Abstract

Additive manufacturing methods based on photopolymerization offer a promising potential for fabrication of high quality, highly transparent optical components. One use of these technologies involves fabrication of parts for very specific and narrow applications. In this work, we first performed optical raytracing simulations to model an optimized freeform nonimaging concentrator for a custom-built 12-LED array and then fabricated several waveguide concentrators using 3D printing and characterized their optical characteristics. Our results demonstrate that realizing an irradiance of 17 kW/m2 or more with an irradiance nonuniformity of better than 2% over an area approaching 1 cm2 is realistic and that such an approach can rival intensities achieved with powerful lasers over a similar area. We also discuss an application where eight different types of LEDs were coupled into the waveguides to construct a solar simulator.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform near-field irradiance,” Appl. Opt. 45(10), 2265 (2006).
    [Crossref]
  2. Z. Jin, D. Xiong, J. Dong, H. Wang, W. Li, L. Guo, and P. Wang, “Optical design of a compact multispectral LED light source with high irradiance and uniformity,” Appl. Opt. 58(2), 317 (2019).
    [Crossref]
  3. H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J.-P. M. G. Linnartz, and R. Rietman, “Uniform Illumination Rendering Using an Array of LEDs: A Signal Processing Perspective,” IEEE Trans. Signal Process. 57(3), 1044–1057 (2009).
    [Crossref]
  4. D. Wu, J. Wang, and Z. Su, “Optimization and integration of LED array for uniform illumination distribution,” Optoelectron. Lett. 10(5), 335–339 (2014).
    [Crossref]
  5. Z. Zhenrong, H. Xiang, and L. Xu, “Freeform surface lens for LED uniform illumination,” Appl. Opt. 48(35), 6627 (2009).
    [Crossref]
  6. Z. Su, D. Xue, and Z. Ji, “Designing LED array for uniform illumination distribution by simulated annealing algorithm,” Opt. Express 20(S6), A843 (2012).
    [Crossref]
  7. O. Dross, R. Mohedano, P. Benitez, J. C. Minano, J. Chaves, J. Blen, M. Hernandez, and F. Munoz, “Review of SMS design methods and real-world applications,” Proc. SPIE, 5529, 35 (2004).
    [Crossref]
  8. J. Y. Joo, C. S. Kang, S. S. Park, and S.-K. Lee, “LED beam shaping lens based on the near-field illumination,” Opt. Express 17(26), 23449 (2009).
    [Crossref]
  9. R. Winston, L. Jiang, and M. Ricketts, “Nonimaging optics: a tutorial,” Adv. Opt. Photonics 10(2), 484 (2018).
    [Crossref]
  10. G. Wang, L. Wang, F. Li, and G. Zhang, “Collimating lens for light-emitting-diode light source based on non-imaging optics,” Appl. Opt. 51(11), 1654 (2012).
    [Crossref]
  11. B. Hooker and J. Friedman, “Optical waveguide concentrator and illuminating device,” U.S. patent US6554463B2 (2003).
  12. R. J. Koshel, ed., Illumination Engineering (John Wiley & Sons, Inc., 2013).
  13. W. J. Cassarly, “Recent advances in mixing rods,” in Proc. SPIE 7103, Illumination Optics, T. E. Kidger and S. R. David, eds. (2008), Vol. 7103, p. 710307.
  14. R. J. Koshel and A. Gupta, “Characterization of lightpipes for efficient transfer of light,” Proc. SPIE, 5942, 594205 (2005).
    [Crossref]
  15. C. K. Madsen, Y. Dogan, R. Atkins, M. Morrison, and C. Hu, “Glass light pipes for solar concentration,” 50 (2018).
  16. S. Bäumer, Handbook of Plastic Optics (Wiley-VCH Verlag GmbH & Co. KGaA, 2010).
  17. M. Heckele and W. K. Schomburg, “Review on micro molding of thermoplastic polymers,” J. Micromech. Microeng. 14(3), R1–R14 (2004).
    [Crossref]
  18. N. Vaidya and O. Solgaard, “3D printed optics with nanometer scale surface roughness,” Microsyst. Nanoeng. 4(1), 18 (2018).
    [Crossref]
  19. A. Heinrich, M. Rank, P. Maillard, A. Suckow, Y. Bauckhage, P. Rößler, J. Lang, F. Shariff, and S. Pekrul, “Additive manufacturing of optical components,” Adv. Opt. Technol. 5, (2016).
  20. V. C. Venkatesh, “Precision Manufacture of Spherical and Aspheric Surfaces on Plastics, Glass, Silicon and Germanium,” Curr. Sci. 84(9), 1211–1219 (2003).
  21. S. Suresh Nair, A. Heinrich, M. Klein, and S. Steenhusen, “Additive manufacturing of photoluminescent optics,” in Organic Photonic Materials and Devices XXI, C. E. Tabor, F. Kajzar, and T. Kaino, eds. (SPIE, 2019), Vol. 1091505, p. 4.
  22. A. Heinrich and M. Rank, “3D Printing of Optics,” in 3D Printing of Optics (SPIE, 2018).
  23. J. W. Stansbury and M. J. Idacavage, “3D printing with polymers: Challenges among expanding options and opportunities,” Dent. Mater. 32(1), 54–64 (2016).
    [Crossref]
  24. Q. Mu, L. Wang, C. K. Dunn, X. Kuang, F. Duan, Z. Zhang, H. J. Qi, and T. Wang, “Digital light processing 3D printing of conductive complex structures,” Addit. Manuf. 18, 74–83 (2017).
    [Crossref]
  25. A. Bell, M. Kofron, and V. Nistor, “Multiphoton crosslinking for biocompatible 3D printing of type I collagen,” Biofabrication 7(3), 035007 (2015).
    [Crossref]
  26. J. P. Moore and C. B. Williams, “Fatigue properties of parts printed by PolyJet material jetting,” Rapid Prototyp. J. 21(6), 675–685 (2015).
    [Crossref]
  27. E. Nseowo Udofia and W. Zhou, “3D printed optics with a soft and stretchable optical material,” Addit. Manuf. 31, 100912 (2020).
    [Crossref]
  28. R. Mayer, “Precision Injection Molding,” Opt. Photonik 2(4), 46–51 (2007).
    [Crossref]
  29. “Certain commercial equipment, instruments, software, or materials are identified in this paper to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology,” (NIST Disclaimer).
  30. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon Press, 1970).
  31. IEC Standard 60904–9. Photovoltaic Devices—Part 9: Solar Simulator Performance Requirements (International Electrotechnical Commission, 2007).

2020 (1)

E. Nseowo Udofia and W. Zhou, “3D printed optics with a soft and stretchable optical material,” Addit. Manuf. 31, 100912 (2020).
[Crossref]

2019 (1)

2018 (2)

R. Winston, L. Jiang, and M. Ricketts, “Nonimaging optics: a tutorial,” Adv. Opt. Photonics 10(2), 484 (2018).
[Crossref]

N. Vaidya and O. Solgaard, “3D printed optics with nanometer scale surface roughness,” Microsyst. Nanoeng. 4(1), 18 (2018).
[Crossref]

2017 (1)

Q. Mu, L. Wang, C. K. Dunn, X. Kuang, F. Duan, Z. Zhang, H. J. Qi, and T. Wang, “Digital light processing 3D printing of conductive complex structures,” Addit. Manuf. 18, 74–83 (2017).
[Crossref]

2016 (1)

J. W. Stansbury and M. J. Idacavage, “3D printing with polymers: Challenges among expanding options and opportunities,” Dent. Mater. 32(1), 54–64 (2016).
[Crossref]

2015 (2)

A. Bell, M. Kofron, and V. Nistor, “Multiphoton crosslinking for biocompatible 3D printing of type I collagen,” Biofabrication 7(3), 035007 (2015).
[Crossref]

J. P. Moore and C. B. Williams, “Fatigue properties of parts printed by PolyJet material jetting,” Rapid Prototyp. J. 21(6), 675–685 (2015).
[Crossref]

2014 (1)

D. Wu, J. Wang, and Z. Su, “Optimization and integration of LED array for uniform illumination distribution,” Optoelectron. Lett. 10(5), 335–339 (2014).
[Crossref]

2012 (2)

2009 (3)

J. Y. Joo, C. S. Kang, S. S. Park, and S.-K. Lee, “LED beam shaping lens based on the near-field illumination,” Opt. Express 17(26), 23449 (2009).
[Crossref]

Z. Zhenrong, H. Xiang, and L. Xu, “Freeform surface lens for LED uniform illumination,” Appl. Opt. 48(35), 6627 (2009).
[Crossref]

H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J.-P. M. G. Linnartz, and R. Rietman, “Uniform Illumination Rendering Using an Array of LEDs: A Signal Processing Perspective,” IEEE Trans. Signal Process. 57(3), 1044–1057 (2009).
[Crossref]

2007 (1)

R. Mayer, “Precision Injection Molding,” Opt. Photonik 2(4), 46–51 (2007).
[Crossref]

2006 (1)

2005 (1)

R. J. Koshel and A. Gupta, “Characterization of lightpipes for efficient transfer of light,” Proc. SPIE, 5942, 594205 (2005).
[Crossref]

2004 (2)

M. Heckele and W. K. Schomburg, “Review on micro molding of thermoplastic polymers,” J. Micromech. Microeng. 14(3), R1–R14 (2004).
[Crossref]

O. Dross, R. Mohedano, P. Benitez, J. C. Minano, J. Chaves, J. Blen, M. Hernandez, and F. Munoz, “Review of SMS design methods and real-world applications,” Proc. SPIE, 5529, 35 (2004).
[Crossref]

2003 (1)

V. C. Venkatesh, “Precision Manufacture of Spherical and Aspheric Surfaces on Plastics, Glass, Silicon and Germanium,” Curr. Sci. 84(9), 1211–1219 (2003).

Atkins, R.

C. K. Madsen, Y. Dogan, R. Atkins, M. Morrison, and C. Hu, “Glass light pipes for solar concentration,” 50 (2018).

Avendaño-Alejo, M.

Bauckhage, Y.

A. Heinrich, M. Rank, P. Maillard, A. Suckow, Y. Bauckhage, P. Rößler, J. Lang, F. Shariff, and S. Pekrul, “Additive manufacturing of optical components,” Adv. Opt. Technol. 5, (2016).

Bäumer, S.

S. Bäumer, Handbook of Plastic Optics (Wiley-VCH Verlag GmbH & Co. KGaA, 2010).

Bell, A.

A. Bell, M. Kofron, and V. Nistor, “Multiphoton crosslinking for biocompatible 3D printing of type I collagen,” Biofabrication 7(3), 035007 (2015).
[Crossref]

Benitez, P.

O. Dross, R. Mohedano, P. Benitez, J. C. Minano, J. Chaves, J. Blen, M. Hernandez, and F. Munoz, “Review of SMS design methods and real-world applications,” Proc. SPIE, 5529, 35 (2004).
[Crossref]

Bergmans, J. W. M.

H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J.-P. M. G. Linnartz, and R. Rietman, “Uniform Illumination Rendering Using an Array of LEDs: A Signal Processing Perspective,” IEEE Trans. Signal Process. 57(3), 1044–1057 (2009).
[Crossref]

Blen, J.

O. Dross, R. Mohedano, P. Benitez, J. C. Minano, J. Chaves, J. Blen, M. Hernandez, and F. Munoz, “Review of SMS design methods and real-world applications,” Proc. SPIE, 5529, 35 (2004).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon Press, 1970).

Cassarly, W. J.

W. J. Cassarly, “Recent advances in mixing rods,” in Proc. SPIE 7103, Illumination Optics, T. E. Kidger and S. R. David, eds. (2008), Vol. 7103, p. 710307.

Chaves, J.

O. Dross, R. Mohedano, P. Benitez, J. C. Minano, J. Chaves, J. Blen, M. Hernandez, and F. Munoz, “Review of SMS design methods and real-world applications,” Proc. SPIE, 5529, 35 (2004).
[Crossref]

Dogan, Y.

C. K. Madsen, Y. Dogan, R. Atkins, M. Morrison, and C. Hu, “Glass light pipes for solar concentration,” 50 (2018).

Dong, J.

Dross, O.

O. Dross, R. Mohedano, P. Benitez, J. C. Minano, J. Chaves, J. Blen, M. Hernandez, and F. Munoz, “Review of SMS design methods and real-world applications,” Proc. SPIE, 5529, 35 (2004).
[Crossref]

Duan, F.

Q. Mu, L. Wang, C. K. Dunn, X. Kuang, F. Duan, Z. Zhang, H. J. Qi, and T. Wang, “Digital light processing 3D printing of conductive complex structures,” Addit. Manuf. 18, 74–83 (2017).
[Crossref]

Dunn, C. K.

Q. Mu, L. Wang, C. K. Dunn, X. Kuang, F. Duan, Z. Zhang, H. J. Qi, and T. Wang, “Digital light processing 3D printing of conductive complex structures,” Addit. Manuf. 18, 74–83 (2017).
[Crossref]

Friedman, J.

B. Hooker and J. Friedman, “Optical waveguide concentrator and illuminating device,” U.S. patent US6554463B2 (2003).

Guo, L.

Gupta, A.

R. J. Koshel and A. Gupta, “Characterization of lightpipes for efficient transfer of light,” Proc. SPIE, 5942, 594205 (2005).
[Crossref]

Heckele, M.

M. Heckele and W. K. Schomburg, “Review on micro molding of thermoplastic polymers,” J. Micromech. Microeng. 14(3), R1–R14 (2004).
[Crossref]

Heinrich, A.

A. Heinrich, M. Rank, P. Maillard, A. Suckow, Y. Bauckhage, P. Rößler, J. Lang, F. Shariff, and S. Pekrul, “Additive manufacturing of optical components,” Adv. Opt. Technol. 5, (2016).

S. Suresh Nair, A. Heinrich, M. Klein, and S. Steenhusen, “Additive manufacturing of photoluminescent optics,” in Organic Photonic Materials and Devices XXI, C. E. Tabor, F. Kajzar, and T. Kaino, eds. (SPIE, 2019), Vol. 1091505, p. 4.

A. Heinrich and M. Rank, “3D Printing of Optics,” in 3D Printing of Optics (SPIE, 2018).

Hernandez, M.

O. Dross, R. Mohedano, P. Benitez, J. C. Minano, J. Chaves, J. Blen, M. Hernandez, and F. Munoz, “Review of SMS design methods and real-world applications,” Proc. SPIE, 5529, 35 (2004).
[Crossref]

Hooker, B.

B. Hooker and J. Friedman, “Optical waveguide concentrator and illuminating device,” U.S. patent US6554463B2 (2003).

Hu, C.

C. K. Madsen, Y. Dogan, R. Atkins, M. Morrison, and C. Hu, “Glass light pipes for solar concentration,” 50 (2018).

Idacavage, M. J.

J. W. Stansbury and M. J. Idacavage, “3D printing with polymers: Challenges among expanding options and opportunities,” Dent. Mater. 32(1), 54–64 (2016).
[Crossref]

Ji, Z.

Jiang, L.

R. Winston, L. Jiang, and M. Ricketts, “Nonimaging optics: a tutorial,” Adv. Opt. Photonics 10(2), 484 (2018).
[Crossref]

Jin, Z.

Joo, J. Y.

Kang, C. S.

Klein, M.

S. Suresh Nair, A. Heinrich, M. Klein, and S. Steenhusen, “Additive manufacturing of photoluminescent optics,” in Organic Photonic Materials and Devices XXI, C. E. Tabor, F. Kajzar, and T. Kaino, eds. (SPIE, 2019), Vol. 1091505, p. 4.

Kofron, M.

A. Bell, M. Kofron, and V. Nistor, “Multiphoton crosslinking for biocompatible 3D printing of type I collagen,” Biofabrication 7(3), 035007 (2015).
[Crossref]

Koshel, R. J.

R. J. Koshel and A. Gupta, “Characterization of lightpipes for efficient transfer of light,” Proc. SPIE, 5942, 594205 (2005).
[Crossref]

Kuang, X.

Q. Mu, L. Wang, C. K. Dunn, X. Kuang, F. Duan, Z. Zhang, H. J. Qi, and T. Wang, “Digital light processing 3D printing of conductive complex structures,” Addit. Manuf. 18, 74–83 (2017).
[Crossref]

Lang, J.

A. Heinrich, M. Rank, P. Maillard, A. Suckow, Y. Bauckhage, P. Rößler, J. Lang, F. Shariff, and S. Pekrul, “Additive manufacturing of optical components,” Adv. Opt. Technol. 5, (2016).

Lee, S.-K.

Li, F.

Li, W.

Linnartz, J.-P. M. G.

H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J.-P. M. G. Linnartz, and R. Rietman, “Uniform Illumination Rendering Using an Array of LEDs: A Signal Processing Perspective,” IEEE Trans. Signal Process. 57(3), 1044–1057 (2009).
[Crossref]

Madsen, C. K.

C. K. Madsen, Y. Dogan, R. Atkins, M. Morrison, and C. Hu, “Glass light pipes for solar concentration,” 50 (2018).

Maillard, P.

A. Heinrich, M. Rank, P. Maillard, A. Suckow, Y. Bauckhage, P. Rößler, J. Lang, F. Shariff, and S. Pekrul, “Additive manufacturing of optical components,” Adv. Opt. Technol. 5, (2016).

Mayer, R.

R. Mayer, “Precision Injection Molding,” Opt. Photonik 2(4), 46–51 (2007).
[Crossref]

Minano, J. C.

O. Dross, R. Mohedano, P. Benitez, J. C. Minano, J. Chaves, J. Blen, M. Hernandez, and F. Munoz, “Review of SMS design methods and real-world applications,” Proc. SPIE, 5529, 35 (2004).
[Crossref]

Mohedano, R.

O. Dross, R. Mohedano, P. Benitez, J. C. Minano, J. Chaves, J. Blen, M. Hernandez, and F. Munoz, “Review of SMS design methods and real-world applications,” Proc. SPIE, 5529, 35 (2004).
[Crossref]

Moore, J. P.

J. P. Moore and C. B. Williams, “Fatigue properties of parts printed by PolyJet material jetting,” Rapid Prototyp. J. 21(6), 675–685 (2015).
[Crossref]

Moreno, I.

Morrison, M.

C. K. Madsen, Y. Dogan, R. Atkins, M. Morrison, and C. Hu, “Glass light pipes for solar concentration,” 50 (2018).

Mu, Q.

Q. Mu, L. Wang, C. K. Dunn, X. Kuang, F. Duan, Z. Zhang, H. J. Qi, and T. Wang, “Digital light processing 3D printing of conductive complex structures,” Addit. Manuf. 18, 74–83 (2017).
[Crossref]

Munoz, F.

O. Dross, R. Mohedano, P. Benitez, J. C. Minano, J. Chaves, J. Blen, M. Hernandez, and F. Munoz, “Review of SMS design methods and real-world applications,” Proc. SPIE, 5529, 35 (2004).
[Crossref]

Nistor, V.

A. Bell, M. Kofron, and V. Nistor, “Multiphoton crosslinking for biocompatible 3D printing of type I collagen,” Biofabrication 7(3), 035007 (2015).
[Crossref]

Nseowo Udofia, E.

E. Nseowo Udofia and W. Zhou, “3D printed optics with a soft and stretchable optical material,” Addit. Manuf. 31, 100912 (2020).
[Crossref]

Park, S. S.

Pekrul, S.

A. Heinrich, M. Rank, P. Maillard, A. Suckow, Y. Bauckhage, P. Rößler, J. Lang, F. Shariff, and S. Pekrul, “Additive manufacturing of optical components,” Adv. Opt. Technol. 5, (2016).

Qi, H. J.

Q. Mu, L. Wang, C. K. Dunn, X. Kuang, F. Duan, Z. Zhang, H. J. Qi, and T. Wang, “Digital light processing 3D printing of conductive complex structures,” Addit. Manuf. 18, 74–83 (2017).
[Crossref]

Rank, M.

A. Heinrich and M. Rank, “3D Printing of Optics,” in 3D Printing of Optics (SPIE, 2018).

A. Heinrich, M. Rank, P. Maillard, A. Suckow, Y. Bauckhage, P. Rößler, J. Lang, F. Shariff, and S. Pekrul, “Additive manufacturing of optical components,” Adv. Opt. Technol. 5, (2016).

Ricketts, M.

R. Winston, L. Jiang, and M. Ricketts, “Nonimaging optics: a tutorial,” Adv. Opt. Photonics 10(2), 484 (2018).
[Crossref]

Rietman, R.

H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J.-P. M. G. Linnartz, and R. Rietman, “Uniform Illumination Rendering Using an Array of LEDs: A Signal Processing Perspective,” IEEE Trans. Signal Process. 57(3), 1044–1057 (2009).
[Crossref]

Rößler, P.

A. Heinrich, M. Rank, P. Maillard, A. Suckow, Y. Bauckhage, P. Rößler, J. Lang, F. Shariff, and S. Pekrul, “Additive manufacturing of optical components,” Adv. Opt. Technol. 5, (2016).

Schenk, T. C. W.

H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J.-P. M. G. Linnartz, and R. Rietman, “Uniform Illumination Rendering Using an Array of LEDs: A Signal Processing Perspective,” IEEE Trans. Signal Process. 57(3), 1044–1057 (2009).
[Crossref]

Schomburg, W. K.

M. Heckele and W. K. Schomburg, “Review on micro molding of thermoplastic polymers,” J. Micromech. Microeng. 14(3), R1–R14 (2004).
[Crossref]

Shariff, F.

A. Heinrich, M. Rank, P. Maillard, A. Suckow, Y. Bauckhage, P. Rößler, J. Lang, F. Shariff, and S. Pekrul, “Additive manufacturing of optical components,” Adv. Opt. Technol. 5, (2016).

Solgaard, O.

N. Vaidya and O. Solgaard, “3D printed optics with nanometer scale surface roughness,” Microsyst. Nanoeng. 4(1), 18 (2018).
[Crossref]

Stansbury, J. W.

J. W. Stansbury and M. J. Idacavage, “3D printing with polymers: Challenges among expanding options and opportunities,” Dent. Mater. 32(1), 54–64 (2016).
[Crossref]

Steenhusen, S.

S. Suresh Nair, A. Heinrich, M. Klein, and S. Steenhusen, “Additive manufacturing of photoluminescent optics,” in Organic Photonic Materials and Devices XXI, C. E. Tabor, F. Kajzar, and T. Kaino, eds. (SPIE, 2019), Vol. 1091505, p. 4.

Su, Z.

D. Wu, J. Wang, and Z. Su, “Optimization and integration of LED array for uniform illumination distribution,” Optoelectron. Lett. 10(5), 335–339 (2014).
[Crossref]

Z. Su, D. Xue, and Z. Ji, “Designing LED array for uniform illumination distribution by simulated annealing algorithm,” Opt. Express 20(S6), A843 (2012).
[Crossref]

Suckow, A.

A. Heinrich, M. Rank, P. Maillard, A. Suckow, Y. Bauckhage, P. Rößler, J. Lang, F. Shariff, and S. Pekrul, “Additive manufacturing of optical components,” Adv. Opt. Technol. 5, (2016).

Suresh Nair, S.

S. Suresh Nair, A. Heinrich, M. Klein, and S. Steenhusen, “Additive manufacturing of photoluminescent optics,” in Organic Photonic Materials and Devices XXI, C. E. Tabor, F. Kajzar, and T. Kaino, eds. (SPIE, 2019), Vol. 1091505, p. 4.

Tzonchev, R. I.

Vaidya, N.

N. Vaidya and O. Solgaard, “3D printed optics with nanometer scale surface roughness,” Microsyst. Nanoeng. 4(1), 18 (2018).
[Crossref]

Venkatesh, V. C.

V. C. Venkatesh, “Precision Manufacture of Spherical and Aspheric Surfaces on Plastics, Glass, Silicon and Germanium,” Curr. Sci. 84(9), 1211–1219 (2003).

Wang, G.

Wang, H.

Wang, J.

D. Wu, J. Wang, and Z. Su, “Optimization and integration of LED array for uniform illumination distribution,” Optoelectron. Lett. 10(5), 335–339 (2014).
[Crossref]

Wang, L.

Q. Mu, L. Wang, C. K. Dunn, X. Kuang, F. Duan, Z. Zhang, H. J. Qi, and T. Wang, “Digital light processing 3D printing of conductive complex structures,” Addit. Manuf. 18, 74–83 (2017).
[Crossref]

G. Wang, L. Wang, F. Li, and G. Zhang, “Collimating lens for light-emitting-diode light source based on non-imaging optics,” Appl. Opt. 51(11), 1654 (2012).
[Crossref]

Wang, P.

Wang, T.

Q. Mu, L. Wang, C. K. Dunn, X. Kuang, F. Duan, Z. Zhang, H. J. Qi, and T. Wang, “Digital light processing 3D printing of conductive complex structures,” Addit. Manuf. 18, 74–83 (2017).
[Crossref]

Williams, C. B.

J. P. Moore and C. B. Williams, “Fatigue properties of parts printed by PolyJet material jetting,” Rapid Prototyp. J. 21(6), 675–685 (2015).
[Crossref]

Winston, R.

R. Winston, L. Jiang, and M. Ricketts, “Nonimaging optics: a tutorial,” Adv. Opt. Photonics 10(2), 484 (2018).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon Press, 1970).

Wu, D.

D. Wu, J. Wang, and Z. Su, “Optimization and integration of LED array for uniform illumination distribution,” Optoelectron. Lett. 10(5), 335–339 (2014).
[Crossref]

Xiang, H.

Xiong, D.

Xu, L.

Xue, D.

Yang, H.

H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J.-P. M. G. Linnartz, and R. Rietman, “Uniform Illumination Rendering Using an Array of LEDs: A Signal Processing Perspective,” IEEE Trans. Signal Process. 57(3), 1044–1057 (2009).
[Crossref]

Zhang, G.

Zhang, Z.

Q. Mu, L. Wang, C. K. Dunn, X. Kuang, F. Duan, Z. Zhang, H. J. Qi, and T. Wang, “Digital light processing 3D printing of conductive complex structures,” Addit. Manuf. 18, 74–83 (2017).
[Crossref]

Zhenrong, Z.

Zhou, W.

E. Nseowo Udofia and W. Zhou, “3D printed optics with a soft and stretchable optical material,” Addit. Manuf. 31, 100912 (2020).
[Crossref]

Addit. Manuf. (2)

E. Nseowo Udofia and W. Zhou, “3D printed optics with a soft and stretchable optical material,” Addit. Manuf. 31, 100912 (2020).
[Crossref]

Q. Mu, L. Wang, C. K. Dunn, X. Kuang, F. Duan, Z. Zhang, H. J. Qi, and T. Wang, “Digital light processing 3D printing of conductive complex structures,” Addit. Manuf. 18, 74–83 (2017).
[Crossref]

Adv. Opt. Photonics (1)

R. Winston, L. Jiang, and M. Ricketts, “Nonimaging optics: a tutorial,” Adv. Opt. Photonics 10(2), 484 (2018).
[Crossref]

Appl. Opt. (4)

Biofabrication (1)

A. Bell, M. Kofron, and V. Nistor, “Multiphoton crosslinking for biocompatible 3D printing of type I collagen,” Biofabrication 7(3), 035007 (2015).
[Crossref]

Curr. Sci. (1)

V. C. Venkatesh, “Precision Manufacture of Spherical and Aspheric Surfaces on Plastics, Glass, Silicon and Germanium,” Curr. Sci. 84(9), 1211–1219 (2003).

Dent. Mater. (1)

J. W. Stansbury and M. J. Idacavage, “3D printing with polymers: Challenges among expanding options and opportunities,” Dent. Mater. 32(1), 54–64 (2016).
[Crossref]

IEEE Trans. Signal Process. (1)

H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J.-P. M. G. Linnartz, and R. Rietman, “Uniform Illumination Rendering Using an Array of LEDs: A Signal Processing Perspective,” IEEE Trans. Signal Process. 57(3), 1044–1057 (2009).
[Crossref]

J. Micromech. Microeng. (1)

M. Heckele and W. K. Schomburg, “Review on micro molding of thermoplastic polymers,” J. Micromech. Microeng. 14(3), R1–R14 (2004).
[Crossref]

Microsyst. Nanoeng. (1)

N. Vaidya and O. Solgaard, “3D printed optics with nanometer scale surface roughness,” Microsyst. Nanoeng. 4(1), 18 (2018).
[Crossref]

Opt. Express (2)

Opt. Photonik (1)

R. Mayer, “Precision Injection Molding,” Opt. Photonik 2(4), 46–51 (2007).
[Crossref]

Optoelectron. Lett. (1)

D. Wu, J. Wang, and Z. Su, “Optimization and integration of LED array for uniform illumination distribution,” Optoelectron. Lett. 10(5), 335–339 (2014).
[Crossref]

Proc. SPIE (2)

O. Dross, R. Mohedano, P. Benitez, J. C. Minano, J. Chaves, J. Blen, M. Hernandez, and F. Munoz, “Review of SMS design methods and real-world applications,” Proc. SPIE, 5529, 35 (2004).
[Crossref]

R. J. Koshel and A. Gupta, “Characterization of lightpipes for efficient transfer of light,” Proc. SPIE, 5942, 594205 (2005).
[Crossref]

Rapid Prototyp. J. (1)

J. P. Moore and C. B. Williams, “Fatigue properties of parts printed by PolyJet material jetting,” Rapid Prototyp. J. 21(6), 675–685 (2015).
[Crossref]

Other (11)

“Certain commercial equipment, instruments, software, or materials are identified in this paper to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology,” (NIST Disclaimer).

M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon Press, 1970).

IEC Standard 60904–9. Photovoltaic Devices—Part 9: Solar Simulator Performance Requirements (International Electrotechnical Commission, 2007).

C. K. Madsen, Y. Dogan, R. Atkins, M. Morrison, and C. Hu, “Glass light pipes for solar concentration,” 50 (2018).

S. Bäumer, Handbook of Plastic Optics (Wiley-VCH Verlag GmbH & Co. KGaA, 2010).

B. Hooker and J. Friedman, “Optical waveguide concentrator and illuminating device,” U.S. patent US6554463B2 (2003).

R. J. Koshel, ed., Illumination Engineering (John Wiley & Sons, Inc., 2013).

W. J. Cassarly, “Recent advances in mixing rods,” in Proc. SPIE 7103, Illumination Optics, T. E. Kidger and S. R. David, eds. (2008), Vol. 7103, p. 710307.

A. Heinrich, M. Rank, P. Maillard, A. Suckow, Y. Bauckhage, P. Rößler, J. Lang, F. Shariff, and S. Pekrul, “Additive manufacturing of optical components,” Adv. Opt. Technol. 5, (2016).

S. Suresh Nair, A. Heinrich, M. Klein, and S. Steenhusen, “Additive manufacturing of photoluminescent optics,” in Organic Photonic Materials and Devices XXI, C. E. Tabor, F. Kajzar, and T. Kaino, eds. (SPIE, 2019), Vol. 1091505, p. 4.

A. Heinrich and M. Rank, “3D Printing of Optics,” in 3D Printing of Optics (SPIE, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. A) Layout of the 12-LED array with emission characteristics at 740 nm, B) as-printed short concentrator waveguide, polished short waveguide and polished long waveguide, C) waveguide placed against the array showing the light leakage from the side walls, D) the encased waveguide in operation. The 12 small red LEDs on the top side of the board in A are indicator LEDs only and are not coupled into the waveguide.
Fig. 2.
Fig. 2. Simulation results: The figures on the left column show the simulated model of the short waveguide, its incoherent irradiance profile at the exit plane and its radiance in angle space. The figures on the right column show the simulated model of the long waveguide where achieving irradiance uniformity was a higher priority in the modeling.
Fig. 3.
Fig. 3. Light transmittance measurements of a few 3D printed slabs of the cured and polished resin used for fabrication of the optical concentrators.
Fig. 4.
Fig. 4. Spectral irradiance measurements at the output plane of various waveguides, including the 3D printed polished short and long concentrators, a short unpolished concentrator and a glass tapered out waveguide for comparison purposes. The total irradiances are integrated values under each curve.
Fig. 5.
Fig. 5. (left panel) Irradiance uniformity map of the short concentrator in % nonuniformity from the center and a line profile taken along the x direction near the center (right panel) Irradiance uniformity map and a line profile of the long concentrator revealing much higher spatial uniformity.
Fig. 6.
Fig. 6. (lnset) The design of an LED array with 8 quasi-monochromatic LEDs (the perimeter LEDs) and 4 similar white LEDs in the center. (Main part) With only the 8 monochromatic LEDs utilized and coupled into the long waveguide concentrator, a combined spectrum can be synthesized satisfying an indoor solar simulator spectral and power requirements according to the IEC 60904-9.
Fig. 7.
Fig. 7. The irradiance uniformity maps of the 8 LEDs used to construct the solar simulator at the exit plane of the waveguide. The nonuniformity percentage is with respect to a point at the center.

Tables (1)

Tables Icon

Table 1. Overview of a few techniques for fabricating optical waveguides.