Abstract

Due to their large spectral bandwidth sub ∼20 fs pulses are a versatile tool in spectroscopy, but for applications in gases comparably high pulse energies are required. These pulses are easily subject to distortions of the spectral shape, phase and shot-to-shot stability. We investigate the excitation efficiency for two-beam ultrabroadband fs/ps coherent anti-Stokes Raman scattering (CARS) using a shot-to-shot stable BBO-based optical parametric chirped pulse amplifier (OPCPA). Up to 10 bar, quantitative concentration measurements with and without consideration of the excitation efficiency measured in argon are investigated for ternary gas mixtures with Raman shifts up to ∼3000 cm−1.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [Crossref]
  2. T. Lang, K. L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
    [Crossref]
  3. S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
    [Crossref]
  4. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
    [Crossref]
  5. L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
    [Crossref]
  6. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
    [Crossref]
  7. P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Time-resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity,” J. Raman Spectrosc. 44(10), 1344–1348 (2013).
    [Crossref]
  8. S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
    [Crossref]
  9. A. Bohlin, B. D. Patterson, and C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
    [Crossref]
  10. A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
    [Crossref]
  11. A. Bohlin and C. J. Kliewer, “Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging,” Appl. Phys. Lett. 104(3), 031107 (2014).
    [Crossref]
  12. R. L. Farrow, R. P. Lucht, G. L. Clark, and R. E. Palmer, “Species concentration measurements using CARS with nonresonant susceptibility normalization,” Appl. Opt. 24(14), 2241–2251 (1985).
    [Crossref]
  13. A. Bohlin, C. Jainski, B. D. Patterson, A. Dreizler, and C. J. Kliewer, “Multiparameter spatio-thermochemical probing of flame–wall interactions advanced with coherent Raman imaging,” Proc. Combust. Inst. 36(3), 4557–4564 (2017).
    [Crossref]
  14. F. Küster, P. Nikrityuk, M. Junghanns, S. Nolte, A. Tünnermann, R. Ackermann, A. Richter, S. Guhl, and B. Meyer, “In-situ investigation of single particle gasification in a defined gas flow applying TGA with optical measurements,” Fuel 194, 544–556 (2017).
    [Crossref]
  15. Y. Ran, M. Junghanns, A. Boden, S. Nolte, A. Tünnermann, and R. Ackermann, “Temperature and gas concentration measurements with vibrational ultra-broadband two-beam femtosecond/picosecond coherent anti-Stokes Raman scattering and spontaneous Raman scattering,” J. Raman Spectrosc. 50(9), 1268–1275 (2019).
    [Crossref]
  16. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
    [Crossref]
  17. C. M. Penney, L. M. Goldman, and M. Lapp, “Raman Scattering Cross Sections,” Nature (London), Phys. Sci. 235(58), 110–112 (1972).
    [Crossref]
  18. F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
    [Crossref]
  19. M. Puppin, Y. Deng, O. Prochnow, J. Ahrens, T. Binhammer, U. Morgner, M. Krenz, M. Wolf, and R. Ernstorfer, “500 kHz OPCPA delivering tunable sub-20 fs pulses with 15 W average power based on an all-ytterbium laser,” Opt. Express 23(2), 1491–1497 (2015).
    [Crossref]
  20. M. Gu, A. Satija, and R. P. Lucht, “Effects of self-phase modulation (SPM) on femtosecond coherent anti-Stokes Raman scattering spectroscopy,” Opt. Express 27(23), 33954–33966 (2019).
    [Crossref]
  21. A. C. Eckbreth and R. J. Hall, “CARS Concentration Sensitivity With and Without Nonresonant Background Suppression,” Combust. Sci. Technol. 25(5-6), 175–192 (1981).
    [Crossref]

2019 (2)

Y. Ran, M. Junghanns, A. Boden, S. Nolte, A. Tünnermann, and R. Ackermann, “Temperature and gas concentration measurements with vibrational ultra-broadband two-beam femtosecond/picosecond coherent anti-Stokes Raman scattering and spontaneous Raman scattering,” J. Raman Spectrosc. 50(9), 1268–1275 (2019).
[Crossref]

M. Gu, A. Satija, and R. P. Lucht, “Effects of self-phase modulation (SPM) on femtosecond coherent anti-Stokes Raman scattering spectroscopy,” Opt. Express 27(23), 33954–33966 (2019).
[Crossref]

2017 (2)

A. Bohlin, C. Jainski, B. D. Patterson, A. Dreizler, and C. J. Kliewer, “Multiparameter spatio-thermochemical probing of flame–wall interactions advanced with coherent Raman imaging,” Proc. Combust. Inst. 36(3), 4557–4564 (2017).
[Crossref]

F. Küster, P. Nikrityuk, M. Junghanns, S. Nolte, A. Tünnermann, R. Ackermann, A. Richter, S. Guhl, and B. Meyer, “In-situ investigation of single particle gasification in a defined gas flow applying TGA with optical measurements,” Fuel 194, 544–556 (2017).
[Crossref]

2015 (1)

2014 (2)

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

A. Bohlin and C. J. Kliewer, “Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging,” Appl. Phys. Lett. 104(3), 031107 (2014).
[Crossref]

2013 (3)

A. Bohlin, B. D. Patterson, and C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
[Crossref]

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref]

P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Time-resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity,” J. Raman Spectrosc. 44(10), 1344–1348 (2013).
[Crossref]

2010 (1)

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[Crossref]

2009 (1)

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[Crossref]

2007 (1)

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
[Crossref]

2006 (1)

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[Crossref]

2002 (2)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref]

1999 (1)

T. Lang, K. L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
[Crossref]

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

1985 (1)

1981 (1)

A. C. Eckbreth and R. J. Hall, “CARS Concentration Sensitivity With and Without Nonresonant Background Suppression,” Combust. Sci. Technol. 25(5-6), 175–192 (1981).
[Crossref]

1972 (1)

C. M. Penney, L. M. Goldman, and M. Lapp, “Raman Scattering Cross Sections,” Nature (London), Phys. Sci. 235(58), 110–112 (1972).
[Crossref]

Abel, M. J.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
[Crossref]

Ackermann, R.

Y. Ran, M. Junghanns, A. Boden, S. Nolte, A. Tünnermann, and R. Ackermann, “Temperature and gas concentration measurements with vibrational ultra-broadband two-beam femtosecond/picosecond coherent anti-Stokes Raman scattering and spontaneous Raman scattering,” J. Raman Spectrosc. 50(9), 1268–1275 (2019).
[Crossref]

F. Küster, P. Nikrityuk, M. Junghanns, S. Nolte, A. Tünnermann, R. Ackermann, A. Richter, S. Guhl, and B. Meyer, “In-situ investigation of single particle gasification in a defined gas flow applying TGA with optical measurements,” Fuel 194, 544–556 (2017).
[Crossref]

Ahrens, J.

Binhammer, T.

Boden, A.

Y. Ran, M. Junghanns, A. Boden, S. Nolte, A. Tünnermann, and R. Ackermann, “Temperature and gas concentration measurements with vibrational ultra-broadband two-beam femtosecond/picosecond coherent anti-Stokes Raman scattering and spontaneous Raman scattering,” J. Raman Spectrosc. 50(9), 1268–1275 (2019).
[Crossref]

Böhle, F.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Bohlin, A.

A. Bohlin, C. Jainski, B. D. Patterson, A. Dreizler, and C. J. Kliewer, “Multiparameter spatio-thermochemical probing of flame–wall interactions advanced with coherent Raman imaging,” Proc. Combust. Inst. 36(3), 4557–4564 (2017).
[Crossref]

A. Bohlin and C. J. Kliewer, “Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging,” Appl. Phys. Lett. 104(3), 031107 (2014).
[Crossref]

A. Bohlin, B. D. Patterson, and C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
[Crossref]

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref]

Clark, G. L.

Crespo, H.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Dantus, M.

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[Crossref]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[Crossref]

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Deng, Y.

Dreizler, A.

A. Bohlin, C. Jainski, B. D. Patterson, A. Dreizler, and C. J. Kliewer, “Multiparameter spatio-thermochemical probing of flame–wall interactions advanced with coherent Raman imaging,” Proc. Combust. Inst. 36(3), 4557–4564 (2017).
[Crossref]

Dudovich, N.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref]

Eckbreth, A. C.

A. C. Eckbreth and R. J. Hall, “CARS Concentration Sensitivity With and Without Nonresonant Background Suppression,” Combust. Sci. Technol. 25(5-6), 175–192 (1981).
[Crossref]

Ernstorfer, R.

Farrow, R. L.

Gallmann, L.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
[Crossref]

Goldman, L. M.

C. M. Penney, L. M. Goldman, and M. Lapp, “Raman Scattering Cross Sections,” Nature (London), Phys. Sci. 235(58), 110–112 (1972).
[Crossref]

Gord, J. R.

P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Time-resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity,” J. Raman Spectrosc. 44(10), 1344–1348 (2013).
[Crossref]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[Crossref]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[Crossref]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[Crossref]

Gu, M.

Guhl, S.

F. Küster, P. Nikrityuk, M. Junghanns, S. Nolte, A. Tünnermann, R. Ackermann, A. Richter, S. Guhl, and B. Meyer, “In-situ investigation of single particle gasification in a defined gas flow applying TGA with optical measurements,” Fuel 194, 544–556 (2017).
[Crossref]

Gunaratne, T.

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[Crossref]

Hall, R. J.

A. C. Eckbreth and R. J. Hall, “CARS Concentration Sensitivity With and Without Nonresonant Background Suppression,” Combust. Sci. Technol. 25(5-6), 175–192 (1981).
[Crossref]

Jainski, C.

A. Bohlin, C. Jainski, B. D. Patterson, A. Dreizler, and C. J. Kliewer, “Multiparameter spatio-thermochemical probing of flame–wall interactions advanced with coherent Raman imaging,” Proc. Combust. Inst. 36(3), 4557–4564 (2017).
[Crossref]

Jullien, A.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Junghanns, M.

Y. Ran, M. Junghanns, A. Boden, S. Nolte, A. Tünnermann, and R. Ackermann, “Temperature and gas concentration measurements with vibrational ultra-broadband two-beam femtosecond/picosecond coherent anti-Stokes Raman scattering and spontaneous Raman scattering,” J. Raman Spectrosc. 50(9), 1268–1275 (2019).
[Crossref]

F. Küster, P. Nikrityuk, M. Junghanns, S. Nolte, A. Tünnermann, R. Ackermann, A. Richter, S. Guhl, and B. Meyer, “In-situ investigation of single particle gasification in a defined gas flow applying TGA with optical measurements,” Fuel 194, 544–556 (2017).
[Crossref]

Kliewer, C. J.

A. Bohlin, C. Jainski, B. D. Patterson, A. Dreizler, and C. J. Kliewer, “Multiparameter spatio-thermochemical probing of flame–wall interactions advanced with coherent Raman imaging,” Proc. Combust. Inst. 36(3), 4557–4564 (2017).
[Crossref]

A. Bohlin and C. J. Kliewer, “Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging,” Appl. Phys. Lett. 104(3), 031107 (2014).
[Crossref]

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref]

A. Bohlin, B. D. Patterson, and C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
[Crossref]

Kompa, K. L.

T. Lang, K. L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
[Crossref]

Kovacs, M.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Krenz, M.

Kretschmar, M.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Kulatilaka, W. D.

P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Time-resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity,” J. Raman Spectrosc. 44(10), 1344–1348 (2013).
[Crossref]

Küster, F.

F. Küster, P. Nikrityuk, M. Junghanns, S. Nolte, A. Tünnermann, R. Ackermann, A. Richter, S. Guhl, and B. Meyer, “In-situ investigation of single particle gasification in a defined gas flow applying TGA with optical measurements,” Fuel 194, 544–556 (2017).
[Crossref]

Lang, T.

T. Lang, K. L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
[Crossref]

Lapp, M.

C. M. Penney, L. M. Goldman, and M. Lapp, “Raman Scattering Cross Sections,” Nature (London), Phys. Sci. 235(58), 110–112 (1972).
[Crossref]

Leone, S. R.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
[Crossref]

Lopez-Martens, R.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Lucht, R. P.

Meyer, B.

F. Küster, P. Nikrityuk, M. Junghanns, S. Nolte, A. Tünnermann, R. Ackermann, A. Richter, S. Guhl, and B. Meyer, “In-situ investigation of single particle gasification in a defined gas flow applying TGA with optical measurements,” Fuel 194, 544–556 (2017).
[Crossref]

Meyer, T. R.

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[Crossref]

Miranda, M.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Morgner, U.

M. Puppin, Y. Deng, O. Prochnow, J. Ahrens, T. Binhammer, U. Morgner, M. Krenz, M. Wolf, and R. Ernstorfer, “500 kHz OPCPA delivering tunable sub-20 fs pulses with 15 W average power based on an all-ytterbium laser,” Opt. Express 23(2), 1491–1497 (2015).
[Crossref]

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Motzkus, M.

T. Lang, K. L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
[Crossref]

Nagel, P. M.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
[Crossref]

Nagy, T.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Neumark, D. M.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
[Crossref]

Nikrityuk, P.

F. Küster, P. Nikrityuk, M. Junghanns, S. Nolte, A. Tünnermann, R. Ackermann, A. Richter, S. Guhl, and B. Meyer, “In-situ investigation of single particle gasification in a defined gas flow applying TGA with optical measurements,” Fuel 194, 544–556 (2017).
[Crossref]

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Nolte, S.

Y. Ran, M. Junghanns, A. Boden, S. Nolte, A. Tünnermann, and R. Ackermann, “Temperature and gas concentration measurements with vibrational ultra-broadband two-beam femtosecond/picosecond coherent anti-Stokes Raman scattering and spontaneous Raman scattering,” J. Raman Spectrosc. 50(9), 1268–1275 (2019).
[Crossref]

F. Küster, P. Nikrityuk, M. Junghanns, S. Nolte, A. Tünnermann, R. Ackermann, A. Richter, S. Guhl, and B. Meyer, “In-situ investigation of single particle gasification in a defined gas flow applying TGA with optical measurements,” Fuel 194, 544–556 (2017).
[Crossref]

Oron, D.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref]

Palmer, R. E.

Patterson, B. D.

A. Bohlin, C. Jainski, B. D. Patterson, A. Dreizler, and C. J. Kliewer, “Multiparameter spatio-thermochemical probing of flame–wall interactions advanced with coherent Raman imaging,” Proc. Combust. Inst. 36(3), 4557–4564 (2017).
[Crossref]

A. Bohlin, B. D. Patterson, and C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
[Crossref]

Penney, C. M.

C. M. Penney, L. M. Goldman, and M. Lapp, “Raman Scattering Cross Sections,” Nature (London), Phys. Sci. 235(58), 110–112 (1972).
[Crossref]

Pestov, D.

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[Crossref]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[Crossref]

Pfeifer, T.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
[Crossref]

Prochnow, O.

Puppin, M.

Ran, Y.

Y. Ran, M. Junghanns, A. Boden, S. Nolte, A. Tünnermann, and R. Ackermann, “Temperature and gas concentration measurements with vibrational ultra-broadband two-beam femtosecond/picosecond coherent anti-Stokes Raman scattering and spontaneous Raman scattering,” J. Raman Spectrosc. 50(9), 1268–1275 (2019).
[Crossref]

Richter, A.

F. Küster, P. Nikrityuk, M. Junghanns, S. Nolte, A. Tünnermann, R. Ackermann, A. Richter, S. Guhl, and B. Meyer, “In-situ investigation of single particle gasification in a defined gas flow applying TGA with optical measurements,” Fuel 194, 544–556 (2017).
[Crossref]

Romero, R.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Roy, S.

P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Time-resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity,” J. Raman Spectrosc. 44(10), 1344–1348 (2013).
[Crossref]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[Crossref]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[Crossref]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[Crossref]

Satija, A.

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref]

Simon, P.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Stauffer, H. U.

P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Time-resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity,” J. Raman Spectrosc. 44(10), 1344–1348 (2013).
[Crossref]

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Tünnermann, A.

Y. Ran, M. Junghanns, A. Boden, S. Nolte, A. Tünnermann, and R. Ackermann, “Temperature and gas concentration measurements with vibrational ultra-broadband two-beam femtosecond/picosecond coherent anti-Stokes Raman scattering and spontaneous Raman scattering,” J. Raman Spectrosc. 50(9), 1268–1275 (2019).
[Crossref]

F. Küster, P. Nikrityuk, M. Junghanns, S. Nolte, A. Tünnermann, R. Ackermann, A. Richter, S. Guhl, and B. Meyer, “In-situ investigation of single particle gasification in a defined gas flow applying TGA with optical measurements,” Fuel 194, 544–556 (2017).
[Crossref]

Wolf, M.

Wrzesinski, P.

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[Crossref]

Wrzesinski, P. J.

P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Time-resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity,” J. Raman Spectrosc. 44(10), 1344–1348 (2013).
[Crossref]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[Crossref]

Yelin, D.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
[Crossref]

Appl. Phys. Lett. (4)

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[Crossref]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

A. Bohlin and C. J. Kliewer, “Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging,” Appl. Phys. Lett. 104(3), 031107 (2014).
[Crossref]

Chem. Phys. Lett. (1)

T. Lang, K. L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
[Crossref]

Combust. Sci. Technol. (1)

A. C. Eckbreth and R. J. Hall, “CARS Concentration Sensitivity With and Without Nonresonant Background Suppression,” Combust. Sci. Technol. 25(5-6), 175–192 (1981).
[Crossref]

Fuel (1)

F. Küster, P. Nikrityuk, M. Junghanns, S. Nolte, A. Tünnermann, R. Ackermann, A. Richter, S. Guhl, and B. Meyer, “In-situ investigation of single particle gasification in a defined gas flow applying TGA with optical measurements,” Fuel 194, 544–556 (2017).
[Crossref]

J. Chem. Phys. (2)

A. Bohlin, B. D. Patterson, and C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
[Crossref]

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref]

J. Raman Spectrosc. (3)

Y. Ran, M. Junghanns, A. Boden, S. Nolte, A. Tünnermann, and R. Ackermann, “Temperature and gas concentration measurements with vibrational ultra-broadband two-beam femtosecond/picosecond coherent anti-Stokes Raman scattering and spontaneous Raman scattering,” J. Raman Spectrosc. 50(9), 1268–1275 (2019).
[Crossref]

P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Time-resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity,” J. Raman Spectrosc. 44(10), 1344–1348 (2013).
[Crossref]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[Crossref]

Laser Phys. Lett. (1)

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref]

Nature (London), Phys. Sci. (1)

C. M. Penney, L. M. Goldman, and M. Lapp, “Raman Scattering Cross Sections,” Nature (London), Phys. Sci. 235(58), 110–112 (1972).
[Crossref]

Opt. Express (2)

Phys. Rev. Lett. (1)

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref]

Proc. Combust. Inst. (1)

A. Bohlin, C. Jainski, B. D. Patterson, A. Dreizler, and C. J. Kliewer, “Multiparameter spatio-thermochemical probing of flame–wall interactions advanced with coherent Raman imaging,” Proc. Combust. Inst. 36(3), 4557–4564 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Sketch of two-beam CARS. DCM: double-chirped mirrors; LPDM: long pass dichroic mirror; BS: beam splitter; CM: concave mirror (f = 500 mm); CL: collimating lens; BD: beam dump; SPF: short pass filter (cutoff wavelength = 500 nm); FL: focusing lens (f = 150 mm). The spectrometer is equipped with a 1200 line/mm grating. The acquisition time of the CCD camera is 50 ms; 20 acquisitions are accumulated.
Fig. 2.
Fig. 2. Scheme for the determination of the excitation efficiency for a particular Raman shift. Ep, ESt, Epr are the electric fields of the pump, Stokes and probe pulse, respectively. ωR is the angular frequency at the spectral position of the Raman shift of the molecule. Ω and ω1 are the integration variables according to Eq. (1).
Fig. 3.
Fig. 3. (a) Typical pump/Stokes spectrum integrated over 32 ms. The blue shadow part indicates the spectral region where Fig. 3(b) is recorded in a separate measurement. (b) Averaged 50 single-shot pump/Stokes spectra centered at 800 nm. The grey shadow shows the standard deviation of the 50 single-shot spectra. The spectra are normalized to their maximum values in the measured spectral range.
Fig. 4.
Fig. 4. (a) The CARS signals in a gas mixture of 37.5% CO2, 50% N2, and 12.5% CH4 at ∼2.2 ps delay together with the nonresonant responses measured in pure argon at zero delay at 1.7 bar and room temperature. NR: nonresonant response; M1: measurement 1; M2: measurement 2. (b) Concentration measurements with and without considering the nonresonant response (NR) for measurement 1 (M1) and measurement 2 (M2) for two different pump/Stokes spectra at 1.7 bar and room temperature. The bars show the averaged results from 5 CARS spectra at probe pulse delays of 1-3 ps. Error bars show the standard deviations. Black lines indicate the concentrations expected from the settings of the mass flow controllers.
Fig. 5.
Fig. 5. (a) The nonresonant responses in argon at zero delay measured at 1.7 bar, 5 bar, and 10 bar at room temperature. The grey dotted lines indicate the positions of the Raman shifts for CH4, N2 and the peak at 1388 cm−1 of the Fermi dyad of CO2. (b) Concentration measurements at 5 bar and 10 bar in a gas mixture of 37.5% CO2, 50% N2, and 12.5% CH4. The bars show the averaged results from 5 CARS spectra at 1-3 ps delay. Error bars show the standard deviations. Black lines indicate the concentrations expected from the settings of the mass flow controllers.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P n r ( ω ) = 0 d Ω E p r ( ω Ω ) 0 d ω 1 E S t ( ω 1 Ω ) E p ( ω 1 ) .
P C A R S ( t p r ) i β i S n r ( ω i ) m e a s u r e d P r e s , i ( t p r ) .