Abstract

Optical coherence tomography (OCT) relies on the reflection of light from structures in different layers to interferometrically reconstruct the volumetric image of the sample. However, light returned from multiple layers suffers from imbalanced attenuation owing to the optical path difference and inhomogeneous tissue absorption. We report an optimization algorithm to improve signal strength in deep tissue for swept-source (SS)-OCT imaging. This algorithm utilizes the attenuation coefficient of consecutive layers within the sample and combines them to compensate for the signal intensity loss from deep tissue. We stacked 170-µm thick cover slides as a standard sample for benchmark testing. The optimized OCT image provides a 30% increase in signal intensity in the deep structure compared with the conventional images. We applied this method for pearl inspection, whose layered structure demonstrates a great application for our optimized OCT imaging. In contrast to X-ray micro-CT scan and scanning electron microscope (SEM) imaging modalities, the optimized OCT imaging provides great potential for pearl quality inspection. The proposed improvement algorithm for SS-OCT could also be applied to diverse biomedical imaging scenarios, including label-free tissue imaging.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhao, W. J. Eldridge, J. R. Maher, S. Kim, M. Crose, M. Ibrahim, H. Levinson, and A. Wax, “Dual-axis optical coherence tomography for deep tissue imaging,” Opt. Lett. 42(12), 2302–2305 (2017).
    [Crossref]
  2. M. T. Leite, L. M. Zangwill, R. N. Weinreb, H. L. Rao, L. M. Alencar, P. A. Sample, and F. A. Medeiros, “Effect of Disease Severity on the Performance of Cirrus Spectral-Domain OCT for Glaucoma Diagnosis,” Invest. Ophthalmol. Visual Sci. 51(8), 4104–4109 (2010).
    [Crossref]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  4. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276(5321), 2037–2039 (1997).
    [Crossref]
  5. A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
    [Crossref]
  6. N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
    [Crossref]
  7. M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
    [Crossref]
  8. Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
    [Crossref]
  9. U. Baran, W. Qin, X. Qi, G. Kalkan, and R. K. Wang, “OCT-based label-free in vivo lymphangiography within human skin and areola,” Sci. Rep. 6(1), 21122 (2016).
    [Crossref]
  10. N. Uribe-Patarroyo and B. E. Bouma, “Rotational distortion correction in endoscopic optical coherence tomography based on speckle decorrelation,” Opt. Lett. 40(23), 5518–5521 (2015).
    [Crossref]
  11. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in Optical Coherence Tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
    [Crossref]
  12. S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, and W. Choi, “Deep optical imaging within complex scattering media,” Nat. Rev. Phys. 2(3), 141–158 (2020).
    [Crossref]
  13. A. Golabchi, J. Faust, F. N. Golabchi, D. H. Brooks, A. Gouldstone, and C. A. DiMarzio, “Refractive errors and corrections for OCT images in an inflated lung phantom,” Biomed. Opt. Express 3(5), 1101–1109 (2012).
    [Crossref]
  14. D. Levitz, L. Thrane, M. H. Frosz, P. E. Andersen, C. B. Andersen, J. Valanciunaite, J. Swartling, S. Andersson-Engels, and P. R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12(2), 249–259 (2004).
    [Crossref]
  15. K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
    [Crossref]
  16. K. Minami, Y. Kataoka, J. Matsunaga, S. Ohtani, M. Honbou, and K. Miyata, “Ray-tracing intraocular lens power calculation using anterior segment optical coherence tomography measurements,” J. Cataract Refractive Surg. 38(10), 1758–1763 (2012).
    [Crossref]
  17. A. de Castro, S. Barbero, S. Ortiz, and S. Marcos, “Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from Ray Tracing and Optical Coherence Tomography data,” Opt. Express 19(20), 19265–19279 (2011).
    [Crossref]
  18. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17(3), 484–490 (2000).
    [Crossref]
  19. K. C. Zhou, R. Qian, S. Degan, S. Farsiu, and J. A. Izatt, “Optical coherence refraction tomography,” Nat. Photonics 13(11), 794–802 (2019).
    [Crossref]
  20. D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).
    [Crossref]
  21. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van. Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).
    [Crossref]
  22. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
    [Crossref]
  23. V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, A. A. Sovetsky, D. V. Shabanov, S. Y. Ksenofontov, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, A. V. Yuzhakov, and E. N. Sobol, “Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains,” Laser Phys. Lett. 16(6), 065601 (2019).
    [Crossref]
  24. M. Casper, H. Schulz-Hildebrandt, M. Evers, R. Birngruber, D. Manstein, and G. Hüttmann, “Optimization-based vessel segmentation pipeline for robust quantification of capillary networks in skin with optical coherence tomography angiography,” J. Biomed. Opt. 24(04), 1 (2019).
    [Crossref]
  25. M. J. Ju, S. J. Lee, E. J. Min, Y. Kim, H. Y. Kim, and B. H. Lee, “Evaluating and identifying pearls and their nuclei by using optical coherence tomography,” Opt. Express 18(13), 13468–13477 (2010).
    [Crossref]
  26. Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated Internal Classification of Beadless Chinese ZhuJi Freshwater Pearls based on Optical Coherence Tomography Images,” Sci. Rep. 6(1), 33819 (2016).
    [Crossref]
  27. M. J. Ju, S. J. Lee, Y. Kim, J. G. Shin, H. Y. Kim, Y. Lim, Y. Yasuno, and B. H. Lee, “Multimodal analysis of pearls and pearl treatments by using optical coherence tomography and fluorescence spectroscopy,” Opt. Express 19(7), 6420–6432 (2011).
    [Crossref]
  28. A. Y.-M. Lin, P.-Y. Chen, and M. A. Meyers, “The growth of nacre in the abalone shell,” Acta Biomater. 4(1), 131–138 (2008).
    [Crossref]
  29. W. Drexler, J. G. Fujimoto, and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Technology and Applications (Springer, 2008).
  30. A. Hojjatoleslami and M. R. N. Avanaki, “OCT skin image enhancement through attenuation compensation,” Appl. Opt. 51(21), 4927–4935 (2012).
    [Crossref]
  31. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
    [Crossref]
  32. J. Kang, P. Feng, X. Wei, E. Y. Lam, K. K. Tsia, and K. K. Y. Wong, “102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography,” Opt. Express 26(4), 4370–4381 (2018).
    [Crossref]
  33. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref]
  34. J. Schmitt, S. Xiang, and K. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95 (1999).
    [Crossref]
  35. N. Venkatanath, D. Praneeth, B. Maruthi Chandrasekhar, S. S. Channappayya, and S. S. Medasani, “Blind image quality evaluation using perception based features,” in 2015 Twenty First National Conference on Communications (NCC), (2015), 1–6.
  36. D. Micieli, D. Di Martino, M. Musa, L. Gori, A. Kaestner, A. Bravin, A. Mittone, R. Navone, and G. Gorini, “Characterizing pearls structures using X-ray phase-contrast and neutron imaging: a pilot study,” Sci. Rep. 8(1), 12118 (2018).
    [Crossref]
  37. D. Junqing and L. Qinghui, “Research on nondestructive measurement of sea pearls using optical coherence tomography technique,” Infrared Laser Eng. 47(4), 417004 (2018).
    [Crossref]

2020 (1)

S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, and W. Choi, “Deep optical imaging within complex scattering media,” Nat. Rev. Phys. 2(3), 141–158 (2020).
[Crossref]

2019 (4)

K. C. Zhou, R. Qian, S. Degan, S. Farsiu, and J. A. Izatt, “Optical coherence refraction tomography,” Nat. Photonics 13(11), 794–802 (2019).
[Crossref]

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, A. A. Sovetsky, D. V. Shabanov, S. Y. Ksenofontov, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, A. V. Yuzhakov, and E. N. Sobol, “Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains,” Laser Phys. Lett. 16(6), 065601 (2019).
[Crossref]

M. Casper, H. Schulz-Hildebrandt, M. Evers, R. Birngruber, D. Manstein, and G. Hüttmann, “Optimization-based vessel segmentation pipeline for robust quantification of capillary networks in skin with optical coherence tomography angiography,” J. Biomed. Opt. 24(04), 1 (2019).
[Crossref]

2018 (4)

J. Kang, P. Feng, X. Wei, E. Y. Lam, K. K. Tsia, and K. K. Y. Wong, “102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography,” Opt. Express 26(4), 4370–4381 (2018).
[Crossref]

D. Micieli, D. Di Martino, M. Musa, L. Gori, A. Kaestner, A. Bravin, A. Mittone, R. Navone, and G. Gorini, “Characterizing pearls structures using X-ray phase-contrast and neutron imaging: a pilot study,” Sci. Rep. 8(1), 12118 (2018).
[Crossref]

D. Junqing and L. Qinghui, “Research on nondestructive measurement of sea pearls using optical coherence tomography technique,” Infrared Laser Eng. 47(4), 417004 (2018).
[Crossref]

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

2017 (1)

2016 (3)

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

U. Baran, W. Qin, X. Qi, G. Kalkan, and R. K. Wang, “OCT-based label-free in vivo lymphangiography within human skin and areola,” Sci. Rep. 6(1), 21122 (2016).
[Crossref]

Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated Internal Classification of Beadless Chinese ZhuJi Freshwater Pearls based on Optical Coherence Tomography Images,” Sci. Rep. 6(1), 33819 (2016).
[Crossref]

2015 (1)

2014 (2)

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref]

K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref]

2012 (3)

2011 (2)

2010 (4)

2008 (1)

A. Y.-M. Lin, P.-Y. Chen, and M. A. Meyers, “The growth of nacre in the abalone shell,” Acta Biomater. 4(1), 131–138 (2008).
[Crossref]

2006 (1)

2004 (2)

2000 (1)

1999 (1)

J. Schmitt, S. Xiang, and K. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95 (1999).
[Crossref]

1998 (1)

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).
[Crossref]

1997 (1)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

1995 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Aalders, M. C. G.

Alencar, L. M.

M. T. Leite, L. M. Zangwill, R. N. Weinreb, H. L. Rao, L. M. Alencar, P. A. Sample, and F. A. Medeiros, “Effect of Disease Severity on the Performance of Cirrus Spectral-Domain OCT for Glaucoma Diagnosis,” Invest. Ophthalmol. Visual Sci. 51(8), 4104–4109 (2010).
[Crossref]

Andersen, C. B.

Andersen, P. E.

Andersson-Engels, S.

Aubry, A.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

Avanaki, M. R. N.

Badon, A.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

Bang, O.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Baran, U.

U. Baran, W. Qin, X. Qi, G. Kalkan, and R. K. Wang, “OCT-based label-free in vivo lymphangiography within human skin and areola,” Sci. Rep. 6(1), 21122 (2016).
[Crossref]

Barbero, S.

Barh, A.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Baum, O. I.

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, A. A. Sovetsky, D. V. Shabanov, S. Y. Ksenofontov, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, A. V. Yuzhakov, and E. N. Sobol, “Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains,” Laser Phys. Lett. 16(6), 065601 (2019).
[Crossref]

Birngruber, R.

M. Casper, H. Schulz-Hildebrandt, M. Evers, R. Birngruber, D. Manstein, and G. Hüttmann, “Optimization-based vessel segmentation pipeline for robust quantification of capillary networks in skin with optical coherence tomography angiography,” J. Biomed. Opt. 24(04), 1 (2019).
[Crossref]

Blatter, C.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

Boccara, A. C.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

Bouma, B. E.

Bravin, A.

D. Micieli, D. Di Martino, M. Musa, L. Gori, A. Kaestner, A. Bravin, A. Mittone, R. Navone, and G. Gorini, “Characterizing pearls structures using X-ray phase-contrast and neutron imaging: a pilot study,” Sci. Rep. 8(1), 12118 (2018).
[Crossref]

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
[Crossref]

Brooks, D. H.

Casper, M.

M. Casper, H. Schulz-Hildebrandt, M. Evers, R. Birngruber, D. Manstein, and G. Hüttmann, “Optimization-based vessel segmentation pipeline for robust quantification of capillary networks in skin with optical coherence tomography angiography,” J. Biomed. Opt. 24(04), 1 (2019).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Channappayya, S. S.

N. Venkatanath, D. Praneeth, B. Maruthi Chandrasekhar, S. S. Channappayya, and S. S. Medasani, “Blind image quality evaluation using perception based features,” in 2015 Twenty First National Conference on Communications (NCC), (2015), 1–6.

Chen, P.-Y.

A. Y.-M. Lin, P.-Y. Chen, and M. A. Meyers, “The growth of nacre in the abalone shell,” Acta Biomater. 4(1), 131–138 (2008).
[Crossref]

Chen, Z.

Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated Internal Classification of Beadless Chinese ZhuJi Freshwater Pearls based on Optical Coherence Tomography Images,” Sci. Rep. 6(1), 33819 (2016).
[Crossref]

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).
[Crossref]

Choi, W.

S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, and W. Choi, “Deep optical imaging within complex scattering media,” Nat. Rev. Phys. 2(3), 141–158 (2020).
[Crossref]

S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, and W. Choi, “Deep optical imaging within complex scattering media,” Nat. Rev. Phys. 2(3), 141–158 (2020).
[Crossref]

Choi, Y.

S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, and W. Choi, “Deep optical imaging within complex scattering media,” Nat. Rev. Phys. 2(3), 141–158 (2020).
[Crossref]

Crose, M.

de Boer, J. F.

de Castro, A.

Degan, S.

K. C. Zhou, R. Qian, S. Degan, S. Farsiu, and J. A. Izatt, “Optical coherence refraction tomography,” Nat. Photonics 13(11), 794–802 (2019).
[Crossref]

Di Martino, D.

D. Micieli, D. Di Martino, M. Musa, L. Gori, A. Kaestner, A. Bravin, A. Mittone, R. Navone, and G. Gorini, “Characterizing pearls structures using X-ray phase-contrast and neutron imaging: a pilot study,” Sci. Rep. 8(1), 12118 (2018).
[Crossref]

DiMarzio, C. A.

Drexler, W.

W. Drexler, J. G. Fujimoto, and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Technology and Applications (Springer, 2008).

Eldridge, W. J.

Evers, M.

M. Casper, H. Schulz-Hildebrandt, M. Evers, R. Birngruber, D. Manstein, and G. Hüttmann, “Optimization-based vessel segmentation pipeline for robust quantification of capillary networks in skin with optical coherence tomography angiography,” J. Biomed. Opt. 24(04), 1 (2019).
[Crossref]

Faber, D. J.

Farsiu, S.

K. C. Zhou, R. Qian, S. Degan, S. Farsiu, and J. A. Izatt, “Optical coherence refraction tomography,” Nat. Photonics 13(11), 794–802 (2019).
[Crossref]

Faust, J.

Feng, P.

Fink, M.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Frosz, M. H.

Fujimoto, J. G.

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

W. Drexler, J. G. Fujimoto, and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Technology and Applications (Springer, 2008).

W. Drexler, J. G. Fujimoto, and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Technology and Applications (Springer, 2008).

Gelikonov, G. V.

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, A. A. Sovetsky, D. V. Shabanov, S. Y. Ksenofontov, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, A. V. Yuzhakov, and E. N. Sobol, “Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains,” Laser Phys. Lett. 16(6), 065601 (2019).
[Crossref]

Golabchi, A.

Golabchi, F. N.

Gori, L.

D. Micieli, D. Di Martino, M. Musa, L. Gori, A. Kaestner, A. Bravin, A. Mittone, R. Navone, and G. Gorini, “Characterizing pearls structures using X-ray phase-contrast and neutron imaging: a pilot study,” Sci. Rep. 8(1), 12118 (2018).
[Crossref]

Gorini, G.

D. Micieli, D. Di Martino, M. Musa, L. Gori, A. Kaestner, A. Bravin, A. Mittone, R. Navone, and G. Gorini, “Characterizing pearls structures using X-ray phase-contrast and neutron imaging: a pilot study,” Sci. Rep. 8(1), 12118 (2018).
[Crossref]

Gouldstone, A.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Grulkowski, I.

Hannesschläger, G.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Hansen, P. R.

Hee, M. R.

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hojjatoleslami, A.

Honbou, M.

K. Minami, Y. Kataoka, J. Matsunaga, S. Ohtani, M. Honbou, and K. Miyata, “Ray-tracing intraocular lens power calculation using anterior segment optical coherence tomography measurements,” J. Cataract Refractive Surg. 38(10), 1758–1763 (2012).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Huber, R.

Hüttmann, G.

M. Casper, H. Schulz-Hildebrandt, M. Evers, R. Birngruber, D. Manstein, and G. Hüttmann, “Optimization-based vessel segmentation pipeline for robust quantification of capillary networks in skin with optical coherence tomography angiography,” J. Biomed. Opt. 24(04), 1 (2019).
[Crossref]

Ibrahim, M.

Israelsen, N. M.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Izatt, J. A.

K. C. Zhou, R. Qian, S. Degan, S. Farsiu, and J. A. Izatt, “Optical coherence refraction tomography,” Nat. Photonics 13(11), 794–802 (2019).
[Crossref]

Jain, D.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Jang, M.

S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, and W. Choi, “Deep optical imaging within complex scattering media,” Nat. Rev. Phys. 2(3), 141–158 (2020).
[Crossref]

Jarvi, M.

Jensen, M.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Ju, M. J.

Junqing, D.

D. Junqing and L. Qinghui, “Research on nondestructive measurement of sea pearls using optical coherence tomography technique,” Infrared Laser Eng. 47(4), 417004 (2018).
[Crossref]

Kaestner, A.

D. Micieli, D. Di Martino, M. Musa, L. Gori, A. Kaestner, A. Bravin, A. Mittone, R. Navone, and G. Gorini, “Characterizing pearls structures using X-ray phase-contrast and neutron imaging: a pilot study,” Sci. Rep. 8(1), 12118 (2018).
[Crossref]

Kalkan, G.

U. Baran, W. Qin, X. Qi, G. Kalkan, and R. K. Wang, “OCT-based label-free in vivo lymphangiography within human skin and areola,” Sci. Rep. 6(1), 21122 (2016).
[Crossref]

Kang, J.

Kang, S.

S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, and W. Choi, “Deep optical imaging within complex scattering media,” Nat. Rev. Phys. 2(3), 141–158 (2020).
[Crossref]

Kataoka, Y.

K. Minami, Y. Kataoka, J. Matsunaga, S. Ohtani, M. Honbou, and K. Miyata, “Ray-tracing intraocular lens power calculation using anterior segment optical coherence tomography measurements,” J. Cataract Refractive Surg. 38(10), 1758–1763 (2012).
[Crossref]

Kim, H. Y.

Kim, M.

S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, and W. Choi, “Deep optical imaging within complex scattering media,” Nat. Rev. Phys. 2(3), 141–158 (2020).
[Crossref]

Kim, S.

Kim, Y.

Ksenofontov, S. Y.

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, A. A. Sovetsky, D. V. Shabanov, S. Y. Ksenofontov, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, A. V. Yuzhakov, and E. N. Sobol, “Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains,” Laser Phys. Lett. 16(6), 065601 (2019).
[Crossref]

Lam, E. Y.

Lee, B. H.

Lee, K.

Lee, S. J.

Leite, M. T.

M. T. Leite, L. M. Zangwill, R. N. Weinreb, H. L. Rao, L. M. Alencar, P. A. Sample, and F. A. Medeiros, “Effect of Disease Severity on the Performance of Cirrus Spectral-Domain OCT for Glaucoma Diagnosis,” Invest. Ophthalmol. Visual Sci. 51(8), 4104–4109 (2010).
[Crossref]

Lemij, H. G.

Lerosey, G.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

Leung, M. K. K.

Levinson, H.

Levitz, D.

Li, D.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

Lim, Y.

Lin, A. Y.-M.

A. Y.-M. Lin, P.-Y. Chen, and M. A. Meyers, “The growth of nacre in the abalone shell,” Acta Biomater. 4(1), 131–138 (2008).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Lindmo, T.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).
[Crossref]

Lippok, N.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

Liu, T.

Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated Internal Classification of Beadless Chinese ZhuJi Freshwater Pearls based on Optical Coherence Tomography Images,” Sci. Rep. 6(1), 33819 (2016).
[Crossref]

Maher, J. R.

Manstein, D.

M. Casper, H. Schulz-Hildebrandt, M. Evers, R. Birngruber, D. Manstein, and G. Hüttmann, “Optimization-based vessel segmentation pipeline for robust quantification of capillary networks in skin with optical coherence tomography angiography,” J. Biomed. Opt. 24(04), 1 (2019).
[Crossref]

Mao, J.

Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated Internal Classification of Beadless Chinese ZhuJi Freshwater Pearls based on Optical Coherence Tomography Images,” Sci. Rep. 6(1), 33819 (2016).
[Crossref]

Marcos, S.

Mariampillai, A.

Maruthi Chandrasekhar, B.

N. Venkatanath, D. Praneeth, B. Maruthi Chandrasekhar, S. S. Channappayya, and S. S. Medasani, “Blind image quality evaluation using perception based features,” in 2015 Twenty First National Conference on Communications (NCC), (2015), 1–6.

Matsunaga, J.

K. Minami, Y. Kataoka, J. Matsunaga, S. Ohtani, M. Honbou, and K. Miyata, “Ray-tracing intraocular lens power calculation using anterior segment optical coherence tomography measurements,” J. Cataract Refractive Surg. 38(10), 1758–1763 (2012).
[Crossref]

Matveev, L. A.

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, A. A. Sovetsky, D. V. Shabanov, S. Y. Ksenofontov, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, A. V. Yuzhakov, and E. N. Sobol, “Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains,” Laser Phys. Lett. 16(6), 065601 (2019).
[Crossref]

Matveyev, A. L.

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, A. A. Sovetsky, D. V. Shabanov, S. Y. Ksenofontov, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, A. V. Yuzhakov, and E. N. Sobol, “Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains,” Laser Phys. Lett. 16(6), 065601 (2019).
[Crossref]

Medasani, S. S.

N. Venkatanath, D. Praneeth, B. Maruthi Chandrasekhar, S. S. Channappayya, and S. S. Medasani, “Blind image quality evaluation using perception based features,” in 2015 Twenty First National Conference on Communications (NCC), (2015), 1–6.

Medeiros, F. A.

M. T. Leite, L. M. Zangwill, R. N. Weinreb, H. L. Rao, L. M. Alencar, P. A. Sample, and F. A. Medeiros, “Effect of Disease Severity on the Performance of Cirrus Spectral-Domain OCT for Glaucoma Diagnosis,” Invest. Ophthalmol. Visual Sci. 51(8), 4104–4109 (2010).
[Crossref]

Meyers, M. A.

A. Y.-M. Lin, P.-Y. Chen, and M. A. Meyers, “The growth of nacre in the abalone shell,” Acta Biomater. 4(1), 131–138 (2008).
[Crossref]

Micieli, D.

D. Micieli, D. Di Martino, M. Musa, L. Gori, A. Kaestner, A. Bravin, A. Mittone, R. Navone, and G. Gorini, “Characterizing pearls structures using X-ray phase-contrast and neutron imaging: a pilot study,” Sci. Rep. 8(1), 12118 (2018).
[Crossref]

Milner, T. E.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).
[Crossref]

Min, E. J.

Minami, K.

K. Minami, Y. Kataoka, J. Matsunaga, S. Ohtani, M. Honbou, and K. Miyata, “Ray-tracing intraocular lens power calculation using anterior segment optical coherence tomography measurements,” J. Cataract Refractive Surg. 38(10), 1758–1763 (2012).
[Crossref]

Mittone, A.

D. Micieli, D. Di Martino, M. Musa, L. Gori, A. Kaestner, A. Bravin, A. Mittone, R. Navone, and G. Gorini, “Characterizing pearls structures using X-ray phase-contrast and neutron imaging: a pilot study,” Sci. Rep. 8(1), 12118 (2018).
[Crossref]

Miyata, K.

K. Minami, Y. Kataoka, J. Matsunaga, S. Ohtani, M. Honbou, and K. Miyata, “Ray-tracing intraocular lens power calculation using anterior segment optical coherence tomography measurements,” J. Cataract Refractive Surg. 38(10), 1758–1763 (2012).
[Crossref]

Mo, J.

Musa, M.

D. Micieli, D. Di Martino, M. Musa, L. Gori, A. Kaestner, A. Bravin, A. Mittone, R. Navone, and G. Gorini, “Characterizing pearls structures using X-ray phase-contrast and neutron imaging: a pilot study,” Sci. Rep. 8(1), 12118 (2018).
[Crossref]

Nakagawa, H.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref]

Nakajima, M.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref]

Nam, A. S.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

Navone, R.

D. Micieli, D. Di Martino, M. Musa, L. Gori, A. Kaestner, A. Bravin, A. Mittone, R. Navone, and G. Gorini, “Characterizing pearls structures using X-ray phase-contrast and neutron imaging: a pilot study,” Sci. Rep. 8(1), 12118 (2018).
[Crossref]

Nelson, J. S.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).
[Crossref]

Nikaido, T.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref]

Ohtani, S.

K. Minami, Y. Kataoka, J. Matsunaga, S. Ohtani, M. Honbou, and K. Miyata, “Ray-tracing intraocular lens power calculation using anterior segment optical coherence tomography measurements,” J. Cataract Refractive Surg. 38(10), 1758–1763 (2012).
[Crossref]

Omelchenko, A. I.

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, A. A. Sovetsky, D. V. Shabanov, S. Y. Ksenofontov, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, A. V. Yuzhakov, and E. N. Sobol, “Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains,” Laser Phys. Lett. 16(6), 065601 (2019).
[Crossref]

Ortiz, S.

Otsuki, M.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref]

Pascual, D.

Pedersen, C.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Petersen, C. R.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

Podoleanu, A.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Praneeth, D.

N. Venkatanath, D. Praneeth, B. Maruthi Chandrasekhar, S. S. Channappayya, and S. S. Medasani, “Blind image quality evaluation using perception based features,” in 2015 Twenty First National Conference on Communications (NCC), (2015), 1–6.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Qi, X.

U. Baran, W. Qin, X. Qi, G. Kalkan, and R. K. Wang, “OCT-based label-free in vivo lymphangiography within human skin and areola,” Sci. Rep. 6(1), 21122 (2016).
[Crossref]

Qian, R.

K. C. Zhou, R. Qian, S. Degan, S. Farsiu, and J. A. Izatt, “Optical coherence refraction tomography,” Nat. Photonics 13(11), 794–802 (2019).
[Crossref]

Qin, W.

U. Baran, W. Qin, X. Qi, G. Kalkan, and R. K. Wang, “OCT-based label-free in vivo lymphangiography within human skin and areola,” Sci. Rep. 6(1), 21122 (2016).
[Crossref]

Qinghui, L.

D. Junqing and L. Qinghui, “Research on nondestructive measurement of sea pearls using optical coherence tomography technique,” Infrared Laser Eng. 47(4), 417004 (2018).
[Crossref]

Rao, H. L.

M. T. Leite, L. M. Zangwill, R. N. Weinreb, H. L. Rao, L. M. Alencar, P. A. Sample, and F. A. Medeiros, “Effect of Disease Severity on the Performance of Cirrus Spectral-Domain OCT for Glaucoma Diagnosis,” Invest. Ophthalmol. Visual Sci. 51(8), 4104–4109 (2010).
[Crossref]

Remon, L.

Sadr, A.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref]

Sample, P. A.

M. T. Leite, L. M. Zangwill, R. N. Weinreb, H. L. Rao, L. M. Alencar, P. A. Sample, and F. A. Medeiros, “Effect of Disease Severity on the Performance of Cirrus Spectral-Domain OCT for Glaucoma Diagnosis,” Invest. Ophthalmol. Visual Sci. 51(8), 4104–4109 (2010).
[Crossref]

Schmitt, J.

J. Schmitt, S. Xiang, and K. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95 (1999).
[Crossref]

Schulz-Hildebrandt, H.

M. Casper, H. Schulz-Hildebrandt, M. Evers, R. Birngruber, D. Manstein, and G. Hüttmann, “Optimization-based vessel segmentation pipeline for robust quantification of capillary networks in skin with optical coherence tomography angiography,” J. Biomed. Opt. 24(04), 1 (2019).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Shabanov, D. V.

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, A. A. Sovetsky, D. V. Shabanov, S. Y. Ksenofontov, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, A. V. Yuzhakov, and E. N. Sobol, “Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains,” Laser Phys. Lett. 16(6), 065601 (2019).
[Crossref]

Shi, Y.

Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated Internal Classification of Beadless Chinese ZhuJi Freshwater Pearls based on Optical Coherence Tomography Images,” Sci. Rep. 6(1), 33819 (2016).
[Crossref]

Shimada, Y.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref]

Shin, J. G.

Siddiqui, M.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

Siedlecki, D.

Smithies, D. J.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).
[Crossref]

Sobol, E. N.

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, A. A. Sovetsky, D. V. Shabanov, S. Y. Ksenofontov, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, A. V. Yuzhakov, and E. N. Sobol, “Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains,” Laser Phys. Lett. 16(6), 065601 (2019).
[Crossref]

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
[Crossref]

Sovetsky, A. A.

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, A. A. Sovetsky, D. V. Shabanov, S. Y. Ksenofontov, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, A. V. Yuzhakov, and E. N. Sobol, “Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains,” Laser Phys. Lett. 16(6), 065601 (2019).
[Crossref]

Standish, B. A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Sumi, Y.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Swartling, J.

Tagami, J.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref]

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
[Crossref]

Thrane, L.

Tidemand-Lichtenberg, P.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Tozburun, S.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

Tsia, K. K.

Uribe-Patarroyo, N.

Vakoc, B. J.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

Valanciunaite, J.

van der Meer, F. J.

van. Leeuwen, T. G.

Venkatanath, N.

N. Venkatanath, D. Praneeth, B. Maruthi Chandrasekhar, S. S. Channappayya, and S. S. Medasani, “Blind image quality evaluation using perception based features,” in 2015 Twenty First National Conference on Communications (NCC), (2015), 1–6.

Vermeer, K. A.

Vitkin, A.

Wada, I.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref]

Wang, R. K.

U. Baran, W. Qin, X. Qi, G. Kalkan, and R. K. Wang, “OCT-based label-free in vivo lymphangiography within human skin and areola,” Sci. Rep. 6(1), 21122 (2016).
[Crossref]

Wax, A.

Weda, J. J. A.

Wei, X.

Weinreb, R. N.

M. T. Leite, L. M. Zangwill, R. N. Weinreb, H. L. Rao, L. M. Alencar, P. A. Sample, and F. A. Medeiros, “Effect of Disease Severity on the Performance of Cirrus Spectral-Domain OCT for Glaucoma Diagnosis,” Invest. Ophthalmol. Visual Sci. 51(8), 4104–4109 (2010).
[Crossref]

Wilson, B. C.

Wojtkowski, M.

Wong, K. K. Y.

Xiang, S.

J. Schmitt, S. Xiang, and K. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95 (1999).
[Crossref]

Yang, V. X. D.

Yasuno, Y.

Yoon, S.

S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, and W. Choi, “Deep optical imaging within complex scattering media,” Nat. Rev. Phys. 2(3), 141–158 (2020).
[Crossref]

Yung, K.

J. Schmitt, S. Xiang, and K. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95 (1999).
[Crossref]

Yura, H. T.

Yuzhakov, A. V.

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, A. A. Sovetsky, D. V. Shabanov, S. Y. Ksenofontov, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, A. V. Yuzhakov, and E. N. Sobol, “Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains,” Laser Phys. Lett. 16(6), 065601 (2019).
[Crossref]

Zaitsev, V. Y.

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, A. A. Sovetsky, D. V. Shabanov, S. Y. Ksenofontov, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, A. V. Yuzhakov, and E. N. Sobol, “Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains,” Laser Phys. Lett. 16(6), 065601 (2019).
[Crossref]

Zangwill, L. M.

M. T. Leite, L. M. Zangwill, R. N. Weinreb, H. L. Rao, L. M. Alencar, P. A. Sample, and F. A. Medeiros, “Effect of Disease Severity on the Performance of Cirrus Spectral-Domain OCT for Glaucoma Diagnosis,” Invest. Ophthalmol. Visual Sci. 51(8), 4104–4109 (2010).
[Crossref]

Zhao, Y.

Zhou, K. C.

K. C. Zhou, R. Qian, S. Degan, S. Farsiu, and J. A. Izatt, “Optical coherence refraction tomography,” Nat. Photonics 13(11), 794–802 (2019).
[Crossref]

Zhou, W.

Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated Internal Classification of Beadless Chinese ZhuJi Freshwater Pearls based on Optical Coherence Tomography Images,” Sci. Rep. 6(1), 33819 (2016).
[Crossref]

Zhou, Y.

Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated Internal Classification of Beadless Chinese ZhuJi Freshwater Pearls based on Optical Coherence Tomography Images,” Sci. Rep. 6(1), 33819 (2016).
[Crossref]

Acta Biomater. (1)

A. Y.-M. Lin, P.-Y. Chen, and M. A. Meyers, “The growth of nacre in the abalone shell,” Acta Biomater. 4(1), 131–138 (2008).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Infrared Laser Eng. (1)

D. Junqing and L. Qinghui, “Research on nondestructive measurement of sea pearls using optical coherence tomography technique,” Infrared Laser Eng. 47(4), 417004 (2018).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

M. T. Leite, L. M. Zangwill, R. N. Weinreb, H. L. Rao, L. M. Alencar, P. A. Sample, and F. A. Medeiros, “Effect of Disease Severity on the Performance of Cirrus Spectral-Domain OCT for Glaucoma Diagnosis,” Invest. Ophthalmol. Visual Sci. 51(8), 4104–4109 (2010).
[Crossref]

J. Biomed. Opt. (2)

J. Schmitt, S. Xiang, and K. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95 (1999).
[Crossref]

M. Casper, H. Schulz-Hildebrandt, M. Evers, R. Birngruber, D. Manstein, and G. Hüttmann, “Optimization-based vessel segmentation pipeline for robust quantification of capillary networks in skin with optical coherence tomography angiography,” J. Biomed. Opt. 24(04), 1 (2019).
[Crossref]

J. Biophotonics (1)

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[Crossref]

J. Cataract Refractive Surg. (1)

K. Minami, Y. Kataoka, J. Matsunaga, S. Ohtani, M. Honbou, and K. Miyata, “Ray-tracing intraocular lens power calculation using anterior segment optical coherence tomography measurements,” J. Cataract Refractive Surg. 38(10), 1758–1763 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Phys. Lett. (1)

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, A. A. Sovetsky, D. V. Shabanov, S. Y. Ksenofontov, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, A. V. Yuzhakov, and E. N. Sobol, “Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains,” Laser Phys. Lett. 16(6), 065601 (2019).
[Crossref]

Light: Sci. Appl. (1)

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Nat. Photonics (2)

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

K. C. Zhou, R. Qian, S. Degan, S. Farsiu, and J. A. Izatt, “Optical coherence refraction tomography,” Nat. Photonics 13(11), 794–802 (2019).
[Crossref]

Nat. Rev. Phys. (1)

S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, and W. Choi, “Deep optical imaging within complex scattering media,” Nat. Rev. Phys. 2(3), 141–158 (2020).
[Crossref]

Opt. Express (8)

D. Levitz, L. Thrane, M. H. Frosz, P. E. Andersen, C. B. Andersen, J. Valanciunaite, J. Swartling, S. Andersson-Engels, and P. R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12(2), 249–259 (2004).
[Crossref]

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van. Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in Optical Coherence Tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref]

J. Kang, P. Feng, X. Wei, E. Y. Lam, K. K. Tsia, and K. K. Y. Wong, “102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography,” Opt. Express 26(4), 4370–4381 (2018).
[Crossref]

M. J. Ju, S. J. Lee, E. J. Min, Y. Kim, H. Y. Kim, and B. H. Lee, “Evaluating and identifying pearls and their nuclei by using optical coherence tomography,” Opt. Express 18(13), 13468–13477 (2010).
[Crossref]

M. J. Ju, S. J. Lee, Y. Kim, J. G. Shin, H. Y. Kim, Y. Lim, Y. Yasuno, and B. H. Lee, “Multimodal analysis of pearls and pearl treatments by using optical coherence tomography and fluorescence spectroscopy,” Opt. Express 19(7), 6420–6432 (2011).
[Crossref]

A. de Castro, S. Barbero, S. Ortiz, and S. Marcos, “Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from Ray Tracing and Optical Coherence Tomography data,” Opt. Express 19(20), 19265–19279 (2011).
[Crossref]

Opt. Lett. (4)

Phys. Med. Biol. (1)

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).
[Crossref]

Sci. Adv. (1)

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

Sci. Rep. (3)

U. Baran, W. Qin, X. Qi, G. Kalkan, and R. K. Wang, “OCT-based label-free in vivo lymphangiography within human skin and areola,” Sci. Rep. 6(1), 21122 (2016).
[Crossref]

Y. Zhou, T. Liu, Y. Shi, Z. Chen, J. Mao, and W. Zhou, “Automated Internal Classification of Beadless Chinese ZhuJi Freshwater Pearls based on Optical Coherence Tomography Images,” Sci. Rep. 6(1), 33819 (2016).
[Crossref]

D. Micieli, D. Di Martino, M. Musa, L. Gori, A. Kaestner, A. Bravin, A. Mittone, R. Navone, and G. Gorini, “Characterizing pearls structures using X-ray phase-contrast and neutron imaging: a pilot study,” Sci. Rep. 8(1), 12118 (2018).
[Crossref]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref]

Other (2)

N. Venkatanath, D. Praneeth, B. Maruthi Chandrasekhar, S. S. Channappayya, and S. S. Medasani, “Blind image quality evaluation using perception based features,” in 2015 Twenty First National Conference on Communications (NCC), (2015), 1–6.

W. Drexler, J. G. Fujimoto, and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Technology and Applications (Springer, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Theoretical model: measured reflected signal intensity at different layers in terms of their reflection coefficients. We assume the incident signal intensity is unity. (b) Experimental SS-OCT setup. FFP-TF: fiber Fabry-Perot tunable filter; DMD: dispersion-managed delay; SOA: semiconductor optical amplifier; DCL: dispersion compensation lens; 10/90 BS: 10/90 beam splitter; coupler: 50/50 coupler; BD: balanced detector.
Fig. 2.
Fig. 2. (a) Original scanning result of standard cover slides with a thickness of 170 µm. (b) Optimized results after our LaB-CA method. (c) Normalized signal intensity comparison extracted from the imaging results. Scale bar: 1 mm.
Fig. 3.
Fig. 3. The original SS-OCT, LaB-CA optimized OCT, X-ray micro CT, SEM images, and signal extraction of different pearls: (a-d) freshwater pearl, (e-h) Akoya pearl (seawater pearl), (i-l) black pearl (seawater pearl). (a, e, i) The OCT images without (top) and with (bottom) optimization. The bottom left corner shows the respective real image of the pearl sample. (b, f, j) The micro-CT images show the morphology of each pearl close to the surface. (c, g, k) SEM images demonstrate the detailed layered structure close to the surface. (d, h, l) The linear OCT signal profile (including original and optimized signal, and Gaussian fit) for each pearl. Scale bar in the first and second column denotes 500 µm. The white scale bar on SEM images represents (c) 100 µm, (g) 50 µm, and (k) 250 µm.
Fig. 4.
Fig. 4. Scanning results of two specific pearls, (a-d) bad Akoya pearl, and (e-h) good Akoya pearl. In each row, the data type is the same, viz, SS-OCT data in the first column with the top being original and the bottom being the LaB-CA optimized one, micro-CT scan data in the second column, surface SEM data in the third column, and signal extraction (including signals and their respective Gaussian fit) in the fourth column. The grayscale bar in the first and second column denotes 400 µm, while the white gray bar in (c) and (g) denotes 25 µm.
Fig. 5.
Fig. 5. PIQE score for the OCT images of the pearl samples, and a lower score represents a higher quality. The blue line denotes original OCT images while the orange line represents the LaB-CA optimized OCT images. In the x-axis, each number stands for different pearls. 1: Freshwater pearl; 2: black pearl; 3-6: different Akoya pearls. (3: the Akoya pearl in Fig. 3(e); 4: the bad Akoya pearl in Fig. 4(a); 5: the good Akoya pearl in Fig. 4(b).)
Fig. 6.
Fig. 6. OCT scanning results on papers. (a, b) Results for 10 papers as a sample. (c, d) Results for 12 papers as a sample. (a, c) The top image is the original SS-OCT result, and the lower image is our LaB-CA optimized OCT result. (b, d) Extracted signal, along with their Gaussian fit, from the white line in (a) and (c). The grayscale bar is 0.5 mm.
Fig. 7.
Fig. 7. OCT scanning results on lean and fatty pork. (a, b) Results for the lean pork. (c, d) Results for the fatty pork. (a, c) The top image is the original SS-OCT result, and the lower image is our LaB-CA optimized OCT result. (b, d) Extracted signal, along with their Gaussian fit, from the white line in (a) and (c). The grayscale bar is 0.5 mm.
Fig. 8.
Fig. 8. Different A-line scanning results on the freshwater pearl. (a) Position of A-lines. (b, c, d, e) Processed results as the position moves from left to right.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E R = a a + b E i r R e i 2 k z R ,
E S = b a + b E i n = 1 N r S n e i 2 k z S n ,
r S n 2 = i = 1 n 1 ( 1 R S i 2 ) 2 R S n 2 .
R S n 2 = r S n 2 i = 1 n 1 ( 1 R S i 2 ) .
G S n = g S n i = 1 n 1 ( 1 G S i ) ,