Abstract

A narrowband absorber consisting of periodically patterned square graphene disks (SGDs) is proposed to achieve flexible control of the absorption enhancement of circularly polarized light (CPL) in the far-infrared region. It is shown that absorption of CPL can be enhanced by utilizing the double-cavity enhancement of edge graphene plasmons (EGPs) of the SGDs in both x and y directions. Perfect light absorption can be achieved by minimizing the reflectance through perfect impedance matching and simultaneously eliminating the transmittance by the metallic substrate. By using the Fabry-Pérot (F-P) cavity model with a linear fitting method, the location of the absorption peak of CPL can be well estimated. The location of the absorption peak can be modulated by changing the Fermi level of graphene, while it can be kept almost the same even though the structural parameters such as period and the thickness of the dielectric spacer are significantly altered. Furthermore, by integrating multi-sized SGDs into the unit cell of the structure, multiple absorption channels of CPL with good absorption performances can be realized. As examples, two and three absorption channels with high peak absorptivity are demonstrated via double and triple SGDs, respectively.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95(12), 123904 (2005).
    [Crossref]
  2. D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
    [Crossref]
  3. F. Yang and Y. Rahmat-Samii, “A low profile single dipole antenna radiating circularly polarized waves,” IEEE Trans. Antennas Propag. 53(9), 3083–3086 (2005).
    [Crossref]
  4. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
    [Crossref]
  5. C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
    [Crossref]
  6. R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
    [Crossref]
  7. L. Nagdimunov, L. Kolokolova, and D. Mackowski, “Characterization and remote sensing of biological particles using circular polarization,” J. Quant. Spectrosc. Radiat. Transfer 131, 59–65 (2013).
    [Crossref]
  8. W. E. Martin, E. Hesse, J. H. Hough, W. B. Sparks, C. S. Cockell, Z. Ulanowski, T. A. Germer, and P. H. Kaye, “Polarized optical scattering signatures from biological materials,” J. Quant. Spectrosc. Radiat. Transfer 111(16), 2444–2459 (2010).
    [Crossref]
  9. J. Kobashi, H. Yoshida, and M. Ozaki, “Circularly-polarized, semitransparent and double-sided holograms based on helical photonic structures,” Sci. Rep. 7(1), 16470 (2017).
    [Crossref]
  10. J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
    [Crossref]
  11. K. Saito and T. Tatsuma, “Chiral plasmonic nanostructures fabricated by circularly polarized light,” Nano Lett. 18(5), 3209–3212 (2018).
    [Crossref]
  12. B. P. Cumming, S. Debbarma, B. Luther-Davis, and M. Gu, “Simultaneous compensation for aberration and axial elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective,” Opt. Express 21(16), 19135–19141 (2013).
    [Crossref]
  13. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [Crossref]
  14. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
    [Crossref]
  15. S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref]
  16. S.-X. Xia, X. Zhai, Y. Huang, J.-Q. Liu, L.-L. Wang, and S.-C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
    [Crossref]
  17. H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
    [Crossref]
  18. S.-X. Xia, X. Zhai, L.-L. Wang, and S.-C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
    [Crossref]
  19. B. Zhang, H. Li, H. Xu, M. Zhao, C. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
    [Crossref]
  20. Y. Wang, X. Chen, W. Ye, Z. Wu, Y. Han, T. Han, Y. He, Y. Cai, and N. Wang, “Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors,” Appl. Phys. Lett. 105(24), 243507 (2014).
    [Crossref]
  21. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
    [Crossref]
  22. B. Wang, S. Blaize, J. Seok, S. Kim, H. Yang, and R. Salas-Montiel, “Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–6 (2019).
    [Crossref]
  23. H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
    [Crossref]
  24. W. Peng and X. Li, “Synthesis of a sulfur-graphene composite as an enhanced metal-free photocatalyst,” Nano Res. 6(4), 286–292 (2013).
    [Crossref]
  25. P. F. Lim, K. H. Leong, L. C. Sim, A. Abd Aziz, and P. Saravanan, “Amalgamation of N-graphene quantum dots with nanocubic like TiO2: an insight study of sunlight sensitive photocatalysis,” Environ. Sci. Pollut. Res. 26(4), 3455–3464 (2019).
    [Crossref]
  26. T.-T. Kim, S. S. Oh, H.-D. Kim, H. S. Park, O. Hess, B. Min, and S. Zhang, “Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials,” Sci. Adv. 3(9), e1701377 (2017).
    [Crossref]
  27. L. Peng, X.-F. Li, X. Jiang, and S.-M. Li, “A novel THz half-wave polarization converter for cross-polarization conversions of both linear and circular polarizations and polarization conversion ratio regulating by graphene,” J. Lightwave Technol. 36(19), 4250–4258 (2018).
    [Crossref]
  28. X. Su, Z. Wei, C. Wu, Y. Long, and H. Li, “Negative reflection from metal/graphene plasmonic gratings,” Opt. Lett. 41(2), 348–351 (2016).
    [Crossref]
  29. L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Circularly-polarized reconfigurable transmit array in Ka-band with beam scanning and polarization switching capabilities,” IEEE Trans. Antennas Propag. 65(2), 529–540 (2017).
    [Crossref]
  30. J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Tunable asymmetric transmission of THz wave through a graphene chiral metasurface,” J. Opt. 18(9), 095001 (2016).
    [Crossref]
  31. B. Zhu, G. Ren, Y. Gao, B. Wu, C. Wan, and S. Jian, “Graphene circular polarization analyzer based on spiral metal triangle antennas arrays,” Opt. Express 23(19), 24730–24737 (2015).
    [Crossref]
  32. Z. Su, Y. Wang, X. Luo, H. Luo, C. Zhang, M. Li, T. Sang, and G. Yang, “A tunable THz absorber consisting of an elliptical graphene disk array,” Phys. Chem. Chem. Phys. 20(21), 14357–14361 (2018).
    [Crossref]
  33. F. J. G. de Abajo, “Graphene nanophotonics,” Science 339(6122), 917–918 (2013).
    [Crossref]
  34. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
    [Crossref]
  35. P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
    [Crossref]
  36. S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
    [Crossref]
  37. Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
    [Crossref]
  38. G. Deng, X. Song, S. A. Dereshgi, H. Xu, and K. Aydin, “Tunable multi-wavelength absorption in mid-IR region based on a hybrid patterned graphene-hBN structure,” Opt. Express 27(16), 23576–23584 (2019).
    [Crossref]
  39. J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
    [Crossref]
  40. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
    [Crossref]
  41. H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40(15), 3647–3650 (2015).
    [Crossref]
  42. Ansys Lumerical, “FDTD,” https://www.lumerical.com/products/fdtd/ .
  43. Comsol, “Comsol Multiphysics,” https://comsol.com/comsol-multiphysics .
  44. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  45. H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
    [Crossref]
  46. Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
    [Crossref]
  47. H. Qi, T. Sang, L. Wang, X. Yin, J. Wang, and Y. Wang, “Dual-band light absorption enhancement in hyperbolic rectangular array,” Appl. Sci. 9(10), 2011 (2019).
    [Crossref]
  48. W. Zhou, Y. Wu, M. Yu, P. Hao, G. Liu, and K. Li, “Extraordinary optical absorption based on guided-mode resonance,” Opt. Lett. 38(24), 5393–5396 (2013).
    [Crossref]
  49. P. K. Sahoo, J. Y. Pae, and V. M. Murukeshan, “Enhanced absorption in a graphene embedded 1D guided-mode-resonance structure without back-reflector and interferometrically written gratings,” Opt. Lett. 44(15), 3661–3664 (2019).
    [Crossref]
  50. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref]
  51. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
    [Crossref]
  52. M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. G. de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
    [Crossref]
  53. M.-F. Lin and F.-L. Shyu, “Optical properties of nanographite ribbons,” J. Phys. Soc. Jpn. 69(11), 3529–3532 (2000).
    [Crossref]
  54. H. Hsu and L. E. Reichl, “Selection rule for the optical absorption of graphene nanoribbons,” Phys. Rev. B 76(4), 045418 (2007).
    [Crossref]
  55. H. C. Chung, M. H. Lee, C. P. Chang, and M. F. Lin, “Exploration of edge-dependent optical selection rules for graphene nanoribbons,” Opt. Express 19(23), 23350–23363 (2011).
    [Crossref]
  56. H. C. Chung, C. P. Chang, C. Y. Lin, and M. F. Lin, “Electronic and optical properties of graphene nanoribbons in external fields,” Phys. Chem. Chem. Phys. 18(11), 7573–7616 (2016).
    [Crossref]
  57. A. Y. Nikitin, F. Guinea, and L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101(15), 151119 (2012).
    [Crossref]
  58. X. Liu, J. Gao, H. Yang, and X. Wang, “Si-based near-infrared narrowband absorber based on square Au patches,” J. Opt. Soc. Am. B 33(10), 2149–2153 (2016).
    [Crossref]
  59. X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid plasmonic modes in multilayer trench grating structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
    [Crossref]
  60. D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, “Photonic band structure and defects in one and two dimensions,” J. Opt. Soc. Am. B 10(2), 314–321 (1993).
    [Crossref]
  61. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
    [Crossref]
  62. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  63. F. J. G. de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
    [Crossref]
  64. Y. Hajati, Z. Zanbouri, and M. Sabaeian, “Low-loss and high-performance mid-infrared plasmon-phonon in graphene-hexagonal boron nitride waveguide,” J. Opt. Soc. Am. B 35(2), 446–453 (2018).
    [Crossref]
  65. M. Amin, M. Farhat, and H. Bagci, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
    [Crossref]
  66. K. Wang, W.-H. Fan, X. Chen, C. Song, and X.-Q. Jiang, “Graphene based polarization independent Fano resonance at terahertz for tunable sensing at nanoscale,” Opt. Commun. 439, 61–65 (2019).
    [Crossref]
  67. L. Ye, X. Chen, J. Zhuo, F. Han, and Q. H. Liu, “Actively tunable broadband terahertz absorption using periodically square-patterned graphene,” Appl. Phys. Express 11(10), 102201 (2018).
    [Crossref]
  68. H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
    [Crossref]
  69. H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
    [Crossref]
  70. H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).
    [Crossref]
  71. T. Sang, J. Gao, L. Wang, H. Qi, X. Yin, and Y. Wang, “Numerical study of angle-insensitive and tunable dual-band THz absorber using periodic cross-shaped graphene arrays,” Materials 12(13), 2063 (2019).
    [Crossref]
  72. H. Li, M. Qin, Y. Ren, and J. Hu, “Angle-independent strong coupling between plasmonic magnetic resonances and excitons in monolayer WS2,” Opt. Express 27(16), 22951–22959 (2019).
    [Crossref]
  73. H. Li, B. Chen, M. Qin, and L. Wang, “Strong plasmon-exciton coupling in MIM waveguide-resonator systems with WS2 monolayer,” Opt. Express 28(1), 205–215 (2020).
    [Crossref]

2020 (1)

2019 (11)

B. Zhang, H. Li, H. Xu, M. Zhao, C. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
[Crossref]

B. Wang, S. Blaize, J. Seok, S. Kim, H. Yang, and R. Salas-Montiel, “Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–6 (2019).
[Crossref]

P. F. Lim, K. H. Leong, L. C. Sim, A. Abd Aziz, and P. Saravanan, “Amalgamation of N-graphene quantum dots with nanocubic like TiO2: an insight study of sunlight sensitive photocatalysis,” Environ. Sci. Pollut. Res. 26(4), 3455–3464 (2019).
[Crossref]

Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

G. Deng, X. Song, S. A. Dereshgi, H. Xu, and K. Aydin, “Tunable multi-wavelength absorption in mid-IR region based on a hybrid patterned graphene-hBN structure,” Opt. Express 27(16), 23576–23584 (2019).
[Crossref]

H. Qi, T. Sang, L. Wang, X. Yin, J. Wang, and Y. Wang, “Dual-band light absorption enhancement in hyperbolic rectangular array,” Appl. Sci. 9(10), 2011 (2019).
[Crossref]

P. K. Sahoo, J. Y. Pae, and V. M. Murukeshan, “Enhanced absorption in a graphene embedded 1D guided-mode-resonance structure without back-reflector and interferometrically written gratings,” Opt. Lett. 44(15), 3661–3664 (2019).
[Crossref]

K. Wang, W.-H. Fan, X. Chen, C. Song, and X.-Q. Jiang, “Graphene based polarization independent Fano resonance at terahertz for tunable sensing at nanoscale,” Opt. Commun. 439, 61–65 (2019).
[Crossref]

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).
[Crossref]

T. Sang, J. Gao, L. Wang, H. Qi, X. Yin, and Y. Wang, “Numerical study of angle-insensitive and tunable dual-band THz absorber using periodic cross-shaped graphene arrays,” Materials 12(13), 2063 (2019).
[Crossref]

H. Li, M. Qin, Y. Ren, and J. Hu, “Angle-independent strong coupling between plasmonic magnetic resonances and excitons in monolayer WS2,” Opt. Express 27(16), 22951–22959 (2019).
[Crossref]

2018 (6)

L. Ye, X. Chen, J. Zhuo, F. Han, and Q. H. Liu, “Actively tunable broadband terahertz absorption using periodically square-patterned graphene,” Appl. Phys. Express 11(10), 102201 (2018).
[Crossref]

Y. Hajati, Z. Zanbouri, and M. Sabaeian, “Low-loss and high-performance mid-infrared plasmon-phonon in graphene-hexagonal boron nitride waveguide,” J. Opt. Soc. Am. B 35(2), 446–453 (2018).
[Crossref]

S.-X. Xia, X. Zhai, L.-L. Wang, and S.-C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

L. Peng, X.-F. Li, X. Jiang, and S.-M. Li, “A novel THz half-wave polarization converter for cross-polarization conversions of both linear and circular polarizations and polarization conversion ratio regulating by graphene,” J. Lightwave Technol. 36(19), 4250–4258 (2018).
[Crossref]

Z. Su, Y. Wang, X. Luo, H. Luo, C. Zhang, M. Li, T. Sang, and G. Yang, “A tunable THz absorber consisting of an elliptical graphene disk array,” Phys. Chem. Chem. Phys. 20(21), 14357–14361 (2018).
[Crossref]

K. Saito and T. Tatsuma, “Chiral plasmonic nanostructures fabricated by circularly polarized light,” Nano Lett. 18(5), 3209–3212 (2018).
[Crossref]

2017 (6)

J. Kobashi, H. Yoshida, and M. Ozaki, “Circularly-polarized, semitransparent and double-sided holograms based on helical photonic structures,” Sci. Rep. 7(1), 16470 (2017).
[Crossref]

S.-X. Xia, X. Zhai, Y. Huang, J.-Q. Liu, L.-L. Wang, and S.-C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[Crossref]

L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Circularly-polarized reconfigurable transmit array in Ka-band with beam scanning and polarization switching capabilities,” IEEE Trans. Antennas Propag. 65(2), 529–540 (2017).
[Crossref]

T.-T. Kim, S. S. Oh, H.-D. Kim, H. S. Park, O. Hess, B. Min, and S. Zhang, “Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials,” Sci. Adv. 3(9), e1701377 (2017).
[Crossref]

X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid plasmonic modes in multilayer trench grating structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
[Crossref]

H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
[Crossref]

2016 (5)

X. Liu, J. Gao, H. Yang, and X. Wang, “Si-based near-infrared narrowband absorber based on square Au patches,” J. Opt. Soc. Am. B 33(10), 2149–2153 (2016).
[Crossref]

H. C. Chung, C. P. Chang, C. Y. Lin, and M. F. Lin, “Electronic and optical properties of graphene nanoribbons in external fields,” Phys. Chem. Chem. Phys. 18(11), 7573–7616 (2016).
[Crossref]

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref]

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Tunable asymmetric transmission of THz wave through a graphene chiral metasurface,” J. Opt. 18(9), 095001 (2016).
[Crossref]

X. Su, Z. Wei, C. Wu, Y. Long, and H. Li, “Negative reflection from metal/graphene plasmonic gratings,” Opt. Lett. 41(2), 348–351 (2016).
[Crossref]

2015 (6)

B. Zhu, G. Ren, Y. Gao, B. Wu, C. Wan, and S. Jian, “Graphene circular polarization analyzer based on spiral metal triangle antennas arrays,” Opt. Express 23(19), 24730–24737 (2015).
[Crossref]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref]

H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40(15), 3647–3650 (2015).
[Crossref]

2014 (2)

F. J. G. de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

Y. Wang, X. Chen, W. Ye, Z. Wu, Y. Han, T. Han, Y. He, Y. Cai, and N. Wang, “Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors,” Appl. Phys. Lett. 105(24), 243507 (2014).
[Crossref]

2013 (9)

F. J. G. de Abajo, “Graphene nanophotonics,” Science 339(6122), 917–918 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref]

B. P. Cumming, S. Debbarma, B. Luther-Davis, and M. Gu, “Simultaneous compensation for aberration and axial elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective,” Opt. Express 21(16), 19135–19141 (2013).
[Crossref]

L. Nagdimunov, L. Kolokolova, and D. Mackowski, “Characterization and remote sensing of biological particles using circular polarization,” J. Quant. Spectrosc. Radiat. Transfer 131, 59–65 (2013).
[Crossref]

M. Amin, M. Farhat, and H. Bagci, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
[Crossref]

W. Peng and X. Li, “Synthesis of a sulfur-graphene composite as an enhanced metal-free photocatalyst,” Nano Res. 6(4), 286–292 (2013).
[Crossref]

W. Zhou, Y. Wu, M. Yu, P. Hao, G. Liu, and K. Li, “Extraordinary optical absorption based on guided-mode resonance,” Opt. Lett. 38(24), 5393–5396 (2013).
[Crossref]

M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. G. de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
[Crossref]

2012 (7)

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

A. Y. Nikitin, F. Guinea, and L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101(15), 151119 (2012).
[Crossref]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

2011 (5)

P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref]

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

H. C. Chung, M. H. Lee, C. P. Chang, and M. F. Lin, “Exploration of edge-dependent optical selection rules for graphene nanoribbons,” Opt. Express 19(23), 23350–23363 (2011).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

2010 (5)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref]

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

W. E. Martin, E. Hesse, J. H. Hough, W. B. Sparks, C. S. Cockell, Z. Ulanowski, T. A. Germer, and P. H. Kaye, “Polarized optical scattering signatures from biological materials,” J. Quant. Spectrosc. Radiat. Transfer 111(16), 2444–2459 (2010).
[Crossref]

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref]

2007 (1)

H. Hsu and L. E. Reichl, “Selection rule for the optical absorption of graphene nanoribbons,” Phys. Rev. B 76(4), 045418 (2007).
[Crossref]

2006 (2)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref]

2005 (3)

C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95(12), 123904 (2005).
[Crossref]

F. Yang and Y. Rahmat-Samii, “A low profile single dipole antenna radiating circularly polarized waves,” IEEE Trans. Antennas Propag. 53(9), 3083–3086 (2005).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

2000 (1)

M.-F. Lin and F.-L. Shyu, “Optical properties of nanographite ribbons,” J. Phys. Soc. Jpn. 69(11), 3529–3532 (2000).
[Crossref]

1993 (1)

Abd Aziz, A.

P. F. Lim, K. H. Leong, L. C. Sim, A. Abd Aziz, and P. Saravanan, “Amalgamation of N-graphene quantum dots with nanocubic like TiO2: an insight study of sunlight sensitive photocatalysis,” Environ. Sci. Pollut. Res. 26(4), 3455–3464 (2019).
[Crossref]

Albright, B. J.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Alù, A.

P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref]

Amin, M.

M. Amin, M. Farhat, and H. Bagci, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
[Crossref]

An, X.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[Crossref]

Antoniou, N.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref]

Aydin, K.

Bagci, H.

M. Amin, M. Farhat, and H. Bagci, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
[Crossref]

Bao, X.-H.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Blaize, S.

B. Wang, S. Blaize, J. Seok, S. Kim, H. Yang, and R. Salas-Montiel, “Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–6 (2019).
[Crossref]

Bowers, K. J.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Cai, Y.

Y. Wang, X. Chen, W. Ye, Z. Wu, Y. Han, T. Han, Y. He, Y. Cai, and N. Wang, “Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors,” Appl. Phys. Lett. 105(24), 243507 (2014).
[Crossref]

Capasso, F.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Chang, C. P.

H. C. Chung, C. P. Chang, C. Y. Lin, and M. F. Lin, “Electronic and optical properties of graphene nanoribbons in external fields,” Phys. Chem. Chem. Phys. 18(11), 7573–7616 (2016).
[Crossref]

H. C. Chung, M. H. Lee, C. P. Chang, and M. F. Lin, “Exploration of edge-dependent optical selection rules for graphene nanoribbons,” Opt. Express 19(23), 23350–23363 (2011).
[Crossref]

Chang, D. E.

M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. G. de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
[Crossref]

Chen, B.

Chen, K.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Chen, P.-Y.

P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref]

Chen, S.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[Crossref]

Chen, X.

K. Wang, W.-H. Fan, X. Chen, C. Song, and X.-Q. Jiang, “Graphene based polarization independent Fano resonance at terahertz for tunable sensing at nanoscale,” Opt. Commun. 439, 61–65 (2019).
[Crossref]

L. Ye, X. Chen, J. Zhuo, F. Han, and Q. H. Liu, “Actively tunable broadband terahertz absorption using periodically square-patterned graphene,” Appl. Phys. Express 11(10), 102201 (2018).
[Crossref]

Y. Wang, X. Chen, W. Ye, Z. Wu, Y. Han, T. Han, Y. He, Y. Cai, and N. Wang, “Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors,” Appl. Phys. Lett. 105(24), 243507 (2014).
[Crossref]

Chen, Y.-A.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Cheng, H.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[Crossref]

Childress, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref]

Choi, C.-G.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Choi, H. K.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Choi, M.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Choi, S.-Y.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Chu, Y.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref]

Chung, H. C.

H. C. Chung, C. P. Chang, C. Y. Lin, and M. F. Lin, “Electronic and optical properties of graphene nanoribbons in external fields,” Phys. Chem. Chem. Phys. 18(11), 7573–7616 (2016).
[Crossref]

H. C. Chung, M. H. Lee, C. P. Chang, and M. F. Lin, “Exploration of edge-dependent optical selection rules for graphene nanoribbons,” Opt. Express 19(23), 23350–23363 (2011).
[Crossref]

Clemente, A.

L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Circularly-polarized reconfigurable transmit array in Ka-band with beam scanning and polarization switching capabilities,” IEEE Trans. Antennas Propag. 65(2), 529–540 (2017).
[Crossref]

Cockell, C. S.

W. E. Martin, E. Hesse, J. H. Hough, W. B. Sparks, C. S. Cockell, Z. Ulanowski, T. A. Germer, and P. H. Kaye, “Polarized optical scattering signatures from biological materials,” J. Quant. Spectrosc. Radiat. Transfer 111(16), 2444–2459 (2010).
[Crossref]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Cumming, B. P.

Dai, X.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref]

Dalichaouch, R.

de Abajo, F. J. G.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

F. J. G. de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. G. de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
[Crossref]

F. J. G. de Abajo, “Graphene nanophotonics,” Science 339(6122), 917–918 (2013).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Debbarma, S.

Deng, G.

Dereshgi, S. A.

Dikin, D. A.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref]

Dommett, G. H. B.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref]

Duan, X.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Dussopt, L.

L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Circularly-polarized reconfigurable transmit array in Ka-band with beam scanning and polarization switching capabilities,” IEEE Trans. Antennas Propag. 65(2), 529–540 (2017).
[Crossref]

Dutt, M. V. G.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Fan, W.-H.

K. Wang, W.-H. Fan, X. Chen, C. Song, and X.-Q. Jiang, “Graphene based polarization independent Fano resonance at terahertz for tunable sensing at nanoscale,” Opt. Commun. 439, 61–65 (2019).
[Crossref]

Farhat, M.

M. Amin, M. Farhat, and H. Bagci, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
[Crossref]

Farshchi, R.

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

Fernandez, J. C.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Ferrari, A. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Forester, D. W.

C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95(12), 123904 (2005).
[Crossref]

Gao, J.

T. Sang, J. Gao, L. Wang, H. Qi, X. Yin, and Y. Wang, “Numerical study of angle-insensitive and tunable dual-band THz absorber using periodic cross-shaped graphene arrays,” Materials 12(13), 2063 (2019).
[Crossref]

X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid plasmonic modes in multilayer trench grating structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
[Crossref]

X. Liu, J. Gao, H. Yang, and X. Wang, “Si-based near-infrared narrowband absorber based on square Au patches,” J. Opt. Soc. Am. B 33(10), 2149–2153 (2016).
[Crossref]

Gao, W.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

Gao, Y.

Garcia-Vidal, F. J.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Gautier, D. C.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Geim, A. K.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Genevet, P.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref]

Germer, T. A.

W. E. Martin, E. Hesse, J. H. Hough, W. B. Sparks, C. S. Cockell, Z. Ulanowski, T. A. Germer, and P. H. Kaye, “Polarized optical scattering signatures from biological materials,” J. Quant. Spectrosc. Radiat. Transfer 111(16), 2444–2459 (2010).
[Crossref]

Goebel, A.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Grahn, H. T.

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Gu, C.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[Crossref]

Gu, M.

Guinea, F.

A. Y. Nikitin, F. Guinea, and L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101(15), 151119 (2012).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Gullans, M.

M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. G. de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
[Crossref]

Guo, C.

X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid plasmonic modes in multilayer trench grating structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
[Crossref]

Guo, J.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref]

Habs, D.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Hajati, Y.

Han, F.

L. Ye, X. Chen, J. Zhuo, F. Han, and Q. H. Liu, “Actively tunable broadband terahertz absorption using periodically square-patterned graphene,” Appl. Phys. Express 11(10), 102201 (2018).
[Crossref]

Han, T.

Y. Wang, X. Chen, W. Ye, Z. Wu, Y. Han, T. Han, Y. He, Y. Cai, and N. Wang, “Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors,” Appl. Phys. Lett. 105(24), 243507 (2014).
[Crossref]

Han, Y.

Y. Wang, X. Chen, W. Ye, Z. Wu, Y. Han, T. Han, Y. He, Y. Cai, and N. Wang, “Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors,” Appl. Phys. Lett. 105(24), 243507 (2014).
[Crossref]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Hao, P.

He, Y.

Y. Wang, X. Chen, W. Ye, Z. Wu, Y. Han, T. Han, Y. He, Y. Cai, and N. Wang, “Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors,” Appl. Phys. Lett. 105(24), 243507 (2014).
[Crossref]

Hegelich, B. M.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Hemmer, P. R.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref]

Henig, A.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Herfort, J.

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

Hess, O.

T.-T. Kim, S. S. Oh, H.-D. Kim, H. S. Park, O. Hess, B. Min, and S. Zhang, “Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials,” Sci. Adv. 3(9), e1701377 (2017).
[Crossref]

Hesse, E.

W. E. Martin, E. Hesse, J. H. Hough, W. B. Sparks, C. S. Cockell, Z. Ulanowski, T. A. Germer, and P. H. Kaye, “Polarized optical scattering signatures from biological materials,” J. Quant. Spectrosc. Radiat. Transfer 111(16), 2444–2459 (2010).
[Crossref]

Horlein, R.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Hough, J. H.

W. E. Martin, E. Hesse, J. H. Hough, W. B. Sparks, C. S. Cockell, Z. Ulanowski, T. A. Germer, and P. H. Kaye, “Polarized optical scattering signatures from biological materials,” J. Quant. Spectrosc. Radiat. Transfer 111(16), 2444–2459 (2010).
[Crossref]

Hsu, H.

H. Hsu and L. E. Reichl, “Selection rule for the optical absorption of graphene nanoribbons,” Phys. Rev. B 76(4), 045418 (2007).
[Crossref]

Hu, J.

Huang, H.

Huang, Y.

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Ji, C.

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).
[Crossref]

Jian, S.

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Jiang, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref]

Jiang, X.

Jiang, X.-Q.

K. Wang, W.-H. Fan, X. Chen, C. Song, and X.-Q. Jiang, “Graphene based polarization independent Fano resonance at terahertz for tunable sensing at nanoscale,” Opt. Commun. 439, 61–65 (2019).
[Crossref]

Johnson, R.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Jung, D.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Kats, M. A.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref]

Kaye, P. H.

W. E. Martin, E. Hesse, J. H. Hough, W. B. Sparks, C. S. Cockell, Z. Ulanowski, T. A. Germer, and P. H. Kaye, “Polarized optical scattering signatures from biological materials,” J. Quant. Spectrosc. Radiat. Transfer 111(16), 2444–2459 (2010).
[Crossref]

Ke, S.

Kiefer, D.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Kim, H.-D.

T.-T. Kim, S. S. Oh, H.-D. Kim, H. S. Park, O. Hess, B. Min, and S. Zhang, “Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials,” Sci. Adv. 3(9), e1701377 (2017).
[Crossref]

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Kim, S.

B. Wang, S. Blaize, J. Seok, S. Kim, H. Yang, and R. Salas-Montiel, “Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–6 (2019).
[Crossref]

Kim, T.-T.

T.-T. Kim, S. S. Oh, H.-D. Kim, H. S. Park, O. Hess, B. Min, and S. Zhang, “Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials,” Sci. Adv. 3(9), e1701377 (2017).
[Crossref]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Kobashi, J.

J. Kobashi, H. Yoshida, and M. Ozaki, “Circularly-polarized, semitransparent and double-sided holograms based on helical photonic structures,” Sci. Rep. 7(1), 16470 (2017).
[Crossref]

Kohlhaas, K. M.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref]

Kolokolova, L.

L. Nagdimunov, L. Kolokolova, and D. Mackowski, “Characterization and remote sensing of biological particles using circular polarization,” J. Quant. Spectrosc. Radiat. Transfer 131, 59–65 (2013).
[Crossref]

Koppens, F. H. L.

M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. G. de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Kroll, N.

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Lee, M. H.

Lee, S.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Lee, S. H.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Lee, S. S.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Leong, K. H.

P. F. Lim, K. H. Leong, L. C. Sim, A. Abd Aziz, and P. Saravanan, “Amalgamation of N-graphene quantum dots with nanocubic like TiO2: an insight study of sunlight sensitive photocatalysis,” Environ. Sci. Pollut. Res. 26(4), 3455–3464 (2019).
[Crossref]

Letzring, S.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Li, C.-M.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Li, H.

Li, J.

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[Crossref]

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref]

Li, K.

Li, M.

Z. Su, Y. Wang, X. Luo, H. Luo, C. Zhang, M. Li, T. Sang, and G. Yang, “A tunable THz absorber consisting of an elliptical graphene disk array,” Phys. Chem. Chem. Phys. 20(21), 14357–14361 (2018).
[Crossref]

Li, S.-M.

Li, X.

W. Peng and X. Li, “Synthesis of a sulfur-graphene composite as an enhanced metal-free photocatalyst,” Nano Res. 6(4), 286–292 (2013).
[Crossref]

Li, X.-F.

Li, Y.

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref]

Lim, P. F.

P. F. Lim, K. H. Leong, L. C. Sim, A. Abd Aziz, and P. Saravanan, “Amalgamation of N-graphene quantum dots with nanocubic like TiO2: an insight study of sunlight sensitive photocatalysis,” Environ. Sci. Pollut. Res. 26(4), 3455–3464 (2019).
[Crossref]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Lin, C. Y.

H. C. Chung, C. P. Chang, C. Y. Lin, and M. F. Lin, “Electronic and optical properties of graphene nanoribbons in external fields,” Phys. Chem. Chem. Phys. 18(11), 7573–7616 (2016).
[Crossref]

Lin, J.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref]

Lin, M. F.

H. C. Chung, C. P. Chang, C. Y. Lin, and M. F. Lin, “Electronic and optical properties of graphene nanoribbons in external fields,” Phys. Chem. Chem. Phys. 18(11), 7573–7616 (2016).
[Crossref]

H. C. Chung, M. H. Lee, C. P. Chang, and M. F. Lin, “Exploration of edge-dependent optical selection rules for graphene nanoribbons,” Opt. Express 19(23), 23350–23363 (2011).
[Crossref]

Lin, M.-F.

M.-F. Lin and F.-L. Shyu, “Optical properties of nanographite ribbons,” J. Phys. Soc. Jpn. 69(11), 3529–3532 (2000).
[Crossref]

Lin, Q.

Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

Liu, C.

Liu, G.

Liu, J.-Q.

Liu, M.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Liu, Q. H.

L. Ye, X. Chen, J. Zhuo, F. Han, and Q. H. Liu, “Actively tunable broadband terahertz absorption using periodically square-patterned graphene,” Appl. Phys. Express 11(10), 102201 (2018).
[Crossref]

Liu, W.

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref]

Liu, X.

X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid plasmonic modes in multilayer trench grating structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
[Crossref]

X. Liu, J. Gao, H. Yang, and X. Wang, “Si-based near-infrared narrowband absorber based on square Au patches,” J. Opt. Soc. Am. B 33(10), 2149–2153 (2016).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Long, H.

Long, Y.

Lu, H.

Lu, P.

Lukin, M. D.

M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. G. de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
[Crossref]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref]

Luo, H.

Z. Su, Y. Wang, X. Luo, H. Luo, C. Zhang, M. Li, T. Sang, and G. Yang, “A tunable THz absorber consisting of an elliptical graphene disk array,” Phys. Chem. Chem. Phys. 20(21), 14357–14361 (2018).
[Crossref]

Luo, X.

Z. Su, Y. Wang, X. Luo, H. Luo, C. Zhang, M. Li, T. Sang, and G. Yang, “A tunable THz absorber consisting of an elliptical graphene disk array,” Phys. Chem. Chem. Phys. 20(21), 14357–14361 (2018).
[Crossref]

Luther-Davis, B.

Lv, X.

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref]

Mackowski, D.

L. Nagdimunov, L. Kolokolova, and D. Mackowski, “Characterization and remote sensing of biological particles using circular polarization,” J. Quant. Spectrosc. Radiat. Transfer 131, 59–65 (2013).
[Crossref]

Martin, W. E.

W. E. Martin, E. Hesse, J. H. Hough, W. B. Sparks, C. S. Cockell, Z. Ulanowski, T. A. Germer, and P. H. Kaye, “Polarized optical scattering signatures from biological materials,” J. Quant. Spectrosc. Radiat. Transfer 111(16), 2444–2459 (2010).
[Crossref]

Martin-Moreno, L.

A. Y. Nikitin, F. Guinea, and L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101(15), 151119 (2012).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Maze, J.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref]

McCall, S. L.

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Min, B.

T.-T. Kim, S. S. Oh, H.-D. Kim, H. S. Park, O. Hess, B. Min, and S. Zhang, “Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials,” Sci. Adv. 3(9), e1701377 (2017).
[Crossref]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Monzon, C.

C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95(12), 123904 (2005).
[Crossref]

Murukeshan, V. M.

Nagdimunov, L.

L. Nagdimunov, L. Kolokolova, and D. Mackowski, “Characterization and remote sensing of biological particles using circular polarization,” J. Quant. Spectrosc. Radiat. Transfer 131, 59–65 (2013).
[Crossref]

Nguyen, S. T.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref]

Nikitin, A. Y.

A. Y. Nikitin, F. Guinea, and L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101(15), 151119 (2012).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Oh, S. S.

T.-T. Kim, S. S. Oh, H.-D. Kim, H. S. Park, O. Hess, B. Min, and S. Zhang, “Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials,” Sci. Adv. 3(9), e1701377 (2017).
[Crossref]

Ozaki, M.

J. Kobashi, H. Yoshida, and M. Ozaki, “Circularly-polarized, semitransparent and double-sided holograms based on helical photonic structures,” Sci. Rep. 7(1), 16470 (2017).
[Crossref]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Pae, J. Y.

Palaniyappan, S.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Palma, L. D.

L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Circularly-polarized reconfigurable transmit array in Ka-band with beam scanning and polarization switching capabilities,” IEEE Trans. Antennas Propag. 65(2), 529–540 (2017).
[Crossref]

Pan, J.-W.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Park, H. S.

T.-T. Kim, S. S. Oh, H.-D. Kim, H. S. Park, O. Hess, B. Min, and S. Zhang, “Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials,” Sci. Adv. 3(9), e1701377 (2017).
[Crossref]

Peng, L.

Peng, W.

W. Peng and X. Li, “Synthesis of a sulfur-graphene composite as an enhanced metal-free photocatalyst,” Nano Res. 6(4), 286–292 (2013).
[Crossref]

Piner, R. D.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Platzman, P. M.

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Potier, P.

L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Circularly-polarized reconfigurable transmit array in Ka-band with beam scanning and polarization switching capabilities,” IEEE Trans. Antennas Propag. 65(2), 529–540 (2017).
[Crossref]

Pouliguen, P.

L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Circularly-polarized reconfigurable transmit array in Ka-band with beam scanning and polarization switching capabilities,” IEEE Trans. Antennas Propag. 65(2), 529–540 (2017).
[Crossref]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Qi, H.

T. Sang, J. Gao, L. Wang, H. Qi, X. Yin, and Y. Wang, “Numerical study of angle-insensitive and tunable dual-band THz absorber using periodic cross-shaped graphene arrays,” Materials 12(13), 2063 (2019).
[Crossref]

H. Qi, T. Sang, L. Wang, X. Yin, J. Wang, and Y. Wang, “Dual-band light absorption enhancement in hyperbolic rectangular array,” Appl. Sci. 9(10), 2011 (2019).
[Crossref]

Qin, M.

H. Li, B. Chen, M. Qin, and L. Wang, “Strong plasmon-exciton coupling in MIM waveguide-resonator systems with WS2 monolayer,” Opt. Express 28(1), 205–215 (2020).
[Crossref]

Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).
[Crossref]

H. Li, M. Qin, Y. Ren, and J. Hu, “Angle-independent strong coupling between plasmonic magnetic resonances and excitons in monolayer WS2,” Opt. Express 27(16), 22951–22959 (2019).
[Crossref]

H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
[Crossref]

Qin, S.

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Tunable asymmetric transmission of THz wave through a graphene chiral metasurface,” J. Opt. 18(9), 095001 (2016).
[Crossref]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref]

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Rahmat-Samii, Y.

F. Yang and Y. Rahmat-Samii, “A low profile single dipole antenna radiating circularly polarized waves,” IEEE Trans. Antennas Propag. 53(9), 3083–3086 (2005).
[Crossref]

Ramsteiner, M.

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

Reichl, L. E.

H. Hsu and L. E. Reichl, “Selection rule for the optical absorption of graphene nanoribbons,” Phys. Rev. B 76(4), 045418 (2007).
[Crossref]

Reingruber, A.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Ren, G.

Ren, R.

Ren, Y.

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).
[Crossref]

H. Li, M. Qin, Y. Ren, and J. Hu, “Angle-independent strong coupling between plasmonic magnetic resonances and excitons in monolayer WS2,” Opt. Express 27(16), 22951–22959 (2019).
[Crossref]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Ruoff, R. S.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref]

Sabaeian, M.

Sahoo, P. K.

Saito, K.

K. Saito and T. Tatsuma, “Chiral plasmonic nanostructures fabricated by circularly polarized light,” Nano Lett. 18(5), 3209–3212 (2018).
[Crossref]

Salas-Montiel, R.

B. Wang, S. Blaize, J. Seok, S. Kim, H. Yang, and R. Salas-Montiel, “Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–6 (2019).
[Crossref]

Sang, T.

T. Sang, J. Gao, L. Wang, H. Qi, X. Yin, and Y. Wang, “Numerical study of angle-insensitive and tunable dual-band THz absorber using periodic cross-shaped graphene arrays,” Materials 12(13), 2063 (2019).
[Crossref]

H. Qi, T. Sang, L. Wang, X. Yin, J. Wang, and Y. Wang, “Dual-band light absorption enhancement in hyperbolic rectangular array,” Appl. Sci. 9(10), 2011 (2019).
[Crossref]

Z. Su, Y. Wang, X. Luo, H. Luo, C. Zhang, M. Li, T. Sang, and G. Yang, “A tunable THz absorber consisting of an elliptical graphene disk array,” Phys. Chem. Chem. Phys. 20(21), 14357–14361 (2018).
[Crossref]

Saravanan, P.

P. F. Lim, K. H. Leong, L. C. Sim, A. Abd Aziz, and P. Saravanan, “Amalgamation of N-graphene quantum dots with nanocubic like TiO2: an insight study of sunlight sensitive photocatalysis,” Environ. Sci. Pollut. Res. 26(4), 3455–3464 (2019).
[Crossref]

Sauleau, R.

L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Circularly-polarized reconfigurable transmit array in Ka-band with beam scanning and polarization switching capabilities,” IEEE Trans. Antennas Propag. 65(2), 529–540 (2017).
[Crossref]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Schultz, S.

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Seok, J.

B. Wang, S. Blaize, J. Seok, S. Kim, H. Yang, and R. Salas-Montiel, “Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–6 (2019).
[Crossref]

Shah, R.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Shimada, T.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

Shyu, F.-L.

M.-F. Lin and F.-L. Shyu, “Optical properties of nanographite ribbons,” J. Phys. Soc. Jpn. 69(11), 3529–3532 (2000).
[Crossref]

Sim, L. C.

P. F. Lim, K. H. Leong, L. C. Sim, A. Abd Aziz, and P. Saravanan, “Amalgamation of N-graphene quantum dots with nanocubic like TiO2: an insight study of sunlight sensitive photocatalysis,” Environ. Sci. Pollut. Res. 26(4), 3455–3464 (2019).
[Crossref]

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, “Photonic band structure and defects in one and two dimensions,” J. Opt. Soc. Am. B 10(2), 314–321 (1993).
[Crossref]

Song, C.

K. Wang, W.-H. Fan, X. Chen, C. Song, and X.-Q. Jiang, “Graphene based polarization independent Fano resonance at terahertz for tunable sensing at nanoscale,” Opt. Commun. 439, 61–65 (2019).
[Crossref]

Song, X.

Sørensen, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Sparks, W. B.

W. E. Martin, E. Hesse, J. H. Hough, W. B. Sparks, C. S. Cockell, Z. Ulanowski, T. A. Germer, and P. H. Kaye, “Polarized optical scattering signatures from biological materials,” J. Quant. Spectrosc. Radiat. Transfer 111(16), 2444–2459 (2010).
[Crossref]

Stach, E. A.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref]

Stankovich, S.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref]

Su, X.

Su, Z.

Z. Su, Y. Wang, X. Luo, H. Luo, C. Zhang, M. Li, T. Sang, and G. Yang, “A tunable THz absorber consisting of an elliptical graphene disk array,” Phys. Chem. Chem. Phys. 20(21), 14357–14361 (2018).
[Crossref]

Tahraoui, A.

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

Tajima, T.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Tang, D.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref]

Tatsuma, T.

K. Saito and T. Tatsuma, “Chiral plasmonic nanostructures fabricated by circularly polarized light,” Nano Lett. 18(5), 3209–3212 (2018).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Tian, J.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[Crossref]

Tian, S.

X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid plasmonic modes in multilayer trench grating structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
[Crossref]

Togan, E.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref]

Trifonov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref]

Ulanowski, Z.

W. E. Martin, E. Hesse, J. H. Hough, W. B. Sparks, C. S. Cockell, Z. Ulanowski, T. A. Germer, and P. H. Kaye, “Polarized optical scattering signatures from biological materials,” J. Quant. Spectrosc. Radiat. Transfer 111(16), 2444–2459 (2010).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Wagenknecht, C.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Wan, C.

Wang, B.

B. Wang, S. Blaize, J. Seok, S. Kim, H. Yang, and R. Salas-Montiel, “Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–6 (2019).
[Crossref]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref]

Wang, J.

H. Qi, T. Sang, L. Wang, X. Yin, J. Wang, and Y. Wang, “Dual-band light absorption enhancement in hyperbolic rectangular array,” Appl. Sci. 9(10), 2011 (2019).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, K.

K. Wang, W.-H. Fan, X. Chen, C. Song, and X.-Q. Jiang, “Graphene based polarization independent Fano resonance at terahertz for tunable sensing at nanoscale,” Opt. Commun. 439, 61–65 (2019).
[Crossref]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref]

Wang, L.

H. Li, B. Chen, M. Qin, and L. Wang, “Strong plasmon-exciton coupling in MIM waveguide-resonator systems with WS2 monolayer,” Opt. Express 28(1), 205–215 (2020).
[Crossref]

Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

H. Qi, T. Sang, L. Wang, X. Yin, J. Wang, and Y. Wang, “Dual-band light absorption enhancement in hyperbolic rectangular array,” Appl. Sci. 9(10), 2011 (2019).
[Crossref]

T. Sang, J. Gao, L. Wang, H. Qi, X. Yin, and Y. Wang, “Numerical study of angle-insensitive and tunable dual-band THz absorber using periodic cross-shaped graphene arrays,” Materials 12(13), 2063 (2019).
[Crossref]

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).
[Crossref]

H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
[Crossref]

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref]

Wang, L.-L.

S.-X. Xia, X. Zhai, L.-L. Wang, and S.-C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

S.-X. Xia, X. Zhai, Y. Huang, J.-Q. Liu, L.-L. Wang, and S.-C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[Crossref]

Wang, N.

Y. Wang, X. Chen, W. Ye, Z. Wu, Y. Han, T. Han, Y. He, Y. Cai, and N. Wang, “Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors,” Appl. Phys. Lett. 105(24), 243507 (2014).
[Crossref]

Wang, X.

X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid plasmonic modes in multilayer trench grating structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
[Crossref]

X. Liu, J. Gao, H. Yang, and X. Wang, “Si-based near-infrared narrowband absorber based on square Au patches,” J. Opt. Soc. Am. B 33(10), 2149–2153 (2016).
[Crossref]

Wang, Y.

T. Sang, J. Gao, L. Wang, H. Qi, X. Yin, and Y. Wang, “Numerical study of angle-insensitive and tunable dual-band THz absorber using periodic cross-shaped graphene arrays,” Materials 12(13), 2063 (2019).
[Crossref]

H. Qi, T. Sang, L. Wang, X. Yin, J. Wang, and Y. Wang, “Dual-band light absorption enhancement in hyperbolic rectangular array,” Appl. Sci. 9(10), 2011 (2019).
[Crossref]

Z. Su, Y. Wang, X. Luo, H. Luo, C. Zhang, M. Li, T. Sang, and G. Yang, “A tunable THz absorber consisting of an elliptical graphene disk array,” Phys. Chem. Chem. Phys. 20(21), 14357–14361 (2018).
[Crossref]

Y. Wang, X. Chen, W. Ye, Z. Wu, Y. Han, T. Han, Y. He, Y. Cai, and N. Wang, “Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors,” Appl. Phys. Lett. 105(24), 243507 (2014).
[Crossref]

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref]

Wei, Z.

Wen, S.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref]

Wen, S.-C.

S.-X. Xia, X. Zhai, L.-L. Wang, and S.-C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

S.-X. Xia, X. Zhai, Y. Huang, J.-Q. Liu, L.-L. Wang, and S.-C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[Crossref]

Wu, B.

Wu, C.

Wu, K.

Wu, Y.

Wu, Z.

Y. Wang, X. Chen, W. Ye, Z. Wu, Y. Han, T. Han, Y. He, Y. Cai, and N. Wang, “Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors,” Appl. Phys. Lett. 105(24), 243507 (2014).
[Crossref]

Xia, S.

Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

Xia, S.-X.

S.-X. Xia, X. Zhai, L.-L. Wang, and S.-C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

S.-X. Xia, X. Zhai, Y. Huang, J.-Q. Liu, L.-L. Wang, and S.-C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[Crossref]

Xiang, Y.

Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref]

Xie, B.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Xiong, C.

Xu, H.

Xu, Q.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

Yan, X. Q.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Yang, F.

F. Yang and Y. Rahmat-Samii, “A low profile single dipole antenna radiating circularly polarized waves,” IEEE Trans. Antennas Propag. 53(9), 3083–3086 (2005).
[Crossref]

Yang, G.

Z. Su, Y. Wang, X. Luo, H. Luo, C. Zhang, M. Li, T. Sang, and G. Yang, “A tunable THz absorber consisting of an elliptical graphene disk array,” Phys. Chem. Chem. Phys. 20(21), 14357–14361 (2018).
[Crossref]

Yang, H.

B. Wang, S. Blaize, J. Seok, S. Kim, H. Yang, and R. Salas-Montiel, “Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–6 (2019).
[Crossref]

X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid plasmonic modes in multilayer trench grating structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
[Crossref]

X. Liu, J. Gao, H. Yang, and X. Wang, “Si-based near-infrared narrowband absorber based on square Au patches,” J. Opt. Soc. Am. B 33(10), 2149–2153 (2016).
[Crossref]

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[Crossref]

Ye, L.

L. Ye, X. Chen, J. Zhuo, F. Han, and Q. H. Liu, “Actively tunable broadband terahertz absorption using periodically square-patterned graphene,” Appl. Phys. Express 11(10), 102201 (2018).
[Crossref]

Ye, W.

Y. Wang, X. Chen, W. Ye, Z. Wu, Y. Han, T. Han, Y. He, Y. Cai, and N. Wang, “Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors,” Appl. Phys. Lett. 105(24), 243507 (2014).
[Crossref]

Yin, L.

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Yin, X.

H. Qi, T. Sang, L. Wang, X. Yin, J. Wang, and Y. Wang, “Dual-band light absorption enhancement in hyperbolic rectangular array,” Appl. Sci. 9(10), 2011 (2019).
[Crossref]

T. Sang, J. Gao, L. Wang, H. Qi, X. Yin, and Y. Wang, “Numerical study of angle-insensitive and tunable dual-band THz absorber using periodic cross-shaped graphene arrays,” Materials 12(13), 2063 (2019).
[Crossref]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Yoshida, H.

J. Kobashi, H. Yoshida, and M. Ozaki, “Circularly-polarized, semitransparent and double-sided holograms based on helical photonic structures,” Sci. Rep. 7(1), 16470 (2017).
[Crossref]

Yu, M.

Yu, P.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Yuan, X.

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Tunable asymmetric transmission of THz wave through a graphene chiral metasurface,” J. Opt. 18(9), 095001 (2016).
[Crossref]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref]

Zanbouri, Z.

Zhai, X.

Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

S.-X. Xia, X. Zhai, L.-L. Wang, and S.-C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

S.-X. Xia, X. Zhai, Y. Huang, J.-Q. Liu, L.-L. Wang, and S.-C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[Crossref]

H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
[Crossref]

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref]

Zhang, B.

Zhang, C.

Z. Su, Y. Wang, X. Luo, H. Luo, C. Zhang, M. Li, T. Sang, and G. Yang, “A tunable THz absorber consisting of an elliptical graphene disk array,” Phys. Chem. Chem. Phys. 20(21), 14357–14361 (2018).
[Crossref]

Zhang, H.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref]

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref]

Zhang, J.

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Tunable asymmetric transmission of THz wave through a graphene chiral metasurface,” J. Opt. 18(9), 095001 (2016).
[Crossref]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref]

Zhang, Q.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

Zhang, S.

T.-T. Kim, S. S. Oh, H.-D. Kim, H. S. Park, O. Hess, B. Min, and S. Zhang, “Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials,” Sci. Adv. 3(9), e1701377 (2017).
[Crossref]

Zhang, X.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Zhao, J.

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Tunable asymmetric transmission of THz wave through a graphene chiral metasurface,” J. Opt. 18(9), 095001 (2016).
[Crossref]

Zhao, M.

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhou, W.

Zhu, B.

Zhu, Z.

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Tunable asymmetric transmission of THz wave through a graphene chiral metasurface,” J. Opt. 18(9), 095001 (2016).
[Crossref]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref]

Zhuo, J.

L. Ye, X. Chen, J. Zhuo, F. Han, and Q. H. Liu, “Actively tunable broadband terahertz absorption using periodically square-patterned graphene,” Appl. Phys. Express 11(10), 102201 (2018).
[Crossref]

Zibrov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref]

Zimney, E. J.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref]

ACS Nano (3)

H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano 4(1), 380–386 (2010).
[Crossref]

P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

ACS Photonics (1)

F. J. G. de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

Adv. Opt. Mater. (1)

X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid plasmonic modes in multilayer trench grating structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
[Crossref]

Appl. Phys. Express (1)

L. Ye, X. Chen, J. Zhuo, F. Han, and Q. H. Liu, “Actively tunable broadband terahertz absorption using periodically square-patterned graphene,” Appl. Phys. Express 11(10), 102201 (2018).
[Crossref]

Appl. Phys. Lett. (5)

A. Y. Nikitin, F. Guinea, and L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101(15), 151119 (2012).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Y. Wang, X. Chen, W. Ye, Z. Wu, Y. Han, T. Han, Y. He, Y. Cai, and N. Wang, “Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors,” Appl. Phys. Lett. 105(24), 243507 (2014).
[Crossref]

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

Appl. Sci. (1)

H. Qi, T. Sang, L. Wang, X. Yin, J. Wang, and Y. Wang, “Dual-band light absorption enhancement in hyperbolic rectangular array,” Appl. Sci. 9(10), 2011 (2019).
[Crossref]

Carbon (1)

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).
[Crossref]

Environ. Sci. Pollut. Res. (1)

P. F. Lim, K. H. Leong, L. C. Sim, A. Abd Aziz, and P. Saravanan, “Amalgamation of N-graphene quantum dots with nanocubic like TiO2: an insight study of sunlight sensitive photocatalysis,” Environ. Sci. Pollut. Res. 26(4), 3455–3464 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Wang, S. Blaize, J. Seok, S. Kim, H. Yang, and R. Salas-Montiel, “Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–6 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

IEEE Trans. Antennas Propag. (2)

L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Circularly-polarized reconfigurable transmit array in Ka-band with beam scanning and polarization switching capabilities,” IEEE Trans. Antennas Propag. 65(2), 529–540 (2017).
[Crossref]

F. Yang and Y. Rahmat-Samii, “A low profile single dipole antenna radiating circularly polarized waves,” IEEE Trans. Antennas Propag. 53(9), 3083–3086 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (2)

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Tunable asymmetric transmission of THz wave through a graphene chiral metasurface,” J. Opt. 18(9), 095001 (2016).
[Crossref]

H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14(8), 085102 (2012).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. Soc. Jpn. (1)

M.-F. Lin and F.-L. Shyu, “Optical properties of nanographite ribbons,” J. Phys. Soc. Jpn. 69(11), 3529–3532 (2000).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (2)

L. Nagdimunov, L. Kolokolova, and D. Mackowski, “Characterization and remote sensing of biological particles using circular polarization,” J. Quant. Spectrosc. Radiat. Transfer 131, 59–65 (2013).
[Crossref]

W. E. Martin, E. Hesse, J. H. Hough, W. B. Sparks, C. S. Cockell, Z. Ulanowski, T. A. Germer, and P. H. Kaye, “Polarized optical scattering signatures from biological materials,” J. Quant. Spectrosc. Radiat. Transfer 111(16), 2444–2459 (2010).
[Crossref]

Materials (1)

T. Sang, J. Gao, L. Wang, H. Qi, X. Yin, and Y. Wang, “Numerical study of angle-insensitive and tunable dual-band THz absorber using periodic cross-shaped graphene arrays,” Materials 12(13), 2063 (2019).
[Crossref]

Nano Lett. (2)

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref]

K. Saito and T. Tatsuma, “Chiral plasmonic nanostructures fabricated by circularly polarized light,” Nano Lett. 18(5), 3209–3212 (2018).
[Crossref]

Nano Res. (1)

W. Peng and X. Li, “Synthesis of a sulfur-graphene composite as an enhanced metal-free photocatalyst,” Nano Res. 6(4), 286–292 (2013).
[Crossref]

Nanoscale (1)

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref]

Nat. Mater. (1)

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Nat. Photonics (2)

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4(8), 549–552 (2010).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Nature (3)

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref]

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref]

Opt. Commun. (1)

K. Wang, W.-H. Fan, X. Chen, C. Song, and X.-Q. Jiang, “Graphene based polarization independent Fano resonance at terahertz for tunable sensing at nanoscale,” Opt. Commun. 439, 61–65 (2019).
[Crossref]

Opt. Express (9)

H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
[Crossref]

B. Zhang, H. Li, H. Xu, M. Zhao, C. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
[Crossref]

B. Zhu, G. Ren, Y. Gao, B. Wu, C. Wan, and S. Jian, “Graphene circular polarization analyzer based on spiral metal triangle antennas arrays,” Opt. Express 23(19), 24730–24737 (2015).
[Crossref]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref]

H. C. Chung, M. H. Lee, C. P. Chang, and M. F. Lin, “Exploration of edge-dependent optical selection rules for graphene nanoribbons,” Opt. Express 19(23), 23350–23363 (2011).
[Crossref]

B. P. Cumming, S. Debbarma, B. Luther-Davis, and M. Gu, “Simultaneous compensation for aberration and axial elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective,” Opt. Express 21(16), 19135–19141 (2013).
[Crossref]

H. Li, M. Qin, Y. Ren, and J. Hu, “Angle-independent strong coupling between plasmonic magnetic resonances and excitons in monolayer WS2,” Opt. Express 27(16), 22951–22959 (2019).
[Crossref]

G. Deng, X. Song, S. A. Dereshgi, H. Xu, and K. Aydin, “Tunable multi-wavelength absorption in mid-IR region based on a hybrid patterned graphene-hBN structure,” Opt. Express 27(16), 23576–23584 (2019).
[Crossref]

H. Li, B. Chen, M. Qin, and L. Wang, “Strong plasmon-exciton coupling in MIM waveguide-resonator systems with WS2 monolayer,” Opt. Express 28(1), 205–215 (2020).
[Crossref]

Opt. Lett. (5)

Photonics Res. (1)

S.-X. Xia, X. Zhai, L.-L. Wang, and S.-C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

Phys. Chem. Chem. Phys. (2)

Z. Su, Y. Wang, X. Luo, H. Luo, C. Zhang, M. Li, T. Sang, and G. Yang, “A tunable THz absorber consisting of an elliptical graphene disk array,” Phys. Chem. Chem. Phys. 20(21), 14357–14361 (2018).
[Crossref]

H. C. Chung, C. P. Chang, C. Y. Lin, and M. F. Lin, “Electronic and optical properties of graphene nanoribbons in external fields,” Phys. Chem. Chem. Phys. 18(11), 7573–7616 (2016).
[Crossref]

Phys. Rev. B (2)

H. Hsu and L. E. Reichl, “Selection rule for the optical absorption of graphene nanoribbons,” Phys. Rev. B 76(4), 045418 (2007).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Phys. Rev. E (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Phys. Rev. Lett. (5)

M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. G. de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95(12), 123904 (2005).
[Crossref]

D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J. Bowers, T. Tajima, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light,” Phys. Rev. Lett. 107(11), 115002 (2011).
[Crossref]

Sci. Adv. (1)

T.-T. Kim, S. S. Oh, H.-D. Kim, H. S. Park, O. Hess, B. Min, and S. Zhang, “Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials,” Sci. Adv. 3(9), e1701377 (2017).
[Crossref]

Sci. Rep. (4)

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref]

J. Kobashi, H. Yoshida, and M. Ozaki, “Circularly-polarized, semitransparent and double-sided holograms based on helical photonic structures,” Sci. Rep. 7(1), 16470 (2017).
[Crossref]

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref]

M. Amin, M. Farhat, and H. Bagci, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
[Crossref]

Science (2)

F. J. G. de Abajo, “Graphene nanophotonics,” Science 339(6122), 917–918 (2013).
[Crossref]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Other (2)

Ansys Lumerical, “FDTD,” https://www.lumerical.com/products/fdtd/ .

Comsol, “Comsol Multiphysics,” https://comsol.com/comsol-multiphysics .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic diagram of the unit cell of the proposed CPL absorber consisting of a SGD, a SiO2 dielectric spacer, and an Au film substrate.
Fig. 2.
Fig. 2. Real part of the effective refractive index Re(neff) of EGPs vs. wavelength as width L and Fermi level EF are varied.
Fig. 3.
Fig. 3. (a) Absorption response of the SGDs-based absorber under the illumination of CPL. The parameters are: P=0.8 μm, L=0.32 μm, d=2.2 μm, T=300 K, EF=0.58 eV, τ=0.5 ps. (b) Distribution of the normalized electric field at 22.26 μm at the SGD/air interface in the x-y plane. (c) Distribution of the normalized electric field at 22.26 μm at the center of SGD in the x-z plane. The arrows indicate the direction of the electric field.
Fig. 4.
Fig. 4. Relationship between L and the absorption peak wavelengths of the SGDs-based absorber with EF=0.58 eV. The hollow and solid triangular points are obtained by FDTD simulations and F-P cavity model, respectively.
Fig. 5.
Fig. 5. Reflection response and input impedance of the SGDs-based absorber. Other parameters are the same as those in Fig. 3(a).
Fig. 6.
Fig. 6. Absorption spectra of the SGDs-based absorber for different EF. Other parameters are the same as those in Fig. 3(a).
Fig. 7.
Fig. 7. Absorption spectra of the SGDs-based absorber as functions of (a) spacer thickness d; (b) period P. Other parameters are the same as those in Fig. 3(a).
Fig. 8.
Fig. 8. Multi-channeled absorption enhancement of the SGDs-based absorber. (a) Double absorption channels with L1=0.20 μm and L2=0.32 μm. (b) Triple absorption channels with L1=0.20 μm, L2=0.35 μm and L3=0.26 μm. Other parameters are the same as those in Fig. 3(a).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E = ( i ^ E o x e i ϕ x + j ^ E o y e i ϕ y ) e i ( k z ω t ) = E ~ o e i ( k z ω t ) ,
E ~ o = [ E ~ o x E ~ o y ] = [ E o x e i ϕ x E o y e i ϕ y ] = e i ϕ x [ E o x E o y e i δ ] ,
σ int r a = 2 e 2 k B T π 2 i ω + i τ 1 l n [ 2 c o s h ( E F 2 k B T ) ] ,
σ i n t e r = e 2 4 [ 1 2 + 1 π a r c t a n ( ω 2 E F 2 k B T ) i 2 π l n ( ω + 2 E F ) 2 ( ω 2 E F ) 2 + 4 ( k B T ) 2 ] ,
σ g = e 2 E F π 2 i ω + i τ 1 .
δ  =  2 π L R e ( n e f f ) λ + φ = m π .
S 11 = S 22 = i 2 ( 1 Z Z ) sin ( n k d ) ,
S 21 = S 12 = 1 cos ( n k d ) i 2 ( Z + 1 2 ) sin ( n k d ) ,