Abstract

Dilute nitride (DN) vertical cavity surface emitting lasers (VCSELs) emitting near 1300 nm exhibit state-of-the-art performance including bandwidths of 10 GHz and a record high error-free data transmission of 12 Gbps. Renewed interest in DN VCSELs stems from emerging applications in kilometer-reach digital communication across optical fiber and across free space via eye safe beams, time-of-flight and structured light sensing, and photonic-electronic integrated circuit optical interconnects. We produce VCSEL wafers in a production molecular beam epitaxy system on 3- and 4-inch diameter GaAs wafers. We report record dynamic performance for our test VCSELs with oxide aperture diameters ranging from 2 to 12 µm.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Weyers, M. Sato, and H. Ando, “Red shift of photoluminescence and absorption in dilute GaAsN alloy layers,” Jpn. J. Appl. Phys. 31(Part 2, No. 7A), L853–L855 (1992).
    [Crossref]
  2. M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: a novel material for long wavelength-range laser diodes with excellent high-temperature performance,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1273–1275 (1996).
    [Crossref]
  3. M. C. Larson, M. Kondow, T. Kitatani, K. Nakahara, K. Tamura, H. Inoue, and K. Uomi, “GaInNAs-GaAs long-wavelength vertical-cavity surface-emitting laser diodes,” IEEE Photonics Technol. Lett. 10(2), 188–190 (1998).
    [Crossref]
  4. K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 µm,” Electron. Lett. 36(16), 1388–1390 (2000).
    [Crossref]
  5. S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36(24), 2018–2019 (2000).
    [Crossref]
  6. M. C. Larson, C. W. Coldren, S. G. Spruytte, H. E. Petersen, and J. S. Harris, “Low-threshold oxide-confined GaInNAs long wavelength vertical cavity lasers,” IEEE Photonics Technol. Lett. 12(12), 1598–1600 (2000).
    [Crossref]
  7. H. Riechert, A. Ramakrishnan, and G. Steinle, “Development of InGaAsN-based 1.3 (m VCSELs,” Semicond. Sci. Technol. 17(8), 892–897 (2002).
    [Crossref]
  8. J. Vukusic, P. Modh, A. Larsson, M Hammar, S. Mogg, U. Christiansson, V Oscarsson, E. Ödling, J. Malmquist, M. Ghisoni, P. Gong, E. Griffiths, and A. Joel, “MOVPE-grown GalnNAs VCSELs at 1.3 µm with conventional mirror design approach,” Electron. Lett. 39(8), 662–664 (2003).
    [Crossref]
  9. S. Spiga, M. Müller, and M.-C. Amann, “Energy-efficient high-speed InP-based 1.3 µm short-cavity VCSELs,” Proceedings 15th International Conference on Transparent Optical Networks (ICTON), paper Mo.B2.3, 1–4 (2013).
  10. J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Zh. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3µm,” Electron. Lett. 36(16), 1384–1385 (2000).
    [Crossref]
  11. Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Simazu, A. Yamaguchi, and T. Katsuyama, “Long-wavelength GaInNAs VCSEL with buried tunnel junction current confinement structure,” SEI Tech. Rev. 68, 40–43 (2009).
  12. D. Jessen, Alight Technologies ApS, private communication (Jun. 2020) and Internet: https://www.alight.dk/
  13. E. P. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “Impact of damping on high-speed large signal VCSEL dynamics,” J. Lightwave Technol. 33(4), 795–801 (2015).
    [Crossref]

2015 (1)

2009 (1)

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Simazu, A. Yamaguchi, and T. Katsuyama, “Long-wavelength GaInNAs VCSEL with buried tunnel junction current confinement structure,” SEI Tech. Rev. 68, 40–43 (2009).

2003 (1)

J. Vukusic, P. Modh, A. Larsson, M Hammar, S. Mogg, U. Christiansson, V Oscarsson, E. Ödling, J. Malmquist, M. Ghisoni, P. Gong, E. Griffiths, and A. Joel, “MOVPE-grown GalnNAs VCSELs at 1.3 µm with conventional mirror design approach,” Electron. Lett. 39(8), 662–664 (2003).
[Crossref]

2002 (1)

H. Riechert, A. Ramakrishnan, and G. Steinle, “Development of InGaAsN-based 1.3 (m VCSELs,” Semicond. Sci. Technol. 17(8), 892–897 (2002).
[Crossref]

2000 (4)

J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Zh. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3µm,” Electron. Lett. 36(16), 1384–1385 (2000).
[Crossref]

K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 µm,” Electron. Lett. 36(16), 1388–1390 (2000).
[Crossref]

S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36(24), 2018–2019 (2000).
[Crossref]

M. C. Larson, C. W. Coldren, S. G. Spruytte, H. E. Petersen, and J. S. Harris, “Low-threshold oxide-confined GaInNAs long wavelength vertical cavity lasers,” IEEE Photonics Technol. Lett. 12(12), 1598–1600 (2000).
[Crossref]

1998 (1)

M. C. Larson, M. Kondow, T. Kitatani, K. Nakahara, K. Tamura, H. Inoue, and K. Uomi, “GaInNAs-GaAs long-wavelength vertical-cavity surface-emitting laser diodes,” IEEE Photonics Technol. Lett. 10(2), 188–190 (1998).
[Crossref]

1996 (1)

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: a novel material for long wavelength-range laser diodes with excellent high-temperature performance,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1273–1275 (1996).
[Crossref]

1992 (1)

M. Weyers, M. Sato, and H. Ando, “Red shift of photoluminescence and absorption in dilute GaAsN alloy layers,” Jpn. J. Appl. Phys. 31(Part 2, No. 7A), L853–L855 (1992).
[Crossref]

Alferov, Zh. I.

J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Zh. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3µm,” Electron. Lett. 36(16), 1384–1385 (2000).
[Crossref]

Allerman, A. A.

K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 µm,” Electron. Lett. 36(16), 1388–1390 (2000).
[Crossref]

Amann, M.-C.

S. Spiga, M. Müller, and M.-C. Amann, “Energy-efficient high-speed InP-based 1.3 µm short-cavity VCSELs,” Proceedings 15th International Conference on Transparent Optical Networks (ICTON), paper Mo.B2.3, 1–4 (2013).

Ando, H.

M. Weyers, M. Sato, and H. Ando, “Red shift of photoluminescence and absorption in dilute GaAsN alloy layers,” Jpn. J. Appl. Phys. 31(Part 2, No. 7A), L853–L855 (1992).
[Crossref]

Arai, M.

S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36(24), 2018–2019 (2000).
[Crossref]

Bimberg, D.

J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Zh. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3µm,” Electron. Lett. 36(16), 1384–1385 (2000).
[Crossref]

Blum, O.

K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 µm,” Electron. Lett. 36(16), 1388–1390 (2000).
[Crossref]

Breiland, W. G.

K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 µm,” Electron. Lett. 36(16), 1388–1390 (2000).
[Crossref]

Choquette, K. D.

K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 µm,” Electron. Lett. 36(16), 1388–1390 (2000).
[Crossref]

Christiansson, U.

J. Vukusic, P. Modh, A. Larsson, M Hammar, S. Mogg, U. Christiansson, V Oscarsson, E. Ödling, J. Malmquist, M. Ghisoni, P. Gong, E. Griffiths, and A. Joel, “MOVPE-grown GalnNAs VCSELs at 1.3 µm with conventional mirror design approach,” Electron. Lett. 39(8), 662–664 (2003).
[Crossref]

Coldren, C. W.

M. C. Larson, C. W. Coldren, S. G. Spruytte, H. E. Petersen, and J. S. Harris, “Low-threshold oxide-confined GaInNAs long wavelength vertical cavity lasers,” IEEE Photonics Technol. Lett. 12(12), 1598–1600 (2000).
[Crossref]

Doi, H.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Simazu, A. Yamaguchi, and T. Katsuyama, “Long-wavelength GaInNAs VCSEL with buried tunnel junction current confinement structure,” SEI Tech. Rev. 68, 40–43 (2009).

Fischer, A. J.

K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 µm,” Electron. Lett. 36(16), 1388–1390 (2000).
[Crossref]

Fritz, I. J.

K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 µm,” Electron. Lett. 36(16), 1388–1390 (2000).
[Crossref]

Fujii, K.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Simazu, A. Yamaguchi, and T. Katsuyama, “Long-wavelength GaInNAs VCSEL with buried tunnel junction current confinement structure,” SEI Tech. Rev. 68, 40–43 (2009).

Geib, K. M.

K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 µm,” Electron. Lett. 36(16), 1388–1390 (2000).
[Crossref]

Ghisoni, M.

J. Vukusic, P. Modh, A. Larsson, M Hammar, S. Mogg, U. Christiansson, V Oscarsson, E. Ödling, J. Malmquist, M. Ghisoni, P. Gong, E. Griffiths, and A. Joel, “MOVPE-grown GalnNAs VCSELs at 1.3 µm with conventional mirror design approach,” Electron. Lett. 39(8), 662–664 (2003).
[Crossref]

Gong, P.

J. Vukusic, P. Modh, A. Larsson, M Hammar, S. Mogg, U. Christiansson, V Oscarsson, E. Ödling, J. Malmquist, M. Ghisoni, P. Gong, E. Griffiths, and A. Joel, “MOVPE-grown GalnNAs VCSELs at 1.3 µm with conventional mirror design approach,” Electron. Lett. 39(8), 662–664 (2003).
[Crossref]

Griffiths, E.

J. Vukusic, P. Modh, A. Larsson, M Hammar, S. Mogg, U. Christiansson, V Oscarsson, E. Ödling, J. Malmquist, M. Ghisoni, P. Gong, E. Griffiths, and A. Joel, “MOVPE-grown GalnNAs VCSELs at 1.3 µm with conventional mirror design approach,” Electron. Lett. 39(8), 662–664 (2003).
[Crossref]

Gustavsson, J. S.

Haglund, E. P.

Hammar, M

J. Vukusic, P. Modh, A. Larsson, M Hammar, S. Mogg, U. Christiansson, V Oscarsson, E. Ödling, J. Malmquist, M. Ghisoni, P. Gong, E. Griffiths, and A. Joel, “MOVPE-grown GalnNAs VCSELs at 1.3 µm with conventional mirror design approach,” Electron. Lett. 39(8), 662–664 (2003).
[Crossref]

Harris, J. S.

M. C. Larson, C. W. Coldren, S. G. Spruytte, H. E. Petersen, and J. S. Harris, “Low-threshold oxide-confined GaInNAs long wavelength vertical cavity lasers,” IEEE Photonics Technol. Lett. 12(12), 1598–1600 (2000).
[Crossref]

Hashimoto, J.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Simazu, A. Yamaguchi, and T. Katsuyama, “Long-wavelength GaInNAs VCSEL with buried tunnel junction current confinement structure,” SEI Tech. Rev. 68, 40–43 (2009).

Iga, K.

S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36(24), 2018–2019 (2000).
[Crossref]

Inoue, H.

M. C. Larson, M. Kondow, T. Kitatani, K. Nakahara, K. Tamura, H. Inoue, and K. Uomi, “GaInNAs-GaAs long-wavelength vertical-cavity surface-emitting laser diodes,” IEEE Photonics Technol. Lett. 10(2), 188–190 (1998).
[Crossref]

Ishizuka, T.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Simazu, A. Yamaguchi, and T. Katsuyama, “Long-wavelength GaInNAs VCSEL with buried tunnel junction current confinement structure,” SEI Tech. Rev. 68, 40–43 (2009).

Jessen, D.

D. Jessen, Alight Technologies ApS, private communication (Jun. 2020) and Internet: https://www.alight.dk/

Jikutani, N.

S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36(24), 2018–2019 (2000).
[Crossref]

Joel, A.

J. Vukusic, P. Modh, A. Larsson, M Hammar, S. Mogg, U. Christiansson, V Oscarsson, E. Ödling, J. Malmquist, M. Ghisoni, P. Gong, E. Griffiths, and A. Joel, “MOVPE-grown GalnNAs VCSELs at 1.3 µm with conventional mirror design approach,” Electron. Lett. 39(8), 662–664 (2003).
[Crossref]

Katsuyama, T.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Simazu, A. Yamaguchi, and T. Katsuyama, “Long-wavelength GaInNAs VCSEL with buried tunnel junction current confinement structure,” SEI Tech. Rev. 68, 40–43 (2009).

Kitatani, T.

M. C. Larson, M. Kondow, T. Kitatani, K. Nakahara, K. Tamura, H. Inoue, and K. Uomi, “GaInNAs-GaAs long-wavelength vertical-cavity surface-emitting laser diodes,” IEEE Photonics Technol. Lett. 10(2), 188–190 (1998).
[Crossref]

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: a novel material for long wavelength-range laser diodes with excellent high-temperature performance,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1273–1275 (1996).
[Crossref]

Klem, J. F.

K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 µm,” Electron. Lett. 36(16), 1388–1390 (2000).
[Crossref]

Kondow, M.

M. C. Larson, M. Kondow, T. Kitatani, K. Nakahara, K. Tamura, H. Inoue, and K. Uomi, “GaInNAs-GaAs long-wavelength vertical-cavity surface-emitting laser diodes,” IEEE Photonics Technol. Lett. 10(2), 188–190 (1998).
[Crossref]

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: a novel material for long wavelength-range laser diodes with excellent high-temperature performance,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1273–1275 (1996).
[Crossref]

Kovsh, A. R.

J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Zh. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3µm,” Electron. Lett. 36(16), 1384–1385 (2000).
[Crossref]

Koyama, F.

S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36(24), 2018–2019 (2000).
[Crossref]

Koyama, K.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Simazu, A. Yamaguchi, and T. Katsuyama, “Long-wavelength GaInNAs VCSEL with buried tunnel junction current confinement structure,” SEI Tech. Rev. 68, 40–43 (2009).

Kurtz, S. R.

K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 µm,” Electron. Lett. 36(16), 1388–1390 (2000).
[Crossref]

Larson, M. C.

M. C. Larson, C. W. Coldren, S. G. Spruytte, H. E. Petersen, and J. S. Harris, “Low-threshold oxide-confined GaInNAs long wavelength vertical cavity lasers,” IEEE Photonics Technol. Lett. 12(12), 1598–1600 (2000).
[Crossref]

M. C. Larson, M. Kondow, T. Kitatani, K. Nakahara, K. Tamura, H. Inoue, and K. Uomi, “GaInNAs-GaAs long-wavelength vertical-cavity surface-emitting laser diodes,” IEEE Photonics Technol. Lett. 10(2), 188–190 (1998).
[Crossref]

Larsson, A.

E. P. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “Impact of damping on high-speed large signal VCSEL dynamics,” J. Lightwave Technol. 33(4), 795–801 (2015).
[Crossref]

J. Vukusic, P. Modh, A. Larsson, M Hammar, S. Mogg, U. Christiansson, V Oscarsson, E. Ödling, J. Malmquist, M. Ghisoni, P. Gong, E. Griffiths, and A. Joel, “MOVPE-grown GalnNAs VCSELs at 1.3 µm with conventional mirror design approach,” Electron. Lett. 39(8), 662–664 (2003).
[Crossref]

Ledentsov, N. N.

J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Zh. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3µm,” Electron. Lett. 36(16), 1384–1385 (2000).
[Crossref]

Lott, J. A.

J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Zh. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3µm,” Electron. Lett. 36(16), 1384–1385 (2000).
[Crossref]

Maleev, N. A.

J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Zh. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3µm,” Electron. Lett. 36(16), 1384–1385 (2000).
[Crossref]

Malmquist, J.

J. Vukusic, P. Modh, A. Larsson, M Hammar, S. Mogg, U. Christiansson, V Oscarsson, E. Ödling, J. Malmquist, M. Ghisoni, P. Gong, E. Griffiths, and A. Joel, “MOVPE-grown GalnNAs VCSELs at 1.3 µm with conventional mirror design approach,” Electron. Lett. 39(8), 662–664 (2003).
[Crossref]

Matsutani, A.

S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36(24), 2018–2019 (2000).
[Crossref]

Maximov, M. V.

J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Zh. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3µm,” Electron. Lett. 36(16), 1384–1385 (2000).
[Crossref]

Miyamoto, T.

S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36(24), 2018–2019 (2000).
[Crossref]

Modh, P.

J. Vukusic, P. Modh, A. Larsson, M Hammar, S. Mogg, U. Christiansson, V Oscarsson, E. Ödling, J. Malmquist, M. Ghisoni, P. Gong, E. Griffiths, and A. Joel, “MOVPE-grown GalnNAs VCSELs at 1.3 µm with conventional mirror design approach,” Electron. Lett. 39(8), 662–664 (2003).
[Crossref]

Mogg, S.

J. Vukusic, P. Modh, A. Larsson, M Hammar, S. Mogg, U. Christiansson, V Oscarsson, E. Ödling, J. Malmquist, M. Ghisoni, P. Gong, E. Griffiths, and A. Joel, “MOVPE-grown GalnNAs VCSELs at 1.3 µm with conventional mirror design approach,” Electron. Lett. 39(8), 662–664 (2003).
[Crossref]

Mori, H.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Simazu, A. Yamaguchi, and T. Katsuyama, “Long-wavelength GaInNAs VCSEL with buried tunnel junction current confinement structure,” SEI Tech. Rev. 68, 40–43 (2009).

Müller, M.

S. Spiga, M. Müller, and M.-C. Amann, “Energy-efficient high-speed InP-based 1.3 µm short-cavity VCSELs,” Proceedings 15th International Conference on Transparent Optical Networks (ICTON), paper Mo.B2.3, 1–4 (2013).

Nakahara, K.

M. C. Larson, M. Kondow, T. Kitatani, K. Nakahara, K. Tamura, H. Inoue, and K. Uomi, “GaInNAs-GaAs long-wavelength vertical-cavity surface-emitting laser diodes,” IEEE Photonics Technol. Lett. 10(2), 188–190 (1998).
[Crossref]

Naone, R. L.

K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 µm,” Electron. Lett. 36(16), 1388–1390 (2000).
[Crossref]

Nishiyama, N.

S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36(24), 2018–2019 (2000).
[Crossref]

Niwa, A.

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: a novel material for long wavelength-range laser diodes with excellent high-temperature performance,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1273–1275 (1996).
[Crossref]

Ödling, E.

J. Vukusic, P. Modh, A. Larsson, M Hammar, S. Mogg, U. Christiansson, V Oscarsson, E. Ödling, J. Malmquist, M. Ghisoni, P. Gong, E. Griffiths, and A. Joel, “MOVPE-grown GalnNAs VCSELs at 1.3 µm with conventional mirror design approach,” Electron. Lett. 39(8), 662–664 (2003).
[Crossref]

Onishi, Y.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Simazu, A. Yamaguchi, and T. Katsuyama, “Long-wavelength GaInNAs VCSEL with buried tunnel junction current confinement structure,” SEI Tech. Rev. 68, 40–43 (2009).

Oscarsson, V

J. Vukusic, P. Modh, A. Larsson, M Hammar, S. Mogg, U. Christiansson, V Oscarsson, E. Ödling, J. Malmquist, M. Ghisoni, P. Gong, E. Griffiths, and A. Joel, “MOVPE-grown GalnNAs VCSELs at 1.3 µm with conventional mirror design approach,” Electron. Lett. 39(8), 662–664 (2003).
[Crossref]

Petersen, H. E.

M. C. Larson, C. W. Coldren, S. G. Spruytte, H. E. Petersen, and J. S. Harris, “Low-threshold oxide-confined GaInNAs long wavelength vertical cavity lasers,” IEEE Photonics Technol. Lett. 12(12), 1598–1600 (2000).
[Crossref]

Ramakrishnan, A.

H. Riechert, A. Ramakrishnan, and G. Steinle, “Development of InGaAsN-based 1.3 (m VCSELs,” Semicond. Sci. Technol. 17(8), 892–897 (2002).
[Crossref]

Riechert, H.

H. Riechert, A. Ramakrishnan, and G. Steinle, “Development of InGaAsN-based 1.3 (m VCSELs,” Semicond. Sci. Technol. 17(8), 892–897 (2002).
[Crossref]

Saga, N.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Simazu, A. Yamaguchi, and T. Katsuyama, “Long-wavelength GaInNAs VCSEL with buried tunnel junction current confinement structure,” SEI Tech. Rev. 68, 40–43 (2009).

Sato, M.

M. Weyers, M. Sato, and H. Ando, “Red shift of photoluminescence and absorption in dilute GaAsN alloy layers,” Jpn. J. Appl. Phys. 31(Part 2, No. 7A), L853–L855 (1992).
[Crossref]

Sato, S.

S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36(24), 2018–2019 (2000).
[Crossref]

Scott, J. W.

K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 µm,” Electron. Lett. 36(16), 1388–1390 (2000).
[Crossref]

Sieg, R.

K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 µm,” Electron. Lett. 36(16), 1388–1390 (2000).
[Crossref]

Simazu, M.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Simazu, A. Yamaguchi, and T. Katsuyama, “Long-wavelength GaInNAs VCSEL with buried tunnel junction current confinement structure,” SEI Tech. Rev. 68, 40–43 (2009).

Spiga, S.

S. Spiga, M. Müller, and M.-C. Amann, “Energy-efficient high-speed InP-based 1.3 µm short-cavity VCSELs,” Proceedings 15th International Conference on Transparent Optical Networks (ICTON), paper Mo.B2.3, 1–4 (2013).

Spruytte, S. G.

M. C. Larson, C. W. Coldren, S. G. Spruytte, H. E. Petersen, and J. S. Harris, “Low-threshold oxide-confined GaInNAs long wavelength vertical cavity lasers,” IEEE Photonics Technol. Lett. 12(12), 1598–1600 (2000).
[Crossref]

Steinle, G.

H. Riechert, A. Ramakrishnan, and G. Steinle, “Development of InGaAsN-based 1.3 (m VCSELs,” Semicond. Sci. Technol. 17(8), 892–897 (2002).
[Crossref]

Takahashi, T.

S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36(24), 2018–2019 (2000).
[Crossref]

Tamura, K.

M. C. Larson, M. Kondow, T. Kitatani, K. Nakahara, K. Tamura, H. Inoue, and K. Uomi, “GaInNAs-GaAs long-wavelength vertical-cavity surface-emitting laser diodes,” IEEE Photonics Technol. Lett. 10(2), 188–190 (1998).
[Crossref]

Uomi, K.

M. C. Larson, M. Kondow, T. Kitatani, K. Nakahara, K. Tamura, H. Inoue, and K. Uomi, “GaInNAs-GaAs long-wavelength vertical-cavity surface-emitting laser diodes,” IEEE Photonics Technol. Lett. 10(2), 188–190 (1998).
[Crossref]

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: a novel material for long wavelength-range laser diodes with excellent high-temperature performance,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1273–1275 (1996).
[Crossref]

Ustinov, V. M.

J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Zh. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3µm,” Electron. Lett. 36(16), 1384–1385 (2000).
[Crossref]

Volovik, B. V.

J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Zh. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3µm,” Electron. Lett. 36(16), 1384–1385 (2000).
[Crossref]

Vukusic, J.

J. Vukusic, P. Modh, A. Larsson, M Hammar, S. Mogg, U. Christiansson, V Oscarsson, E. Ödling, J. Malmquist, M. Ghisoni, P. Gong, E. Griffiths, and A. Joel, “MOVPE-grown GalnNAs VCSELs at 1.3 µm with conventional mirror design approach,” Electron. Lett. 39(8), 662–664 (2003).
[Crossref]

Watahiki, S.

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: a novel material for long wavelength-range laser diodes with excellent high-temperature performance,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1273–1275 (1996).
[Crossref]

Westbergh, P.

Weyers, M.

M. Weyers, M. Sato, and H. Ando, “Red shift of photoluminescence and absorption in dilute GaAsN alloy layers,” Jpn. J. Appl. Phys. 31(Part 2, No. 7A), L853–L855 (1992).
[Crossref]

Yamada, T.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Simazu, A. Yamaguchi, and T. Katsuyama, “Long-wavelength GaInNAs VCSEL with buried tunnel junction current confinement structure,” SEI Tech. Rev. 68, 40–43 (2009).

Yamaguchi, A.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Simazu, A. Yamaguchi, and T. Katsuyama, “Long-wavelength GaInNAs VCSEL with buried tunnel junction current confinement structure,” SEI Tech. Rev. 68, 40–43 (2009).

Yazawa, Y.

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: a novel material for long wavelength-range laser diodes with excellent high-temperature performance,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1273–1275 (1996).
[Crossref]

Zhukov, A. E.

J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Zh. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3µm,” Electron. Lett. 36(16), 1384–1385 (2000).
[Crossref]

Electron. Lett. (4)

K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 µm,” Electron. Lett. 36(16), 1388–1390 (2000).
[Crossref]

S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36(24), 2018–2019 (2000).
[Crossref]

J. Vukusic, P. Modh, A. Larsson, M Hammar, S. Mogg, U. Christiansson, V Oscarsson, E. Ödling, J. Malmquist, M. Ghisoni, P. Gong, E. Griffiths, and A. Joel, “MOVPE-grown GalnNAs VCSELs at 1.3 µm with conventional mirror design approach,” Electron. Lett. 39(8), 662–664 (2003).
[Crossref]

J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Zh. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3µm,” Electron. Lett. 36(16), 1384–1385 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. C. Larson, M. Kondow, T. Kitatani, K. Nakahara, K. Tamura, H. Inoue, and K. Uomi, “GaInNAs-GaAs long-wavelength vertical-cavity surface-emitting laser diodes,” IEEE Photonics Technol. Lett. 10(2), 188–190 (1998).
[Crossref]

M. C. Larson, C. W. Coldren, S. G. Spruytte, H. E. Petersen, and J. S. Harris, “Low-threshold oxide-confined GaInNAs long wavelength vertical cavity lasers,” IEEE Photonics Technol. Lett. 12(12), 1598–1600 (2000).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (2)

M. Weyers, M. Sato, and H. Ando, “Red shift of photoluminescence and absorption in dilute GaAsN alloy layers,” Jpn. J. Appl. Phys. 31(Part 2, No. 7A), L853–L855 (1992).
[Crossref]

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: a novel material for long wavelength-range laser diodes with excellent high-temperature performance,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1273–1275 (1996).
[Crossref]

SEI Tech. Rev. (1)

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Simazu, A. Yamaguchi, and T. Katsuyama, “Long-wavelength GaInNAs VCSEL with buried tunnel junction current confinement structure,” SEI Tech. Rev. 68, 40–43 (2009).

Semicond. Sci. Technol. (1)

H. Riechert, A. Ramakrishnan, and G. Steinle, “Development of InGaAsN-based 1.3 (m VCSELs,” Semicond. Sci. Technol. 17(8), 892–897 (2002).
[Crossref]

Other (2)

S. Spiga, M. Müller, and M.-C. Amann, “Energy-efficient high-speed InP-based 1.3 µm short-cavity VCSELs,” Proceedings 15th International Conference on Transparent Optical Networks (ICTON), paper Mo.B2.3, 1–4 (2013).

D. Jessen, Alight Technologies ApS, private communication (Jun. 2020) and Internet: https://www.alight.dk/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Cross-section (left) of half of a 1300 nm DN VCSEL via a collage including a scanning electron microscopy image, added text, and an illustrated top p-metal contact, and (right) simulated 1D real index (blue line) and optical field intensity on resonance (red line) profiles.
Fig. 2.
Fig. 2. Static LIV characteristics at room temperature (25 °C) for 1300 nm DN VCSELs with oxide aperture diameters ranging from 2 to 12 µm (left) and corresponding differential series resistance versus bias current (right).
Fig. 3.
Fig. 3. Continuous wave (CW) optical output power and voltage versus bias current for a DN VCSEL with ϕ ∼3 µm at 15 to 55 °C in 10 °C steps.
Fig. 4.
Fig. 4. Continuous wave emission spectra of a ϕ ∼3 µm DN VCSEL at bias current of 3 mA taken at heatsink temperatures from 15 to 55 °C in 10 °C steps.
Fig. 5.
Fig. 5. Small signal modulation frequency response for an ϕ ∼3 µm DN VCSEL at bias currents of 2, 3, and 5 mA.
Fig. 6.
Fig. 6. Small-signal modulation bandwidth frequency (f3dB) versus bias current extracted from the |S21| response curves for the ϕ ∼3 µm DN VCSEL taken at heatsink T = 15, 25, and 35 °C.
Fig. 7.
Fig. 7. Bit error ratio (BER) versus received optical power at 10 and 12 Gbps at 25 °C, and optical eye patterns at the minimum recorded BERs.

Tables (1)

Tables Icon

Table 1. Selected historical performance of dilute nitride VCSELs

Metrics