Abstract

We investigate the energy conversion process and subsequent thermal and bit-writing performance of a plasmonic near-field transducer (NFT) under steady-state operation within heat-assisted magnetic recording (HAMR) devices. The NFT is composed of metal-insulator-metal (MIM) layers that are designed to localize heating and produce optimal thermal gradients in order to relieve parasitic heating effects in the NFT. The thin-film MIM structure confines the electromagnetic energy in the down-track direction while cross-track confinement is achieved by tapering the insulator feature of the MIM. A comparative analysis using Gold and a number of novel Au alloys is undertaken. Modeled performance shows excellent thermal spot confinement (50 × 50 nm2) of temperatures above 650 K at an input laser power of 830 nm of less than 5 milliwatts. In addition, micromagnetic simulations using a stochastic Landau-Lifshitz-Bloch equation yield excellent signal to noise ratio with minimum jitter of under 2 nm when recording.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Abadía, F. Bello, C. Zhong, P. Flanigan, D. M. McCloskey, C. Wolf, A. Krichevsky, D. Wolf, F. Zong, A. Samani, D. V. Plant, and J. F. Donegan, “Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR,” Opt. Express 26(2), 1752–1765 (2018).
    [Crossref]
  2. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
    [Crossref]
  3. B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
    [Crossref]
  4. H. T. Miyazaki and Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
    [Crossref]
  5. C. Zhong, P. Flanigan, N. Abadía, F. Bello, B. D. Jennings, G. Atcheson, J. Li, J.-Y. Zheng, J. J. Wang, and R. Hobbs, “Effective heat dissipation in an adiabatic near-field transducer for HAMR,” Opt. Express 26(15), 18842–18854 (2018).
    [Crossref]
  6. A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
    [Crossref]
  7. D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “Review Article: FePt heat assisted magnetic recording media,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing Measurement, and Phenomena, 34 (2016).
  8. V. Krishnamurthy, D. Keh Ting Ng, Z. Cen, B. Xu, and Q. Wang, “Maximizing the Plasmonic Near-Field Transducer Efficiency to Its Limit for HAMR,” J. Lightwave Technol. 34(4), 1184–1190 (2016).
    [Crossref]
  9. K.-T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
    [Crossref]
  10. H. Yang, J. Li, and G. Xiao, “Decay and propagation properties of symmetric surface plasmon polariton mode in metal–insulator–metal waveguide,” Opt. Commun. 395, 159–162 (2017).
    [Crossref]
  11. W. M. Abbott, C. P. Murray, C. Zhong, C. Smith, C. McGuinness, E. Rezvani, C. Downing, D. Daly, A. K. Petford-Long, F. Bello, D. McCloskey, and J. F. Donegan, “Less is More: Improved Thermal Stability and Plasmonic Response in Au Films via the Use of SubNanometer Ti Adhesion Layers,” ACS Appl. Mater. Interfaces 11(7), 7607–7614 (2019).
    [Crossref]
  12. N. Bodenschatz, A. Liemert, S. Schnurr, U. Wiedwald, and P. Ziemann, “Extending the 3ω method: Thermal conductivity characterization of thin films,” Rev. Sci. Instrum. 84(8), 084904 (2013).
    [Crossref]
  13. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16(19), 14902–14909 (2008).
    [Crossref]
  14. M. Zhang and Z. Wang, “Analytical method for metal-insulator-metal surface plasmon polaritons waveguide networks,” Opt. Express 27(1), 303–321 (2019).
    [Crossref]
  15. A. Krichevsky, C. B. Wolf, F. D. Bello, K. E. Ballantine, J. Donegan, and D. M. O. McCloskey, “Method and system for reducing undesirable reflections in a HAMR write apparatus,” US Patent 9484051, 2016.
  16. H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
    [Crossref]
  17. A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Architecture for metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10249336, 2019.
  18. A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10360939, 2019.
  19. N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
    [Crossref]
  20. O. K. Orhan and D. D. O’Regan, “Plasmonic performance of AuxAgyCu1−x−y alloys from many-body perturbation theory,” J. Phys.: Condens. Matter 31(31), 315901 (2019).
    [Crossref]
  21. C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser.: Mater. Sci. Eng. 147, 012021 (2016).
    [Crossref]
  22. H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
    [Crossref]
  23. I. Gilbert, D. A. Saunders, P. Czoschke, Z. Liu, S. Granz, and T. Rausch, “Measuring cross-track thermal gradient in heat-assisted magnetic recording,” IEEE Trans. Magn. 55(12), 1–5 (2019).
    [Crossref]
  24. D. A. Saunders, J. Hohlfeld, X. Zheng, T. Rausch, and C. Rea, “HAMR thermal gradient measurements and analysis,” IEEE Trans. Magn. 53(2), 1–5 (2017).
    [Crossref]
  25. O. K. Orhan, F. Bello, J. F. Donegan, and D. D. O’Regan, “Engineering Au-based alloys for high-power near-field transducers for heat-assisted magnetic recording media”, To be published, 2020.
  26. M.-N. Abdallah, T. Lou, J.-M. Retrouvey, and S. Suri, “20 - Biomaterials used in orthodontics: brackets, archwires, and clear aligners,” in Advanced Dental Biomaterials, Z. Khurshid, S. Najeeb, M. S. Zafar, and F. Sefat, eds. (Woodhead Publishing, 2019), pp. 541–579.
  27. M. Tzoufras and M. K. Grobis, “Dynamics of single-domain magnetic particles at elevated temperatures,” New J. Phys. 17(10), 103014 (2015).
    [Crossref]
  28. J. Zhu and H. Li, “Understanding signal and noise in heat assisted magnetic recording,” IEEE Trans. Magn. 49(2), 765–772 (2013).
    [Crossref]
  29. G. Ju, Y. Peng, E. K. Cheng, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, and Z. Fan, “High density heat-assisted magnetic recording media and advanced characterization-progress and challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
    [Crossref]
  30. Y. Jiao, Y. Wang, and R. H. Victora, “A study of SNR and BER in heat-assisted magnetic recording,” IEEE Trans. Magn. 51(11), 1–4 (2015).
    [Crossref]
  31. D. Suess, C. Vogler, C. Abert, F. Bruckner, R. Windl, L. Breth, and J. Fidler, “Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures,” J. Appl. Phys. 117(16), 163913 (2015).
    [Crossref]
  32. H. Li, B. Johnson, M. Morelli, M. Gibbons, and J.-G. Zhu, “Analysis of signal-to-noise ratio impact in heat assisted magnetic recording under insufficient head field,” J. Appl. Phys. 117(17), 17D133 (2015).
    [Crossref]
  33. COMSOL MultiphysicsTM v.5.4 www.comsol.com . COMSOL AB, Sweden.
  34. F. Bello, S. Sanvito, O. Hess, and J. F. Donegan, “Shaping and storing magnetic data using pulsed plasmonic nanoheating and spin-transfer torque,” ACS Photonics 6(6), 1524–1532 (2019).
    [Crossref]
  35. D. A. Garanin, “Fokker-Planck and Landau-Lifshitz-Bloch equations for classical ferromagnets,” Phys. Rev. B 55(5), 3050–3057 (1997).
    [Crossref]
  36. H. Oezelt, A. Kovacs, J. Fischbacher, S. Bance, M. Gubbins, and T. Schrefl, “Transition jitter in heat-assisted magnetic recording by micromagnetic simulation,” IEEE Trans. Magn. 53(11), 1–5 (2017).
    [Crossref]
  37. M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, “Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavity,” ACS Photonics 5(1), 240–248 (2018).
    [Crossref]
  38. H. Groß, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, “Near-field strong coupling of single quantum dots,” Sci. Adv. 4(3) 4, eaar4906 (2018).
    [Crossref]
  39. F. Bello, N. Kongsuwan, J. F. Donegan, and O. Hess, “Controlled cavity-free, single-photon emission and bipartite entanglement of near-field-excited quantum emitters,” Nano Lett. (2020).
    [Crossref]

2019 (5)

W. M. Abbott, C. P. Murray, C. Zhong, C. Smith, C. McGuinness, E. Rezvani, C. Downing, D. Daly, A. K. Petford-Long, F. Bello, D. McCloskey, and J. F. Donegan, “Less is More: Improved Thermal Stability and Plasmonic Response in Au Films via the Use of SubNanometer Ti Adhesion Layers,” ACS Appl. Mater. Interfaces 11(7), 7607–7614 (2019).
[Crossref]

M. Zhang and Z. Wang, “Analytical method for metal-insulator-metal surface plasmon polaritons waveguide networks,” Opt. Express 27(1), 303–321 (2019).
[Crossref]

O. K. Orhan and D. D. O’Regan, “Plasmonic performance of AuxAgyCu1−x−y alloys from many-body perturbation theory,” J. Phys.: Condens. Matter 31(31), 315901 (2019).
[Crossref]

I. Gilbert, D. A. Saunders, P. Czoschke, Z. Liu, S. Granz, and T. Rausch, “Measuring cross-track thermal gradient in heat-assisted magnetic recording,” IEEE Trans. Magn. 55(12), 1–5 (2019).
[Crossref]

F. Bello, S. Sanvito, O. Hess, and J. F. Donegan, “Shaping and storing magnetic data using pulsed plasmonic nanoheating and spin-transfer torque,” ACS Photonics 6(6), 1524–1532 (2019).
[Crossref]

2018 (4)

2017 (4)

A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
[Crossref]

H. Yang, J. Li, and G. Xiao, “Decay and propagation properties of symmetric surface plasmon polariton mode in metal–insulator–metal waveguide,” Opt. Commun. 395, 159–162 (2017).
[Crossref]

H. Oezelt, A. Kovacs, J. Fischbacher, S. Bance, M. Gubbins, and T. Schrefl, “Transition jitter in heat-assisted magnetic recording by micromagnetic simulation,” IEEE Trans. Magn. 53(11), 1–5 (2017).
[Crossref]

D. A. Saunders, J. Hohlfeld, X. Zheng, T. Rausch, and C. Rea, “HAMR thermal gradient measurements and analysis,” IEEE Trans. Magn. 53(2), 1–5 (2017).
[Crossref]

2016 (2)

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser.: Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

V. Krishnamurthy, D. Keh Ting Ng, Z. Cen, B. Xu, and Q. Wang, “Maximizing the Plasmonic Near-Field Transducer Efficiency to Its Limit for HAMR,” J. Lightwave Technol. 34(4), 1184–1190 (2016).
[Crossref]

2015 (5)

M. Tzoufras and M. K. Grobis, “Dynamics of single-domain magnetic particles at elevated temperatures,” New J. Phys. 17(10), 103014 (2015).
[Crossref]

G. Ju, Y. Peng, E. K. Cheng, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, and Z. Fan, “High density heat-assisted magnetic recording media and advanced characterization-progress and challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[Crossref]

Y. Jiao, Y. Wang, and R. H. Victora, “A study of SNR and BER in heat-assisted magnetic recording,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[Crossref]

D. Suess, C. Vogler, C. Abert, F. Bruckner, R. Windl, L. Breth, and J. Fidler, “Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures,” J. Appl. Phys. 117(16), 163913 (2015).
[Crossref]

H. Li, B. Johnson, M. Morelli, M. Gibbons, and J.-G. Zhu, “Analysis of signal-to-noise ratio impact in heat assisted magnetic recording under insufficient head field,” J. Appl. Phys. 117(17), 17D133 (2015).
[Crossref]

2014 (2)

K.-T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

2013 (3)

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

N. Bodenschatz, A. Liemert, S. Schnurr, U. Wiedwald, and P. Ziemann, “Extending the 3ω method: Thermal conductivity characterization of thin films,” Rev. Sci. Instrum. 84(8), 084904 (2013).
[Crossref]

J. Zhu and H. Li, “Understanding signal and noise in heat assisted magnetic recording,” IEEE Trans. Magn. 49(2), 765–772 (2013).
[Crossref]

2012 (1)

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

2010 (1)

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

2009 (1)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

2008 (1)

2006 (1)

H. T. Miyazaki and Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[Crossref]

1997 (1)

D. A. Garanin, “Fokker-Planck and Landau-Lifshitz-Bloch equations for classical ferromagnets,” Phys. Rev. B 55(5), 3050–3057 (1997).
[Crossref]

Abadía, N.

Abbott, W. M.

W. M. Abbott, C. P. Murray, C. Zhong, C. Smith, C. McGuinness, E. Rezvani, C. Downing, D. Daly, A. K. Petford-Long, F. Bello, D. McCloskey, and J. F. Donegan, “Less is More: Improved Thermal Stability and Plasmonic Response in Au Films via the Use of SubNanometer Ti Adhesion Layers,” ACS Appl. Mater. Interfaces 11(7), 7607–7614 (2019).
[Crossref]

Abdallah, M.-N.

M.-N. Abdallah, T. Lou, J.-M. Retrouvey, and S. Suri, “20 - Biomaterials used in orthodontics: brackets, archwires, and clear aligners,” in Advanced Dental Biomaterials, Z. Khurshid, S. Najeeb, M. S. Zafar, and F. Sefat, eds. (Woodhead Publishing, 2019), pp. 541–579.

Abert, C.

D. Suess, C. Vogler, C. Abert, F. Bruckner, R. Windl, L. Breth, and J. Fidler, “Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures,” J. Appl. Phys. 117(16), 163913 (2015).
[Crossref]

Albrecht, M.

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “Review Article: FePt heat assisted magnetic recording media,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing Measurement, and Phenomena, 34 (2016).

Albrecht, T. R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Amini, H.

G. Ju, Y. Peng, E. K. Cheng, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, and Z. Fan, “High density heat-assisted magnetic recording media and advanced characterization-progress and challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[Crossref]

Atcheson, G.

Balamane, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Ballantine, K.

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Architecture for metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10249336, 2019.

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10360939, 2019.

Ballantine, K. E.

A. Krichevsky, C. B. Wolf, F. D. Bello, K. E. Ballantine, J. Donegan, and D. M. O. McCloskey, “Method and system for reducing undesirable reflections in a HAMR write apparatus,” US Patent 9484051, 2016.

Bance, S.

H. Oezelt, A. Kovacs, J. Fischbacher, S. Bance, M. Gubbins, and T. Schrefl, “Transition jitter in heat-assisted magnetic recording by micromagnetic simulation,” IEEE Trans. Magn. 53(11), 1–5 (2017).
[Crossref]

Baracu, A.

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser.: Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

Bello, F.

W. M. Abbott, C. P. Murray, C. Zhong, C. Smith, C. McGuinness, E. Rezvani, C. Downing, D. Daly, A. K. Petford-Long, F. Bello, D. McCloskey, and J. F. Donegan, “Less is More: Improved Thermal Stability and Plasmonic Response in Au Films via the Use of SubNanometer Ti Adhesion Layers,” ACS Appl. Mater. Interfaces 11(7), 7607–7614 (2019).
[Crossref]

F. Bello, S. Sanvito, O. Hess, and J. F. Donegan, “Shaping and storing magnetic data using pulsed plasmonic nanoheating and spin-transfer torque,” ACS Photonics 6(6), 1524–1532 (2019).
[Crossref]

N. Abadía, F. Bello, C. Zhong, P. Flanigan, D. M. McCloskey, C. Wolf, A. Krichevsky, D. Wolf, F. Zong, A. Samani, D. V. Plant, and J. F. Donegan, “Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR,” Opt. Express 26(2), 1752–1765 (2018).
[Crossref]

C. Zhong, P. Flanigan, N. Abadía, F. Bello, B. D. Jennings, G. Atcheson, J. Li, J.-Y. Zheng, J. J. Wang, and R. Hobbs, “Effective heat dissipation in an adiabatic near-field transducer for HAMR,” Opt. Express 26(15), 18842–18854 (2018).
[Crossref]

F. Bello, N. Kongsuwan, J. F. Donegan, and O. Hess, “Controlled cavity-free, single-photon emission and bipartite entanglement of near-field-excited quantum emitters,” Nano Lett. (2020).
[Crossref]

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10360939, 2019.

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Architecture for metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10249336, 2019.

O. K. Orhan, F. Bello, J. F. Donegan, and D. D. O’Regan, “Engineering Au-based alloys for high-power near-field transducers for heat-assisted magnetic recording media”, To be published, 2020.

Bello, F. D.

A. Krichevsky, C. B. Wolf, F. D. Bello, K. E. Ballantine, J. Donegan, and D. M. O. McCloskey, “Method and system for reducing undesirable reflections in a HAMR write apparatus,” US Patent 9484051, 2016.

Birleanu, C.

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser.: Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

Bodenschatz, N.

N. Bodenschatz, A. Liemert, S. Schnurr, U. Wiedwald, and P. Ziemann, “Extending the 3ω method: Thermal conductivity characterization of thin films,” Rev. Sci. Instrum. 84(8), 084904 (2013).
[Crossref]

Bokor, J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Boone, T. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Breth, L.

D. Suess, C. Vogler, C. Abert, F. Bruckner, R. Windl, L. Breth, and J. Fidler, “Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures,” J. Appl. Phys. 117(16), 163913 (2015).
[Crossref]

Bruckner, F.

D. Suess, C. Vogler, C. Abert, F. Bruckner, R. Windl, L. Breth, and J. Fidler, “Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures,” J. Appl. Phys. 117(16), 163913 (2015).
[Crossref]

Brueck, S. R. J.

Cabrini, S.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Cen, Z.

Challener, W. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Chen, J.

Cheng, E. K.

G. Ju, Y. Peng, E. K. Cheng, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, and Z. Fan, “High density heat-assisted magnetic recording media and advanced characterization-progress and challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[Crossref]

Choo, H.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Craciun, S.

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser.: Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

Czoschke, P.

I. Gilbert, D. A. Saunders, P. Czoschke, Z. Liu, S. Granz, and T. Rausch, “Measuring cross-track thermal gradient in heat-assisted magnetic recording,” IEEE Trans. Magn. 55(12), 1–5 (2019).
[Crossref]

Daly, D.

W. M. Abbott, C. P. Murray, C. Zhong, C. Smith, C. McGuinness, E. Rezvani, C. Downing, D. Daly, A. K. Petford-Long, F. Bello, D. McCloskey, and J. F. Donegan, “Less is More: Improved Thermal Stability and Plasmonic Response in Au Films via the Use of SubNanometer Ti Adhesion Layers,” ACS Appl. Mater. Interfaces 11(7), 7607–7614 (2019).
[Crossref]

Datta, A.

A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
[Crossref]

Ding, Y.

G. Ju, Y. Peng, E. K. Cheng, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, and Z. Fan, “High density heat-assisted magnetic recording media and advanced characterization-progress and challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[Crossref]

Dobisz, E.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Donegan, J.

A. Krichevsky, C. B. Wolf, F. D. Bello, K. E. Ballantine, J. Donegan, and D. M. O. McCloskey, “Method and system for reducing undesirable reflections in a HAMR write apparatus,” US Patent 9484051, 2016.

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Architecture for metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10249336, 2019.

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10360939, 2019.

Donegan, J. F.

W. M. Abbott, C. P. Murray, C. Zhong, C. Smith, C. McGuinness, E. Rezvani, C. Downing, D. Daly, A. K. Petford-Long, F. Bello, D. McCloskey, and J. F. Donegan, “Less is More: Improved Thermal Stability and Plasmonic Response in Au Films via the Use of SubNanometer Ti Adhesion Layers,” ACS Appl. Mater. Interfaces 11(7), 7607–7614 (2019).
[Crossref]

F. Bello, S. Sanvito, O. Hess, and J. F. Donegan, “Shaping and storing magnetic data using pulsed plasmonic nanoheating and spin-transfer torque,” ACS Photonics 6(6), 1524–1532 (2019).
[Crossref]

N. Abadía, F. Bello, C. Zhong, P. Flanigan, D. M. McCloskey, C. Wolf, A. Krichevsky, D. Wolf, F. Zong, A. Samani, D. V. Plant, and J. F. Donegan, “Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR,” Opt. Express 26(2), 1752–1765 (2018).
[Crossref]

F. Bello, N. Kongsuwan, J. F. Donegan, and O. Hess, “Controlled cavity-free, single-photon emission and bipartite entanglement of near-field-excited quantum emitters,” Nano Lett. (2020).
[Crossref]

O. K. Orhan, F. Bello, J. F. Donegan, and D. D. O’Regan, “Engineering Au-based alloys for high-power near-field transducers for heat-assisted magnetic recording media”, To be published, 2020.

Downing, C.

W. M. Abbott, C. P. Murray, C. Zhong, C. Smith, C. McGuinness, E. Rezvani, C. Downing, D. Daly, A. K. Petford-Long, F. Bello, D. McCloskey, and J. F. Donegan, “Less is More: Improved Thermal Stability and Plasmonic Response in Au Films via the Use of SubNanometer Ti Adhesion Layers,” ACS Appl. Mater. Interfaces 11(7), 7607–7614 (2019).
[Crossref]

Fan, Z.

G. Ju, Y. Peng, E. K. Cheng, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, and Z. Fan, “High density heat-assisted magnetic recording media and advanced characterization-progress and challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[Crossref]

Fidler, J.

D. Suess, C. Vogler, C. Abert, F. Bruckner, R. Windl, L. Breth, and J. Fidler, “Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures,” J. Appl. Phys. 117(16), 163913 (2015).
[Crossref]

Fischbacher, J.

H. Oezelt, A. Kovacs, J. Fischbacher, S. Bance, M. Gubbins, and T. Schrefl, “Transition jitter in heat-assisted magnetic recording by micromagnetic simulation,” IEEE Trans. Magn. 53(11), 1–5 (2017).
[Crossref]

Flanigan, P.

Gage, E. C.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Gao, K.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Gao, L.

G. Ju, Y. Peng, E. K. Cheng, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, and Z. Fan, “High density heat-assisted magnetic recording media and advanced characterization-progress and challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[Crossref]

Garanin, D. A.

D. A. Garanin, “Fokker-Planck and Landau-Lifshitz-Bloch equations for classical ferromagnets,” Phys. Rev. B 55(5), 3050–3057 (1997).
[Crossref]

Gibbons, M.

H. Li, B. Johnson, M. Morelli, M. Gibbons, and J.-G. Zhu, “Analysis of signal-to-noise ratio impact in heat assisted magnetic recording under insufficient head field,” J. Appl. Phys. 117(17), 17D133 (2015).
[Crossref]

Gilbert, I.

I. Gilbert, D. A. Saunders, P. Czoschke, Z. Liu, S. Granz, and T. Rausch, “Measuring cross-track thermal gradient in heat-assisted magnetic recording,” IEEE Trans. Magn. 55(12), 1–5 (2019).
[Crossref]

Gokemeijer, N. J.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Granz, S.

I. Gilbert, D. A. Saunders, P. Czoschke, Z. Liu, S. Granz, and T. Rausch, “Measuring cross-track thermal gradient in heat-assisted magnetic recording,” IEEE Trans. Magn. 55(12), 1–5 (2019).
[Crossref]

Gray, S. K.

M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, “Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavity,” ACS Photonics 5(1), 240–248 (2018).
[Crossref]

Grobis, M. K.

M. Tzoufras and M. K. Grobis, “Dynamics of single-domain magnetic particles at elevated temperatures,” New J. Phys. 17(10), 103014 (2015).
[Crossref]

Groß, H.

H. Groß, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, “Near-field strong coupling of single quantum dots,” Sci. Adv. 4(3) 4, eaar4906 (2018).
[Crossref]

Gubbins, M.

H. Oezelt, A. Kovacs, J. Fischbacher, S. Bance, M. Gubbins, and T. Schrefl, “Transition jitter in heat-assisted magnetic recording by micromagnetic simulation,” IEEE Trans. Magn. 53(11), 1–5 (2017).
[Crossref]

Guo, L. J.

K.-T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

Hamm, J. M.

H. Groß, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, “Near-field strong coupling of single quantum dots,” Sci. Adv. 4(3) 4, eaar4906 (2018).
[Crossref]

Hammack, A. T.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Hecht, B.

H. Groß, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, “Near-field strong coupling of single quantum dots,” Sci. Adv. 4(3) 4, eaar4906 (2018).
[Crossref]

Heilpern, T.

M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, “Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavity,” ACS Photonics 5(1), 240–248 (2018).
[Crossref]

Hellwig, O.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Hensen, M.

M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, “Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavity,” ACS Photonics 5(1), 240–248 (2018).
[Crossref]

Hess, O.

F. Bello, S. Sanvito, O. Hess, and J. F. Donegan, “Shaping and storing magnetic data using pulsed plasmonic nanoheating and spin-transfer torque,” ACS Photonics 6(6), 1524–1532 (2019).
[Crossref]

H. Groß, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, “Near-field strong coupling of single quantum dots,” Sci. Adv. 4(3) 4, eaar4906 (2018).
[Crossref]

F. Bello, N. Kongsuwan, J. F. Donegan, and O. Hess, “Controlled cavity-free, single-photon emission and bipartite entanglement of near-field-excited quantum emitters,” Nano Lett. (2020).
[Crossref]

Hirotsune, A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Hobbs, R.

Hohlfeld, J.

D. A. Saunders, J. Hohlfeld, X. Zheng, T. Rausch, and C. Rea, “HAMR thermal gradient measurements and analysis,” IEEE Trans. Magn. 53(2), 1–5 (2017).
[Crossref]

Hsia, Y. T.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Itagi, A. V.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Jennings, B. D.

Jiao, Y.

Y. Jiao, Y. Wang, and R. H. Victora, “A study of SNR and BER in heat-assisted magnetic recording,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[Crossref]

Johnson, B.

H. Li, B. Johnson, M. Morelli, M. Gibbons, and J.-G. Zhu, “Analysis of signal-to-noise ratio impact in heat assisted magnetic recording under insufficient head field,” J. Appl. Phys. 117(17), 17D133 (2015).
[Crossref]

Ju, G.

G. Ju, Y. Peng, E. K. Cheng, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, and Z. Fan, “High density heat-assisted magnetic recording media and advanced characterization-progress and challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Karns, D.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Katine, J. A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Keh Ting Ng, D.

Kercher, D. S.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Kim, M.-K.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Klemmer, T. J.

G. Ju, Y. Peng, E. K. Cheng, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, and Z. Fan, “High density heat-assisted magnetic recording media and advanced characterization-progress and challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[Crossref]

Kongsuwan, N.

F. Bello, N. Kongsuwan, J. F. Donegan, and O. Hess, “Controlled cavity-free, single-photon emission and bipartite entanglement of near-field-excited quantum emitters,” Nano Lett. (2020).
[Crossref]

Kovacs, A.

H. Oezelt, A. Kovacs, J. Fischbacher, S. Bance, M. Gubbins, and T. Schrefl, “Transition jitter in heat-assisted magnetic recording by micromagnetic simulation,” IEEE Trans. Magn. 53(11), 1–5 (2017).
[Crossref]

Krichevsky, A.

N. Abadía, F. Bello, C. Zhong, P. Flanigan, D. M. McCloskey, C. Wolf, A. Krichevsky, D. Wolf, F. Zong, A. Samani, D. V. Plant, and J. F. Donegan, “Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR,” Opt. Express 26(2), 1752–1765 (2018).
[Crossref]

A. Krichevsky, C. B. Wolf, F. D. Bello, K. E. Ballantine, J. Donegan, and D. M. O. McCloskey, “Method and system for reducing undesirable reflections in a HAMR write apparatus,” US Patent 9484051, 2016.

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10360939, 2019.

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Architecture for metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10249336, 2019.

Krishnamurthy, V.

Kubota, Y.

G. Ju, Y. Peng, E. K. Cheng, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, and Z. Fan, “High density heat-assisted magnetic recording media and advanced characterization-progress and challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[Crossref]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[Crossref]

Lee, J. Y.

K.-T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

Lee, K.-T.

K.-T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

Li, H.

H. Li, B. Johnson, M. Morelli, M. Gibbons, and J.-G. Zhu, “Analysis of signal-to-noise ratio impact in heat assisted magnetic recording under insufficient head field,” J. Appl. Phys. 117(17), 17D133 (2015).
[Crossref]

J. Zhu and H. Li, “Understanding signal and noise in heat assisted magnetic recording,” IEEE Trans. Magn. 49(2), 765–772 (2013).
[Crossref]

Li, J.

C. Zhong, P. Flanigan, N. Abadía, F. Bello, B. D. Jennings, G. Atcheson, J. Li, J.-Y. Zheng, J. J. Wang, and R. Hobbs, “Effective heat dissipation in an adiabatic near-field transducer for HAMR,” Opt. Express 26(15), 18842–18854 (2018).
[Crossref]

H. Yang, J. Li, and G. Xiao, “Decay and propagation properties of symmetric surface plasmon polariton mode in metal–insulator–metal waveguide,” Opt. Commun. 395, 159–162 (2017).
[Crossref]

Li, J.-L.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Liemert, A.

N. Bodenschatz, A. Liemert, S. Schnurr, U. Wiedwald, and P. Ziemann, “Extending the 3ω method: Thermal conductivity characterization of thin films,” Rev. Sci. Instrum. 84(8), 084904 (2013).
[Crossref]

Liu, Z.

I. Gilbert, D. A. Saunders, P. Czoschke, Z. Liu, S. Granz, and T. Rausch, “Measuring cross-track thermal gradient in heat-assisted magnetic recording,” IEEE Trans. Magn. 55(12), 1–5 (2019).
[Crossref]

Lou, T.

M.-N. Abdallah, T. Lou, J.-M. Retrouvey, and S. Suri, “20 - Biomaterials used in orthodontics: brackets, archwires, and clear aligners,” in Advanced Dental Biomaterials, Z. Khurshid, S. Najeeb, M. S. Zafar, and F. Sefat, eds. (Woodhead Publishing, 2019), pp. 541–579.

Lyberatos, A.

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “Review Article: FePt heat assisted magnetic recording media,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing Measurement, and Phenomena, 34 (2016).

Malloy, K. J.

McCloskey, D.

W. M. Abbott, C. P. Murray, C. Zhong, C. Smith, C. McGuinness, E. Rezvani, C. Downing, D. Daly, A. K. Petford-Long, F. Bello, D. McCloskey, and J. F. Donegan, “Less is More: Improved Thermal Stability and Plasmonic Response in Au Films via the Use of SubNanometer Ti Adhesion Layers,” ACS Appl. Mater. Interfaces 11(7), 7607–7614 (2019).
[Crossref]

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Architecture for metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10249336, 2019.

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10360939, 2019.

McCloskey, D. M.

McCloskey, D. M. O.

A. Krichevsky, C. B. Wolf, F. D. Bello, K. E. Ballantine, J. Donegan, and D. M. O. McCloskey, “Method and system for reducing undesirable reflections in a HAMR write apparatus,” US Patent 9484051, 2016.

McGuinness, C.

W. M. Abbott, C. P. Murray, C. Zhong, C. Smith, C. McGuinness, E. Rezvani, C. Downing, D. Daly, A. K. Petford-Long, F. Bello, D. McCloskey, and J. F. Donegan, “Less is More: Improved Thermal Stability and Plasmonic Response in Au Films via the Use of SubNanometer Ti Adhesion Layers,” ACS Appl. Mater. Interfaces 11(7), 7607–7614 (2019).
[Crossref]

Merie, V.

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser.: Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

Mitin, D.

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “Review Article: FePt heat assisted magnetic recording media,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing Measurement, and Phenomena, 34 (2016).

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[Crossref]

Morelli, M.

H. Li, B. Johnson, M. Morelli, M. Gibbons, and J.-G. Zhu, “Analysis of signal-to-noise ratio impact in heat assisted magnetic recording under insufficient head field,” J. Appl. Phys. 117(17), 17D133 (2015).
[Crossref]

Mosendz, O.

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “Review Article: FePt heat assisted magnetic recording media,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing Measurement, and Phenomena, 34 (2016).

Müller, R.

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser.: Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

Murray, C. P.

W. M. Abbott, C. P. Murray, C. Zhong, C. Smith, C. McGuinness, E. Rezvani, C. Downing, D. Daly, A. K. Petford-Long, F. Bello, D. McCloskey, and J. F. Donegan, “Less is More: Improved Thermal Stability and Plasmonic Response in Au Films via the Use of SubNanometer Ti Adhesion Layers,” ACS Appl. Mater. Interfaces 11(7), 7607–7614 (2019).
[Crossref]

Nemoto, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

O’Regan, D. D.

O. K. Orhan and D. D. O’Regan, “Plasmonic performance of AuxAgyCu1−x−y alloys from many-body perturbation theory,” J. Phys.: Condens. Matter 31(31), 315901 (2019).
[Crossref]

O. K. Orhan, F. Bello, J. F. Donegan, and D. D. O’Regan, “Engineering Au-based alloys for high-power near-field transducers for heat-assisted magnetic recording media”, To be published, 2020.

Oezelt, H.

H. Oezelt, A. Kovacs, J. Fischbacher, S. Bance, M. Gubbins, and T. Schrefl, “Transition jitter in heat-assisted magnetic recording by micromagnetic simulation,” IEEE Trans. Magn. 53(11), 1–5 (2017).
[Crossref]

Orhan, O. K.

O. K. Orhan and D. D. O’Regan, “Plasmonic performance of AuxAgyCu1−x−y alloys from many-body perturbation theory,” J. Phys.: Condens. Matter 31(31), 315901 (2019).
[Crossref]

O. K. Orhan, F. Bello, J. F. Donegan, and D. D. O’Regan, “Engineering Au-based alloys for high-power near-field transducers for heat-assisted magnetic recording media”, To be published, 2020.

Parker, G.

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “Review Article: FePt heat assisted magnetic recording media,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing Measurement, and Phenomena, 34 (2016).

Peng, C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Peng, W.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Peng, Y.

G. Ju, Y. Peng, E. K. Cheng, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, and Z. Fan, “High density heat-assisted magnetic recording media and advanced characterization-progress and challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Petford-Long, A. K.

W. M. Abbott, C. P. Murray, C. Zhong, C. Smith, C. McGuinness, E. Rezvani, C. Downing, D. Daly, A. K. Petford-Long, F. Bello, D. McCloskey, and J. F. Donegan, “Less is More: Improved Thermal Stability and Plasmonic Response in Au Films via the Use of SubNanometer Ti Adhesion Layers,” ACS Appl. Mater. Interfaces 11(7), 7607–7614 (2019).
[Crossref]

Pfeiffer, W.

M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, “Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavity,” ACS Photonics 5(1), 240–248 (2018).
[Crossref]

Plant, D. V.

Poon, C. C.

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Pustan, M.

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser.: Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

Rausch, T.

I. Gilbert, D. A. Saunders, P. Czoschke, Z. Liu, S. Granz, and T. Rausch, “Measuring cross-track thermal gradient in heat-assisted magnetic recording,” IEEE Trans. Magn. 55(12), 1–5 (2019).
[Crossref]

D. A. Saunders, J. Hohlfeld, X. Zheng, T. Rausch, and C. Rea, “HAMR thermal gradient measurements and analysis,” IEEE Trans. Magn. 53(2), 1–5 (2017).
[Crossref]

Rawat, V.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Rea, C.

D. A. Saunders, J. Hohlfeld, X. Zheng, T. Rausch, and C. Rea, “HAMR thermal gradient measurements and analysis,” IEEE Trans. Magn. 53(2), 1–5 (2017).
[Crossref]

Retrouvey, J.-M.

M.-N. Abdallah, T. Lou, J.-M. Retrouvey, and S. Suri, “20 - Biomaterials used in orthodontics: brackets, archwires, and clear aligners,” in Advanced Dental Biomaterials, Z. Khurshid, S. Najeeb, M. S. Zafar, and F. Sefat, eds. (Woodhead Publishing, 2019), pp. 541–579.

Rezvani, E.

W. M. Abbott, C. P. Murray, C. Zhong, C. Smith, C. McGuinness, E. Rezvani, C. Downing, D. Daly, A. K. Petford-Long, F. Bello, D. McCloskey, and J. F. Donegan, “Less is More: Improved Thermal Stability and Plasmonic Response in Au Films via the Use of SubNanometer Ti Adhesion Layers,” ACS Appl. Mater. Interfaces 11(7), 7607–7614 (2019).
[Crossref]

Richter, H. J.

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

Robertson, N.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Rottmayer, R. E.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Ruiz, R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Safonova, N. Y.

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “Review Article: FePt heat assisted magnetic recording media,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing Measurement, and Phenomena, 34 (2016).

Samani, A.

Sanvito, S.

F. Bello, S. Sanvito, O. Hess, and J. F. Donegan, “Shaping and storing magnetic data using pulsed plasmonic nanoheating and spin-transfer torque,” ACS Photonics 6(6), 1524–1532 (2019).
[Crossref]

Saunders, D. A.

I. Gilbert, D. A. Saunders, P. Czoschke, Z. Liu, S. Granz, and T. Rausch, “Measuring cross-track thermal gradient in heat-assisted magnetic recording,” IEEE Trans. Magn. 55(12), 1–5 (2019).
[Crossref]

D. A. Saunders, J. Hohlfeld, X. Zheng, T. Rausch, and C. Rea, “HAMR thermal gradient measurements and analysis,” IEEE Trans. Magn. 53(2), 1–5 (2017).
[Crossref]

Schnurr, S.

N. Bodenschatz, A. Liemert, S. Schnurr, U. Wiedwald, and P. Ziemann, “Extending the 3ω method: Thermal conductivity characterization of thin films,” Rev. Sci. Instrum. 84(8), 084904 (2013).
[Crossref]

Scholz, W.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Schrefl, T.

H. Oezelt, A. Kovacs, J. Fischbacher, S. Bance, M. Gubbins, and T. Schrefl, “Transition jitter in heat-assisted magnetic recording by micromagnetic simulation,” IEEE Trans. Magn. 53(11), 1–5 (2017).
[Crossref]

Schuck, P. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Seigler, M. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Seo, S.

K.-T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

Seok, T. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Smith, C.

W. M. Abbott, C. P. Murray, C. Zhong, C. Smith, C. McGuinness, E. Rezvani, C. Downing, D. Daly, A. K. Petford-Long, F. Bello, D. McCloskey, and J. F. Donegan, “Less is More: Improved Thermal Stability and Plasmonic Response in Au Films via the Use of SubNanometer Ti Adhesion Layers,” ACS Appl. Mater. Interfaces 11(7), 7607–7614 (2019).
[Crossref]

Smolyakov, G. A.

Staffaroni, M.

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Stipe, B. C.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Strand, T. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Suess, D.

D. Suess, C. Vogler, C. Abert, F. Bruckner, R. Windl, L. Breth, and J. Fidler, “Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures,” J. Appl. Phys. 117(16), 163913 (2015).
[Crossref]

Suri, S.

M.-N. Abdallah, T. Lou, J.-M. Retrouvey, and S. Suri, “20 - Biomaterials used in orthodontics: brackets, archwires, and clear aligners,” in Advanced Dental Biomaterials, Z. Khurshid, S. Najeeb, M. S. Zafar, and F. Sefat, eds. (Woodhead Publishing, 2019), pp. 541–579.

Terris, B. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Tufarelli, T.

H. Groß, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, “Near-field strong coupling of single quantum dots,” Sci. Adv. 4(3) 4, eaar4906 (2018).
[Crossref]

Tzoufras, M.

M. Tzoufras and M. K. Grobis, “Dynamics of single-domain magnetic particles at elevated temperatures,” New J. Phys. 17(10), 103014 (2015).
[Crossref]

Victora, R. H.

Y. Jiao, Y. Wang, and R. H. Victora, “A study of SNR and BER in heat-assisted magnetic recording,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[Crossref]

Vogler, C.

D. Suess, C. Vogler, C. Abert, F. Bruckner, R. Windl, L. Breth, and J. Fidler, “Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures,” J. Appl. Phys. 117(16), 163913 (2015).
[Crossref]

Voicu, R.

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser.: Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

Wang, J. J.

Wang, Q.

Wang, Y.

Y. Jiao, Y. Wang, and R. H. Victora, “A study of SNR and BER in heat-assisted magnetic recording,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[Crossref]

Wang, Z.

Weller, D.

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “Review Article: FePt heat assisted magnetic recording media,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing Measurement, and Phenomena, 34 (2016).

Wiedwald, U.

N. Bodenschatz, A. Liemert, S. Schnurr, U. Wiedwald, and P. Ziemann, “Extending the 3ω method: Thermal conductivity characterization of thin films,” Rev. Sci. Instrum. 84(8), 084904 (2013).
[Crossref]

Windl, R.

D. Suess, C. Vogler, C. Abert, F. Bruckner, R. Windl, L. Breth, and J. Fidler, “Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures,” J. Appl. Phys. 117(16), 163913 (2015).
[Crossref]

Wolf, C.

N. Abadía, F. Bello, C. Zhong, P. Flanigan, D. M. McCloskey, C. Wolf, A. Krichevsky, D. Wolf, F. Zong, A. Samani, D. V. Plant, and J. F. Donegan, “Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR,” Opt. Express 26(2), 1752–1765 (2018).
[Crossref]

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Architecture for metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10249336, 2019.

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10360939, 2019.

Wolf, C. B.

A. Krichevsky, C. B. Wolf, F. D. Bello, K. E. Ballantine, J. Donegan, and D. M. O. McCloskey, “Method and system for reducing undesirable reflections in a HAMR write apparatus,” US Patent 9484051, 2016.

Wolf, D.

N. Abadía, F. Bello, C. Zhong, P. Flanigan, D. M. McCloskey, C. Wolf, A. Krichevsky, D. Wolf, F. Zong, A. Samani, D. V. Plant, and J. F. Donegan, “Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR,” Opt. Express 26(2), 1752–1765 (2018).
[Crossref]

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10360939, 2019.

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Architecture for metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10249336, 2019.

Wu, A. Q.

G. Ju, Y. Peng, E. K. Cheng, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, and Z. Fan, “High density heat-assisted magnetic recording media and advanced characterization-progress and challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[Crossref]

Wu, M. C.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Xiao, G.

H. Yang, J. Li, and G. Xiao, “Decay and propagation properties of symmetric surface plasmon polariton mode in metal–insulator–metal waveguide,” Opt. Commun. 395, 159–162 (2017).
[Crossref]

Xu, B.

Xu, X.

A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
[Crossref]

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Yablonovitch, E.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Yang, H.

H. Yang, J. Li, and G. Xiao, “Decay and propagation properties of symmetric surface plasmon polariton mode in metal–insulator–metal waveguide,” Opt. Commun. 395, 159–162 (2017).
[Crossref]

Yang, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Zakai, R.

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

Zhang, M.

Zheng, J.-Y.

Zheng, X.

D. A. Saunders, J. Hohlfeld, X. Zheng, T. Rausch, and C. Rea, “HAMR thermal gradient measurements and analysis,” IEEE Trans. Magn. 53(2), 1–5 (2017).
[Crossref]

Zhong, C.

Zhou, N.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Zhu, J.

J. Zhu and H. Li, “Understanding signal and noise in heat assisted magnetic recording,” IEEE Trans. Magn. 49(2), 765–772 (2013).
[Crossref]

Zhu, J.-G.

H. Li, B. Johnson, M. Morelli, M. Gibbons, and J.-G. Zhu, “Analysis of signal-to-noise ratio impact in heat assisted magnetic recording under insufficient head field,” J. Appl. Phys. 117(17), 17D133 (2015).
[Crossref]

Zhu, X.

G. Ju, Y. Peng, E. K. Cheng, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, and Z. Fan, “High density heat-assisted magnetic recording media and advanced characterization-progress and challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Ziemann, P.

N. Bodenschatz, A. Liemert, S. Schnurr, U. Wiedwald, and P. Ziemann, “Extending the 3ω method: Thermal conductivity characterization of thin films,” Rev. Sci. Instrum. 84(8), 084904 (2013).
[Crossref]

Zong, F.

N. Abadía, F. Bello, C. Zhong, P. Flanigan, D. M. McCloskey, C. Wolf, A. Krichevsky, D. Wolf, F. Zong, A. Samani, D. V. Plant, and J. F. Donegan, “Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR,” Opt. Express 26(2), 1752–1765 (2018).
[Crossref]

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10360939, 2019.

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Architecture for metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10249336, 2019.

ACS Appl. Mater. Interfaces (1)

W. M. Abbott, C. P. Murray, C. Zhong, C. Smith, C. McGuinness, E. Rezvani, C. Downing, D. Daly, A. K. Petford-Long, F. Bello, D. McCloskey, and J. F. Donegan, “Less is More: Improved Thermal Stability and Plasmonic Response in Au Films via the Use of SubNanometer Ti Adhesion Layers,” ACS Appl. Mater. Interfaces 11(7), 7607–7614 (2019).
[Crossref]

ACS Photonics (2)

M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, “Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavity,” ACS Photonics 5(1), 240–248 (2018).
[Crossref]

F. Bello, S. Sanvito, O. Hess, and J. F. Donegan, “Shaping and storing magnetic data using pulsed plasmonic nanoheating and spin-transfer torque,” ACS Photonics 6(6), 1524–1532 (2019).
[Crossref]

Appl. Phys. Lett. (1)

K.-T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

IEEE Trans. Magn. (7)

H. Oezelt, A. Kovacs, J. Fischbacher, S. Bance, M. Gubbins, and T. Schrefl, “Transition jitter in heat-assisted magnetic recording by micromagnetic simulation,” IEEE Trans. Magn. 53(11), 1–5 (2017).
[Crossref]

J. Zhu and H. Li, “Understanding signal and noise in heat assisted magnetic recording,” IEEE Trans. Magn. 49(2), 765–772 (2013).
[Crossref]

G. Ju, Y. Peng, E. K. Cheng, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, and Z. Fan, “High density heat-assisted magnetic recording media and advanced characterization-progress and challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[Crossref]

Y. Jiao, Y. Wang, and R. H. Victora, “A study of SNR and BER in heat-assisted magnetic recording,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[Crossref]

H. J. Richter, C. C. Poon, G. Parker, M. Staffaroni, O. Mosendz, R. Zakai, and B. C. Stipe, “Direct measurement of the thermal gradient in heat assisted magnetic recording,” IEEE Trans. Magn. 49(10), 5378–5381 (2013).
[Crossref]

I. Gilbert, D. A. Saunders, P. Czoschke, Z. Liu, S. Granz, and T. Rausch, “Measuring cross-track thermal gradient in heat-assisted magnetic recording,” IEEE Trans. Magn. 55(12), 1–5 (2019).
[Crossref]

D. A. Saunders, J. Hohlfeld, X. Zheng, T. Rausch, and C. Rea, “HAMR thermal gradient measurements and analysis,” IEEE Trans. Magn. 53(2), 1–5 (2017).
[Crossref]

IOP Conf. Ser.: Mater. Sci. Eng. (1)

C. Birleanu, M. Pustan, V. Merie, R. Müller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Conf. Ser.: Mater. Sci. Eng. 147, 012021 (2016).
[Crossref]

J. Appl. Phys. (2)

D. Suess, C. Vogler, C. Abert, F. Bruckner, R. Windl, L. Breth, and J. Fidler, “Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures,” J. Appl. Phys. 117(16), 163913 (2015).
[Crossref]

H. Li, B. Johnson, M. Morelli, M. Gibbons, and J.-G. Zhu, “Analysis of signal-to-noise ratio impact in heat assisted magnetic recording under insufficient head field,” J. Appl. Phys. 117(17), 17D133 (2015).
[Crossref]

J. Lightwave Technol. (1)

J. Phys.: Condens. Matter (1)

O. K. Orhan and D. D. O’Regan, “Plasmonic performance of AuxAgyCu1−x−y alloys from many-body perturbation theory,” J. Phys.: Condens. Matter 31(31), 315901 (2019).
[Crossref]

Nanophotonics (1)

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Nat. Photonics (3)

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

New J. Phys. (1)

M. Tzoufras and M. K. Grobis, “Dynamics of single-domain magnetic particles at elevated temperatures,” New J. Phys. 17(10), 103014 (2015).
[Crossref]

Opt. Commun. (1)

H. Yang, J. Li, and G. Xiao, “Decay and propagation properties of symmetric surface plasmon polariton mode in metal–insulator–metal waveguide,” Opt. Commun. 395, 159–162 (2017).
[Crossref]

Opt. Eng. (1)

A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
[Crossref]

Opt. Express (4)

Phys. Rev. B (1)

D. A. Garanin, “Fokker-Planck and Landau-Lifshitz-Bloch equations for classical ferromagnets,” Phys. Rev. B 55(5), 3050–3057 (1997).
[Crossref]

Phys. Rev. Lett. (1)

H. T. Miyazaki and Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

N. Bodenschatz, A. Liemert, S. Schnurr, U. Wiedwald, and P. Ziemann, “Extending the 3ω method: Thermal conductivity characterization of thin films,” Rev. Sci. Instrum. 84(8), 084904 (2013).
[Crossref]

Sci. Adv. (1)

H. Groß, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, “Near-field strong coupling of single quantum dots,” Sci. Adv. 4(3) 4, eaar4906 (2018).
[Crossref]

Other (8)

F. Bello, N. Kongsuwan, J. F. Donegan, and O. Hess, “Controlled cavity-free, single-photon emission and bipartite entanglement of near-field-excited quantum emitters,” Nano Lett. (2020).
[Crossref]

D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, “Review Article: FePt heat assisted magnetic recording media,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing Measurement, and Phenomena, 34 (2016).

COMSOL MultiphysicsTM v.5.4 www.comsol.com . COMSOL AB, Sweden.

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Architecture for metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10249336, 2019.

A. Krichevsky, F. Bello, C. Wolf, F. Zong, D. Wolf, D. McCloskey, K. Ballantine, and J. Donegan, “Metal-insulator-metal near-field transducer for heat-assisted magnetic recording,” US Patent 10360939, 2019.

A. Krichevsky, C. B. Wolf, F. D. Bello, K. E. Ballantine, J. Donegan, and D. M. O. McCloskey, “Method and system for reducing undesirable reflections in a HAMR write apparatus,” US Patent 9484051, 2016.

O. K. Orhan, F. Bello, J. F. Donegan, and D. D. O’Regan, “Engineering Au-based alloys for high-power near-field transducers for heat-assisted magnetic recording media”, To be published, 2020.

M.-N. Abdallah, T. Lou, J.-M. Retrouvey, and S. Suri, “20 - Biomaterials used in orthodontics: brackets, archwires, and clear aligners,” in Advanced Dental Biomaterials, Z. Khurshid, S. Najeeb, M. S. Zafar, and F. Sefat, eds. (Woodhead Publishing, 2019), pp. 541–579.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic demonstrating the evanescent coupling of a dielectric waveguide mode with a plasmonic NFT mode. The evanescent tail of the mode within the dielectric core is the source of excitation of the plasmonic mode. The rest of the energy may be reflected back to the laser or transmitted to the recording medium causing unwanted heating and possible damage away from the bit-writing region. Hence, additional components need to be added to avoid parasitic heating (red peaks). (b) Directly coupling the photonic mode within the core to the NFT allows energy to be dissipated via heatsinking of the device while reducing the amount of the reflected wave which reaches the recording media.
Fig. 2.
Fig. 2. (a, b, c) Minimal model and cross-sections of the plasmonic waveguide NFT composed of a 18 nm thick insulator core surrounded by Au (metal-insulator-metal resonator). An antireflective (AR) trench is added to reduce feedback between the dielectric waveguide and the NFT. The short taper reduces thermal spot profiles while the smaller section at the air-bearing surface allows for placement of a magnetic write pole or encasement. Au alloys were placed on both sides of the short tapered section (gray material) of the insulator layer in order to improve thermal efficiency near the air-bearing surface (ABS).
Fig. 3.
Fig. 3. Planar cross-section [similar to Fig. 2(b)] taken thru the center of insulator layer of the MIM resonator showing excitation of an antisymmetric SP mode with the magnetic field component (${{\boldsymbol H}_{\boldsymbol x}}$) in (a) and the electric field component (${{\boldsymbol E}_{\boldsymbol z}})$ in (b) which both dominate in magnitude compared to other components. The 0-point on the x-axis is the same 0-point in Fig. 4 while the 0-point on the y-axis corresponds to the center of the magnetic recording layer.
Fig. 4.
Fig. 4. Planar cross-section taken from the center of the magnetic media layer showing profiles for the normalized electric field (a), the temperature (b), along with the cross (c) and down (d) track temperature gradients. All profiles have the same temperature contours superimposed on them. The position of the NFT’s insulator (corner) is marked by the 0-point and the position of the tip of the write pole is marked with the dashed line shown in (b).
Fig. 5.
Fig. 5. (a) Sample signal (green) and noise power (blue) used to calculate SNR (red) in the cross- track direction for the case of pure Au (n=0.06) used for the metallic components of the NFT. (b) Jitter plotted along the cross-track position. (c) Corresponding write pattern on media with white grains pointed up, black grains down and gray area non-magnetic material.
Fig. 6.
Fig. 6. (a, b, c, d) General, to-scale schematic of fully integrated photonic and plasmonic waveguides with corresponding heatsink additions and other components (numbered). Corresponding dimensions are listed in Table 3 along with material parameters in Table 4. The air-bearing (ABS) section of the MIM (7) may have a hard encasement (optional gray region) in lieu of extended Au or Au alloy. The entire structure is cladded in SiO2.

Tables (5)

Tables Icon

Table 1. Thermal performance parameters.

Tables Icon

Table 2. Magnetic performance parameters.

Tables Icon

Table 3. Photonic and plasmonic waveguide dimensions.

Tables Icon

Table 4. Film thicknesses and parameters used in optical/thermal simulations.

Tables Icon

Table 5. Parameters used in micromagnetic simulations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n e f f π k 0 Δ L E = λ 0 2 ( | E p 1 2 | | E p 2 2 | )