) around the edge of the hole. Numerical simulations show that the LSPs mode penetrates a chamber that is filled with water and electrically isolated from the top gold layer, providing the gradient force components desired for trapping the target nanoparticles suspended in the water. Moreover, we show that tweezers with air-holes of radius 90 nm under an applied bias of −1.6 V, can trap polystyrene nanoparticles of radius as small as 93 nm. The proposed structure provides a new platform for developing the next-generation compact on-chip plasmonic tweezers with no need for any external optical pump.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref]
  2. K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nano Today 1(1), 18–27 (2006).
    [Crossref]
  3. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref]
  4. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref]
  5. M. Gu, J. B. Haumonte, Y. Micheau, J. W. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236–4238 (2004).
    [Crossref]
  6. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface Plasmon Radiation Forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
    [Crossref]
  7. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
    [Crossref]
  8. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  9. A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
    [Crossref]
  10. M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nanoparticles,” J. Lightwave Technol. 33(16), 3453–3460 (2015).
    [Crossref]
  11. Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photonics Res. 5(5), 436–440 (2017).
    [Crossref]
  12. M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of sensing and trapping efficiency of double nanohole apertures via enhancing the wedge plasmon polariton modes with tapered cusps,” ACS Photonics 4(5), 1108–1113 (2017).
    [Crossref]
  13. M. Samadi, S. Vasini, S. Darbari, A. A. Khorshad, S. N. S. Reihani, and M. K. Moravvej-Farshi, “Hexagonal arrays of gold triangles as plasmonic tweezers,” Opt. Express 27(10), 14754–14766 (2019).
    [Crossref]
  14. M. Ghorbanzadeh, S. Darbari, and M. K. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
    [Crossref]
  15. M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Plasmonic optophoresis for manipulating, in situ position monitoring, sensing, and 3-D trapping of micro/nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23(2), 185–192 (2017).
    [Crossref]
  16. M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical investigation of tunable plasmonic tweezers based on graphene stripes,” Sci. Rep. 7(1), 14533 (2017).
    [Crossref]
  17. M. M. Abbasi, S. Darbari, and M. K. Moravvej-Farshi, “Tunable plasmonic force switch based on graphene nano-ring resonator for nanomanipulation,” Opt. Express 27(19), 26648–26660 (2019).
    [Crossref]
  18. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmons polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
    [Crossref]
  19. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
    [Crossref]
  20. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
    [Crossref]
  21. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
    [Crossref]
  22. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
    [Crossref]
  23. M. C. Gather, K. Meerholz, N. Danz, and L. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
    [Crossref]
  24. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
    [Crossref]
  25. D. Y. Fedyanin and V. A. Aleksey, “Surface plasmon polariton amplification in metal semiconductor structures,” Opt. Express 19(13), 12524–12541 (2011).
    [Crossref]
  26. D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12(5), 2459–2463 (2012).
    [Crossref]
  27. D. Y. Fedyanin, “toward an electrical pumped spaser,” Opt. Lett. 37(3), 404–406 (2012).
    [Crossref]
  28. A. A. Khorami, M. K. Moravvej-Farshi, and S. Darbari, “Ultralow-Power Electrically Activated Lab-on-a-Chip Plasmonic Tweezers,” Phys. Rev. Appl. 13(2), 024072 (2020).
    [Crossref]
  29. D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [Crossref]
  30. V. Apalkov and M. I. Stockman, “Proposed graphene nanospaser,” Light: Sci. Appl. 3(7), e191 (2014).
    [Crossref]
  31. P. Torma and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref]
  32. Michael Stührenberg, Battulga Munkhbat, Denis G. Baranov, Jorge Cuadra, Andrew B. Yankovich, Tomasz J. Antosiewicz, Eva Olsson, and Timur Shegai, “Strong light-matter coupling between plasmons in individual gold bipyramids and excitons in mono-and multilayers of WSe2,” Nano Lett. 18(9), 5938–5945, (2018).
    [Crossref]
  33. S. Bhargava, H. R. Blank, V. Narayanamurti, and H. Kroemer, “Fermi-level pinning position at the Au–InAs interface determined using ballistic electron emission microscopy,” Appl. Phys. Lett. 70(6), 759–761 (1997).
    [Crossref]
  34. D. B. Li and C. Z. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80(15), 153304 (2009).
    [Crossref]
  35. D. B. Li and C. Z. Ning, “Peculiar features of confinement factors in a metal-semiconductor waveguide,” Appl. Phys. Lett. 96(18), 181109 (2010).
    [Crossref]
  36. S. I. Azzam, A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light: Sci. Appl. 9(1), 90 (2020).
    [Crossref]
  37. J. J. Xiao, H. H. Zheng, Y. X. Sun, and Y. Yao, “Bipolar optical forces on dielectric and metallic nanoparticles by an evanescent wave,” Opt. Lett. 35(7), 962–964 (2010).
    [Crossref]
  38. X. Han, V. G. Troung, P. S. Thomas, and S. N. Chormaic, “Sequential trapping of single nanoparticles using a gold plasmonic nanohole array,” Photonics Res. 6(10), 981–986 (2018).
    [Crossref]
  39. A. A. Saleh, S. Sheikhoelislami, S. Gastelum, and J. A. Dionne, “Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers,” Opt. Express 24(18), 20593–20603 (2016).
    [Crossref]
  40. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [Crossref]

2020 (2)

A. A. Khorami, M. K. Moravvej-Farshi, and S. Darbari, “Ultralow-Power Electrically Activated Lab-on-a-Chip Plasmonic Tweezers,” Phys. Rev. Appl. 13(2), 024072 (2020).
[Crossref]

S. I. Azzam, A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light: Sci. Appl. 9(1), 90 (2020).
[Crossref]

2019 (2)

2018 (2)

Michael Stührenberg, Battulga Munkhbat, Denis G. Baranov, Jorge Cuadra, Andrew B. Yankovich, Tomasz J. Antosiewicz, Eva Olsson, and Timur Shegai, “Strong light-matter coupling between plasmons in individual gold bipyramids and excitons in mono-and multilayers of WSe2,” Nano Lett. 18(9), 5938–5945, (2018).
[Crossref]

X. Han, V. G. Troung, P. S. Thomas, and S. N. Chormaic, “Sequential trapping of single nanoparticles using a gold plasmonic nanohole array,” Photonics Res. 6(10), 981–986 (2018).
[Crossref]

2017 (4)

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Plasmonic optophoresis for manipulating, in situ position monitoring, sensing, and 3-D trapping of micro/nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23(2), 185–192 (2017).
[Crossref]

M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical investigation of tunable plasmonic tweezers based on graphene stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref]

Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photonics Res. 5(5), 436–440 (2017).
[Crossref]

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of sensing and trapping efficiency of double nanohole apertures via enhancing the wedge plasmon polariton modes with tapered cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

2016 (2)

M. Ghorbanzadeh, S. Darbari, and M. K. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]

A. A. Saleh, S. Sheikhoelislami, S. Gastelum, and J. A. Dionne, “Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers,” Opt. Express 24(18), 20593–20603 (2016).
[Crossref]

2015 (2)

2014 (1)

V. Apalkov and M. I. Stockman, “Proposed graphene nanospaser,” Light: Sci. Appl. 3(7), e191 (2014).
[Crossref]

2013 (1)

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref]

2012 (2)

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12(5), 2459–2463 (2012).
[Crossref]

D. Y. Fedyanin, “toward an electrical pumped spaser,” Opt. Lett. 37(3), 404–406 (2012).
[Crossref]

2011 (3)

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref]

D. Y. Fedyanin and V. A. Aleksey, “Surface plasmon polariton amplification in metal semiconductor structures,” Opt. Express 19(13), 12524–12541 (2011).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

2010 (6)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
[Crossref]

M. C. Gather, K. Meerholz, N. Danz, and L. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[Crossref]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

J. J. Xiao, H. H. Zheng, Y. X. Sun, and Y. Yao, “Bipolar optical forces on dielectric and metallic nanoparticles by an evanescent wave,” Opt. Lett. 35(7), 962–964 (2010).
[Crossref]

D. B. Li and C. Z. Ning, “Peculiar features of confinement factors in a metal-semiconductor waveguide,” Appl. Phys. Lett. 96(18), 181109 (2010).
[Crossref]

2009 (2)

D. B. Li and C. Z. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80(15), 153304 (2009).
[Crossref]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]

2008 (2)

2007 (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

2006 (3)

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface Plasmon Radiation Forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref]

K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nano Today 1(1), 18–27 (2006).
[Crossref]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

2004 (1)

M. Gu, J. B. Haumonte, Y. Micheau, J. W. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236–4238 (2004).
[Crossref]

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref]

1997 (1)

S. Bhargava, H. R. Blank, V. Narayanamurti, and H. Kroemer, “Fermi-level pinning position at the Au–InAs interface determined using ballistic electron emission microscopy,” Appl. Phys. Lett. 70(6), 759–761 (1997).
[Crossref]

1994 (1)

Abbasi, M. M.

Adegoke, J. A.

Aleksey, V. A.

Antosiewicz, Tomasz J.

Michael Stührenberg, Battulga Munkhbat, Denis G. Baranov, Jorge Cuadra, Andrew B. Yankovich, Tomasz J. Antosiewicz, Eva Olsson, and Timur Shegai, “Strong light-matter coupling between plasmons in individual gold bipyramids and excitons in mono-and multilayers of WSe2,” Nano Lett. 18(9), 5938–5945, (2018).
[Crossref]

Apalkov, V.

V. Apalkov and M. I. Stockman, “Proposed graphene nanospaser,” Light: Sci. Appl. 3(7), e191 (2014).
[Crossref]

Arsenin, A. V.

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12(5), 2459–2463 (2012).
[Crossref]

Azzam, S. I.

S. I. Azzam, A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light: Sci. Appl. 9(1), 90 (2020).
[Crossref]

Badenes, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface Plasmon Radiation Forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref]

Bahoura, M.

Baranov, Denis G.

Michael Stührenberg, Battulga Munkhbat, Denis G. Baranov, Jorge Cuadra, Andrew B. Yankovich, Tomasz J. Antosiewicz, Eva Olsson, and Timur Shegai, “Strong light-matter coupling between plasmons in individual gold bipyramids and excitons in mono-and multilayers of WSe2,” Nano Lett. 18(9), 5938–5945, (2018).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Barnes, W. L.

P. Torma and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Bartal, G.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref]

Berini, P.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

Bhargava, S.

S. Bhargava, H. R. Blank, V. Narayanamurti, and H. Kroemer, “Fermi-level pinning position at the Au–InAs interface determined using ballistic electron emission microscopy,” Appl. Phys. Lett. 70(6), 759–761 (1997).
[Crossref]

Blank, H. R.

S. Bhargava, H. R. Blank, V. Narayanamurti, and H. Kroemer, “Fermi-level pinning position at the Au–InAs interface determined using ballistic electron emission microscopy,” Appl. Phys. Lett. 70(6), 759–761 (1997).
[Crossref]

Block, S. M.

Bolger, P. M.

Bouhelier, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Canaguier-Durand, A.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref]

Chen, Z.

Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photonics Res. 5(5), 436–440 (2017).
[Crossref]

Chon, J. W.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236–4238 (2004).
[Crossref]

Chormaic, S. N.

X. Han, V. G. Troung, P. S. Thomas, and S. N. Chormaic, “Sequential trapping of single nanoparticles using a gold plasmonic nanohole array,” Photonics Res. 6(10), 981–986 (2018).
[Crossref]

Cuadra, Jorge

Michael Stührenberg, Battulga Munkhbat, Denis G. Baranov, Jorge Cuadra, Andrew B. Yankovich, Tomasz J. Antosiewicz, Eva Olsson, and Timur Shegai, “Strong light-matter coupling between plasmons in individual gold bipyramids and excitons in mono-and multilayers of WSe2,” Nano Lett. 18(9), 5938–5945, (2018).
[Crossref]

Cuche, A.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref]

Danz, N.

M. C. Gather, K. Meerholz, N. Danz, and L. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[Crossref]

Darbari, S.

A. A. Khorami, M. K. Moravvej-Farshi, and S. Darbari, “Ultralow-Power Electrically Activated Lab-on-a-Chip Plasmonic Tweezers,” Phys. Rev. Appl. 13(2), 024072 (2020).
[Crossref]

M. M. Abbasi, S. Darbari, and M. K. Moravvej-Farshi, “Tunable plasmonic force switch based on graphene nano-ring resonator for nanomanipulation,” Opt. Express 27(19), 26648–26660 (2019).
[Crossref]

M. Samadi, S. Vasini, S. Darbari, A. A. Khorshad, S. N. S. Reihani, and M. K. Moravvej-Farshi, “Hexagonal arrays of gold triangles as plasmonic tweezers,” Opt. Express 27(10), 14754–14766 (2019).
[Crossref]

M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical investigation of tunable plasmonic tweezers based on graphene stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref]

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Plasmonic optophoresis for manipulating, in situ position monitoring, sensing, and 3-D trapping of micro/nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23(2), 185–192 (2017).
[Crossref]

M. Ghorbanzadeh, S. Darbari, and M. K. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nanoparticles,” J. Lightwave Technol. 33(16), 3453–3460 (2015).
[Crossref]

De Leon, I.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

Dereux, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]

des Francs, G. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]

Devaux, E.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref]

Dholakia, K.

K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nano Today 1(1), 18–27 (2006).
[Crossref]

Dickson, W.

Dionne, J. A.

Duan, X.

Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photonics Res. 5(5), 436–440 (2017).
[Crossref]

Ebbesen, T. W.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref]

Fedyanin, D. Y.

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12(5), 2459–2463 (2012).
[Crossref]

D. Y. Fedyanin, “toward an electrical pumped spaser,” Opt. Lett. 37(3), 404–406 (2012).
[Crossref]

D. Y. Fedyanin and V. A. Aleksey, “Surface plasmon polariton amplification in metal semiconductor structures,” Opt. Express 19(13), 12524–12541 (2011).
[Crossref]

Finot, C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]

Gan, X.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236–4238 (2004).
[Crossref]

Gastelum, S.

Gather, M. C.

M. C. Gather, K. Meerholz, N. Danz, and L. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[Crossref]

Genet, C.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref]

Ghorbanzadeh, M.

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of sensing and trapping efficiency of double nanohole apertures via enhancing the wedge plasmon polariton modes with tapered cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Plasmonic optophoresis for manipulating, in situ position monitoring, sensing, and 3-D trapping of micro/nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23(2), 185–192 (2017).
[Crossref]

M. Ghorbanzadeh, S. Darbari, and M. K. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nanoparticles,” J. Lightwave Technol. 33(16), 3453–3460 (2015).
[Crossref]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Gong, Q.

Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photonics Res. 5(5), 436–440 (2017).
[Crossref]

Gordon, R.

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of sensing and trapping efficiency of double nanohole apertures via enhancing the wedge plasmon polariton modes with tapered cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

Grandidier, J.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

Gu, M.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236–4238 (2004).
[Crossref]

Gu, Y.

Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photonics Res. 5(5), 436–440 (2017).
[Crossref]

Han, X.

X. Han, V. G. Troung, P. S. Thomas, and S. N. Chormaic, “Sequential trapping of single nanoparticles using a gold plasmonic nanohole array,” Photonics Res. 6(10), 981–986 (2018).
[Crossref]

Hao, H.

Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photonics Res. 5(5), 436–440 (2017).
[Crossref]

Haumonte, J. B.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236–4238 (2004).
[Crossref]

Hickey, S. G.

Hutchison, J. A.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref]

Jones, S.

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of sensing and trapping efficiency of double nanohole apertures via enhancing the wedge plasmon polariton modes with tapered cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Khorami, A. A.

A. A. Khorami, M. K. Moravvej-Farshi, and S. Darbari, “Ultralow-Power Electrically Activated Lab-on-a-Chip Plasmonic Tweezers,” Phys. Rev. Appl. 13(2), 024072 (2020).
[Crossref]

Khorshad, A. A.

Kildishev, A. V.

S. I. Azzam, A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light: Sci. Appl. 9(1), 90 (2020).
[Crossref]

Krasavin, A. V.

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12(5), 2459–2463 (2012).
[Crossref]

P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
[Crossref]

Kroemer, H.

S. Bhargava, H. R. Blank, V. Narayanamurti, and H. Kroemer, “Fermi-level pinning position at the Au–InAs interface determined using ballistic electron emission microscopy,” Appl. Phys. Lett. 70(6), 759–761 (1997).
[Crossref]

Leosson, L.

M. C. Gather, K. Meerholz, N. Danz, and L. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[Crossref]

Li, D. B.

D. B. Li and C. Z. Ning, “Peculiar features of confinement factors in a metal-semiconductor waveguide,” Appl. Phys. Lett. 96(18), 181109 (2010).
[Crossref]

D. B. Li and C. Z. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80(15), 153304 (2009).
[Crossref]

Liebscher, L.

Ma, R. M.

S. I. Azzam, A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light: Sci. Appl. 9(1), 90 (2020).
[Crossref]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref]

Markey, L.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]

Massenot, S.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]

Mayy, M.

Meerholz, K.

M. C. Gather, K. Meerholz, N. Danz, and L. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[Crossref]

Micheau, Y.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236–4238 (2004).
[Crossref]

Moravvej-Farshi, M. K.

A. A. Khorami, M. K. Moravvej-Farshi, and S. Darbari, “Ultralow-Power Electrically Activated Lab-on-a-Chip Plasmonic Tweezers,” Phys. Rev. Appl. 13(2), 024072 (2020).
[Crossref]

M. M. Abbasi, S. Darbari, and M. K. Moravvej-Farshi, “Tunable plasmonic force switch based on graphene nano-ring resonator for nanomanipulation,” Opt. Express 27(19), 26648–26660 (2019).
[Crossref]

M. Samadi, S. Vasini, S. Darbari, A. A. Khorshad, S. N. S. Reihani, and M. K. Moravvej-Farshi, “Hexagonal arrays of gold triangles as plasmonic tweezers,” Opt. Express 27(10), 14754–14766 (2019).
[Crossref]

M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical investigation of tunable plasmonic tweezers based on graphene stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref]

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of sensing and trapping efficiency of double nanohole apertures via enhancing the wedge plasmon polariton modes with tapered cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Plasmonic optophoresis for manipulating, in situ position monitoring, sensing, and 3-D trapping of micro/nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23(2), 185–192 (2017).
[Crossref]

M. Ghorbanzadeh, S. Darbari, and M. K. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nanoparticles,” J. Lightwave Technol. 33(16), 3453–3460 (2015).
[Crossref]

Munkhbat, Battulga

Michael Stührenberg, Battulga Munkhbat, Denis G. Baranov, Jorge Cuadra, Andrew B. Yankovich, Tomasz J. Antosiewicz, Eva Olsson, and Timur Shegai, “Strong light-matter coupling between plasmons in individual gold bipyramids and excitons in mono-and multilayers of WSe2,” Nano Lett. 18(9), 5938–5945, (2018).
[Crossref]

Narayanamurti, V.

S. Bhargava, H. R. Blank, V. Narayanamurti, and H. Kroemer, “Fermi-level pinning position at the Au–InAs interface determined using ballistic electron emission microscopy,” Appl. Phys. Lett. 70(6), 759–761 (1997).
[Crossref]

Ning, C. Z.

S. I. Azzam, A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light: Sci. Appl. 9(1), 90 (2020).
[Crossref]

D. B. Li and C. Z. Ning, “Peculiar features of confinement factors in a metal-semiconductor waveguide,” Appl. Phys. Lett. 96(18), 181109 (2010).
[Crossref]

D. B. Li and C. Z. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80(15), 153304 (2009).
[Crossref]

Noginov, M. A.

Noginova, N.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[Crossref]

Olsson, Eva

Michael Stührenberg, Battulga Munkhbat, Denis G. Baranov, Jorge Cuadra, Andrew B. Yankovich, Tomasz J. Antosiewicz, Eva Olsson, and Timur Shegai, “Strong light-matter coupling between plasmons in individual gold bipyramids and excitons in mono-and multilayers of WSe2,” Nano Lett. 18(9), 5938–5945, (2018).
[Crossref]

Oulton, R.

S. I. Azzam, A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light: Sci. Appl. 9(1), 90 (2020).
[Crossref]

Oulton, R. F.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

Petrov, D.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface Plasmon Radiation Forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref]

Podolskiy, V. A.

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface Plasmon Radiation Forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref]

Reece, P.

K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nano Today 1(1), 18–27 (2006).
[Crossref]

Reihani, S. N. S.

Ren, J.

Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photonics Res. 5(5), 436–440 (2017).
[Crossref]

Reynolds, K.

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Ritzo, B. A.

Saleh, A. A.

Samadi, M.

M. Samadi, S. Vasini, S. Darbari, A. A. Khorshad, S. N. S. Reihani, and M. K. Moravvej-Farshi, “Hexagonal arrays of gold triangles as plasmonic tweezers,” Opt. Express 27(10), 14754–14766 (2019).
[Crossref]

M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical investigation of tunable plasmonic tweezers based on graphene stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Shalaev, V. M.

S. I. Azzam, A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light: Sci. Appl. 9(1), 90 (2020).
[Crossref]

Shegai, Timur

Michael Stührenberg, Battulga Munkhbat, Denis G. Baranov, Jorge Cuadra, Andrew B. Yankovich, Tomasz J. Antosiewicz, Eva Olsson, and Timur Shegai, “Strong light-matter coupling between plasmons in individual gold bipyramids and excitons in mono-and multilayers of WSe2,” Nano Lett. 18(9), 5938–5945, (2018).
[Crossref]

Sheikhoelislami, S.

Skryabin, D. V.

Sorger, V. J.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref]

Stockman, M. I.

S. I. Azzam, A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light: Sci. Appl. 9(1), 90 (2020).
[Crossref]

V. Apalkov and M. I. Stockman, “Proposed graphene nanospaser,” Light: Sci. Appl. 3(7), e191 (2014).
[Crossref]

D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref]

Stührenberg, Michael

Michael Stührenberg, Battulga Munkhbat, Denis G. Baranov, Jorge Cuadra, Andrew B. Yankovich, Tomasz J. Antosiewicz, Eva Olsson, and Timur Shegai, “Strong light-matter coupling between plasmons in individual gold bipyramids and excitons in mono-and multilayers of WSe2,” Nano Lett. 18(9), 5938–5945, (2018).
[Crossref]

Sun, Y. X.

Svoboda, K.

Thomas, P. S.

X. Han, V. G. Troung, P. S. Thomas, and S. N. Chormaic, “Sequential trapping of single nanoparticles using a gold plasmonic nanohole array,” Photonics Res. 6(10), 981–986 (2018).
[Crossref]

Torma, P.

P. Torma and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Troung, V. G.

X. Han, V. G. Troung, P. S. Thomas, and S. N. Chormaic, “Sequential trapping of single nanoparticles using a gold plasmonic nanohole array,” Photonics Res. 6(10), 981–986 (2018).
[Crossref]

Vasini, S.

Volpe, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface Plasmon Radiation Forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref]

Weeber, J. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Xiao, J. J.

Xu, J. L.

S. I. Azzam, A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light: Sci. Appl. 9(1), 90 (2020).
[Crossref]

Yankovich, Andrew B.

Michael Stührenberg, Battulga Munkhbat, Denis G. Baranov, Jorge Cuadra, Andrew B. Yankovich, Tomasz J. Antosiewicz, Eva Olsson, and Timur Shegai, “Strong light-matter coupling between plasmons in individual gold bipyramids and excitons in mono-and multilayers of WSe2,” Nano Lett. 18(9), 5938–5945, (2018).
[Crossref]

Yao, Y.

Zayats, A. V.

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12(5), 2459–2463 (2012).
[Crossref]

P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
[Crossref]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Zhang, F.

Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photonics Res. 5(5), 436–440 (2017).
[Crossref]

Zhang, P.

Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photonics Res. 5(5), 436–440 (2017).
[Crossref]

Zhang, Q.

Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photonics Res. 5(5), 436–440 (2017).
[Crossref]

Zhang, T.

Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photonics Res. 5(5), 436–440 (2017).
[Crossref]

Zhang, X.

S. I. Azzam, A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light: Sci. Appl. 9(1), 90 (2020).
[Crossref]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref]

Zheng, H. H.

Zhu, G.

ACS Photonics (1)

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of sensing and trapping efficiency of double nanohole apertures via enhancing the wedge plasmon polariton modes with tapered cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

Appl. Phys. Lett. (4)

D. B. Li and C. Z. Ning, “Peculiar features of confinement factors in a metal-semiconductor waveguide,” Appl. Phys. Lett. 96(18), 181109 (2010).
[Crossref]

S. Bhargava, H. R. Blank, V. Narayanamurti, and H. Kroemer, “Fermi-level pinning position at the Au–InAs interface determined using ballistic electron emission microscopy,” Appl. Phys. Lett. 70(6), 759–761 (1997).
[Crossref]

M. Gu, J. B. Haumonte, Y. Micheau, J. W. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236–4238 (2004).
[Crossref]

M. Ghorbanzadeh, S. Darbari, and M. K. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Plasmonic optophoresis for manipulating, in situ position monitoring, sensing, and 3-D trapping of micro/nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23(2), 185–192 (2017).
[Crossref]

J. Lightwave Technol. (1)

Light: Sci. Appl. (2)

V. Apalkov and M. I. Stockman, “Proposed graphene nanospaser,” Light: Sci. Appl. 3(7), e191 (2014).
[Crossref]

S. I. Azzam, A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light: Sci. Appl. 9(1), 90 (2020).
[Crossref]

Nano Lett. (4)

Michael Stührenberg, Battulga Munkhbat, Denis G. Baranov, Jorge Cuadra, Andrew B. Yankovich, Tomasz J. Antosiewicz, Eva Olsson, and Timur Shegai, “Strong light-matter coupling between plasmons in individual gold bipyramids and excitons in mono-and multilayers of WSe2,” Nano Lett. 18(9), 5938–5945, (2018).
[Crossref]

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12(5), 2459–2463 (2012).
[Crossref]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref]

Nano Today (1)

K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nano Today 1(1), 18–27 (2006).
[Crossref]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref]

Nat. Photonics (3)

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

M. C. Gather, K. Meerholz, N. Danz, and L. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Nat. Phys. (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Photonics Res. (2)

X. Han, V. G. Troung, P. S. Thomas, and S. N. Chormaic, “Sequential trapping of single nanoparticles using a gold plasmonic nanohole array,” Photonics Res. 6(10), 981–986 (2018).
[Crossref]

Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photonics Res. 5(5), 436–440 (2017).
[Crossref]

Phys. Rev. Appl. (1)

A. A. Khorami, M. K. Moravvej-Farshi, and S. Darbari, “Ultralow-Power Electrically Activated Lab-on-a-Chip Plasmonic Tweezers,” Phys. Rev. Appl. 13(2), 024072 (2020).
[Crossref]

Phys. Rev. B (1)

D. B. Li and C. Z. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80(15), 153304 (2009).
[Crossref]

Phys. Rev. Lett. (3)

D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[Crossref]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface Plasmon Radiation Forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref]

Rep. Prog. Phys. (1)

P. Torma and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Sci. Rep. (1)

M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical investigation of tunable plasmonic tweezers based on graphene stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref]

Science (1)

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. A 3D schematic view of the built-in light source, as the building block for the proposed on-chip tweezers.
Fig. 2.
Fig. 2. The optical gain versus the applied voltage.
Fig. 3.
Fig. 3. Profile of SPPs mode intensity (|E|2) below the Au surface, with no hole, in the x-z plane at y = 0, for V = −1.6 V. The horizontal white dots represent the InAs/AlAsSb interface and the vertical dots show the core/claddings interfaces.
Fig. 4.
Fig. 4. Penetration of LSPs mode intensity (|E|2) in the x-z plane at y = 0, above the circular hole of R = (a) 60, (b) 70, (c) 80, and (d) 90 nm.
Fig. 5.
Fig. 5. The plasmonic mode intensity profile in the x-y-plane at z = 10 nm above the unit cell with R = 60 nm.
Fig. 6.
Fig. 6. Schematic top view of the water chamber (a). Components of the plasmonic force exerted on a PS particle of r=95 nm along the x-axis of the x-y plane at 10 nm above the Au top surface with the circular hole of the radius (b) 60, (c) 70, (d) 80, or (e) 90 nm. The corresponding potential energies along the x-axis (f).
Fig. 7.
Fig. 7. Potential energy experienced by a particle versus its (a) refractive index (n), and (b) radius (r).

Tables (1)

Tables Icon

Table 1. The Geometrical and physical parameters used in simulations

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F = 1 2 R e Ω T ( r , t ) n d S ,
U ( x ) = x F x ( x ) d x .
U ( x ) = 8 π 2 r 3 c ( ε P ε W ) ( ε P + 2 ε W ) I .