Abstract

We present a fluorosensor for the detection of laser-induced autofluorescence of zooplankton in marine environments. The sensor uses an inexpensive 410 nm laser diode as excitation source and simultaneously measures two fluorescence bands, 500-550 nm and 675-725 nm, using two identical 16-bit linear array detectors. We show continuous measurements at 200 Hz of zooplankton swimming through a water volume illuminated by the 410 nm laser. The sensor can distinguish salmon lice (Lepeophtheirus salmonis) larvae from an algae-eating reference species (Acartia tonsa) with a sensitivity of up to 99%. The system successfully differentiates the two species using mixed-species cultures at different ratios. This work shows the potential of fluorescent pest monitoring in the salmon farming industry and paves the way for single-ended aquatic lidars.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Brydegaard and S. Svanberg, “Photonic monitoring of atmospheric and aquatic fauna,” Laser Photonics Rev. 12(12), 1800135 (2018).
    [Crossref]
  2. S. L. Basedow, K. S. Tande, M. F. Norrbin, and S. A. Kristiansen, “Capturing quantitative zooplankton information in the sea: performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation,” Prog. Oceanogr. 108, 72–80 (2013).
    [Crossref]
  3. H. Sun, P. W. Benzie, N. Burns, D. C. Hendry, M. A. Player, and J. Watson, “Underwater digital holography for studies of marine plankton,” Philos. Trans. R. Soc., A 366(1871), 1789–1806 (2008).
    [Crossref]
  4. Z. Ling, D. Sun, S. Wang, Z. Qiu, Y. Huan, Z. Mao, and Y. He, “Retrievals of phytoplankton community structures from in situ fluorescence measurements by HS-6P,” Opt. Express 26(23), 30556 (2018).
    [Crossref]
  5. M. K. Thomas, S. Fontana, M. Reyes, and F. Pomati, “Quantifying cell densities and biovolumes of phytoplankton communities and functional groups using scanning flow cytometry, machine learning and unsupervised clustering,” PLoS One 13(5), e0196225 (2018).
    [Crossref]
  6. J. Lu, Y. Yuan, Z. Duan, G. Zhao, and S. Svanberg, “Short-range remote sensing of water quality by a handheld fluorosensor system,” Appl. Opt. 59(10), C1–C7 (2020).
    [Crossref]
  7. J. H. Nielsen, C. Pedersen, T. Kiørboe, T. Nikolajsen, M. Brydegaard, and P. J. Rodrigo, “Investigation of autofluorescence in zooplankton for use in classification of larval salmon lice,” Appl. Opt. 58(26), 7022–7027 (2019).
    [Crossref]
  8. G. Govindje, “Sixty-three years since Kautsky: chlorophyll a fluorescence,” Funct. Plant Biol. 22(2), 131–160 (1995).
    [Crossref]
  9. M. J. Costello, “The global economic cost of sea lice to the salmonid farming industry,” J. Fish Dis. 32(1), 115–118 (2009).
    [Crossref]
  10. G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L.-A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
    [Crossref]
  11. S. J. Hay, T. Kiørboe, and A. Matthews, “Zooplankton biomass and production in the North Sea during the autumn circulation experiment, October 1987-March 1988,” Cont. Shelf Res. 11(12), 1453–1476 (1991).
    [Crossref]
  12. S. E. Allen and A. G. Lewis, “Lepeophtheirus salmonis (Krøyer, 1837): second nauplius and copepodid locomotor appendages, surface areas and possible appendage functions,” Crustac 86(13-14), 1695–1710 (2013).
    [Crossref]
  13. E. Malmqvist, S. Jansson, S. Török, and M. Brydegaard, “Effective parameterization of laser radar observations of atmospheric fauna,” IEEE J. Sel. Top. Quantum Electron. 22(3), 327–334 (2016).
    [Crossref]
  14. T. Kiørboe and P. T. Tiselius, “Gut clearance and pigment destruction in a herbivorous copepod, Acartia tonsa, and the determination of in situ grazing rates,” J. Plankton Res. 9(3), 525–534 (1987).
    [Crossref]
  15. Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
    [Crossref]
  16. E. J. Nelson, S. M. C. Robinson, N. Feindel, A. Sterling, A. Byrne, and K. Pee Ang, “Horizontal and vertical distribution of sea lice larvae (Lepeophtheirus salmonis) in and around salmon farms in the Bay of Fundy, Canada,” J. Fish Dis. 41(6), 885–899 (2018).
    [Crossref]
  17. V. Drozdowska, “The lidar investigation of the upper water layer fluorescence spectra of the Baltic Sea,” Eur. Phys. J.: Spec. Top. 144(1), 141–145 (2007).
    [Crossref]
  18. S. Iwamoto, M. M. Trivedi, and D. M. Checkley, “Real-time detection and classification of objects in flowing water,” Proc. SPIE 3521, 214–220 (1998).
    [Crossref]

2020 (2)

J. Lu, Y. Yuan, Z. Duan, G. Zhao, and S. Svanberg, “Short-range remote sensing of water quality by a handheld fluorosensor system,” Appl. Opt. 59(10), C1–C7 (2020).
[Crossref]

Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
[Crossref]

2019 (1)

2018 (4)

M. Brydegaard and S. Svanberg, “Photonic monitoring of atmospheric and aquatic fauna,” Laser Photonics Rev. 12(12), 1800135 (2018).
[Crossref]

Z. Ling, D. Sun, S. Wang, Z. Qiu, Y. Huan, Z. Mao, and Y. He, “Retrievals of phytoplankton community structures from in situ fluorescence measurements by HS-6P,” Opt. Express 26(23), 30556 (2018).
[Crossref]

M. K. Thomas, S. Fontana, M. Reyes, and F. Pomati, “Quantifying cell densities and biovolumes of phytoplankton communities and functional groups using scanning flow cytometry, machine learning and unsupervised clustering,” PLoS One 13(5), e0196225 (2018).
[Crossref]

E. J. Nelson, S. M. C. Robinson, N. Feindel, A. Sterling, A. Byrne, and K. Pee Ang, “Horizontal and vertical distribution of sea lice larvae (Lepeophtheirus salmonis) in and around salmon farms in the Bay of Fundy, Canada,” J. Fish Dis. 41(6), 885–899 (2018).
[Crossref]

2016 (2)

E. Malmqvist, S. Jansson, S. Török, and M. Brydegaard, “Effective parameterization of laser radar observations of atmospheric fauna,” IEEE J. Sel. Top. Quantum Electron. 22(3), 327–334 (2016).
[Crossref]

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L.-A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

2013 (2)

S. L. Basedow, K. S. Tande, M. F. Norrbin, and S. A. Kristiansen, “Capturing quantitative zooplankton information in the sea: performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation,” Prog. Oceanogr. 108, 72–80 (2013).
[Crossref]

S. E. Allen and A. G. Lewis, “Lepeophtheirus salmonis (Krøyer, 1837): second nauplius and copepodid locomotor appendages, surface areas and possible appendage functions,” Crustac 86(13-14), 1695–1710 (2013).
[Crossref]

2009 (1)

M. J. Costello, “The global economic cost of sea lice to the salmonid farming industry,” J. Fish Dis. 32(1), 115–118 (2009).
[Crossref]

2008 (1)

H. Sun, P. W. Benzie, N. Burns, D. C. Hendry, M. A. Player, and J. Watson, “Underwater digital holography for studies of marine plankton,” Philos. Trans. R. Soc., A 366(1871), 1789–1806 (2008).
[Crossref]

2007 (1)

V. Drozdowska, “The lidar investigation of the upper water layer fluorescence spectra of the Baltic Sea,” Eur. Phys. J.: Spec. Top. 144(1), 141–145 (2007).
[Crossref]

1998 (1)

S. Iwamoto, M. M. Trivedi, and D. M. Checkley, “Real-time detection and classification of objects in flowing water,” Proc. SPIE 3521, 214–220 (1998).
[Crossref]

1995 (1)

G. Govindje, “Sixty-three years since Kautsky: chlorophyll a fluorescence,” Funct. Plant Biol. 22(2), 131–160 (1995).
[Crossref]

1991 (1)

S. J. Hay, T. Kiørboe, and A. Matthews, “Zooplankton biomass and production in the North Sea during the autumn circulation experiment, October 1987-March 1988,” Cont. Shelf Res. 11(12), 1453–1476 (1991).
[Crossref]

1987 (1)

T. Kiørboe and P. T. Tiselius, “Gut clearance and pigment destruction in a herbivorous copepod, Acartia tonsa, and the determination of in situ grazing rates,” J. Plankton Res. 9(3), 525–534 (1987).
[Crossref]

Allen, S. E.

S. E. Allen and A. G. Lewis, “Lepeophtheirus salmonis (Krøyer, 1837): second nauplius and copepodid locomotor appendages, surface areas and possible appendage functions,” Crustac 86(13-14), 1695–1710 (2013).
[Crossref]

Basedow, S. L.

S. L. Basedow, K. S. Tande, M. F. Norrbin, and S. A. Kristiansen, “Capturing quantitative zooplankton information in the sea: performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation,” Prog. Oceanogr. 108, 72–80 (2013).
[Crossref]

Benzie, P. W.

H. Sun, P. W. Benzie, N. Burns, D. C. Hendry, M. A. Player, and J. Watson, “Underwater digital holography for studies of marine plankton,” Philos. Trans. R. Soc., A 366(1871), 1789–1806 (2008).
[Crossref]

Bianco, G.

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L.-A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Bood, J.

Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
[Crossref]

Brydegaard, M.

Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
[Crossref]

J. H. Nielsen, C. Pedersen, T. Kiørboe, T. Nikolajsen, M. Brydegaard, and P. J. Rodrigo, “Investigation of autofluorescence in zooplankton for use in classification of larval salmon lice,” Appl. Opt. 58(26), 7022–7027 (2019).
[Crossref]

M. Brydegaard and S. Svanberg, “Photonic monitoring of atmospheric and aquatic fauna,” Laser Photonics Rev. 12(12), 1800135 (2018).
[Crossref]

E. Malmqvist, S. Jansson, S. Török, and M. Brydegaard, “Effective parameterization of laser radar observations of atmospheric fauna,” IEEE J. Sel. Top. Quantum Electron. 22(3), 327–334 (2016).
[Crossref]

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L.-A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Burns, N.

H. Sun, P. W. Benzie, N. Burns, D. C. Hendry, M. A. Player, and J. Watson, “Underwater digital holography for studies of marine plankton,” Philos. Trans. R. Soc., A 366(1871), 1789–1806 (2008).
[Crossref]

Byrne, A.

E. J. Nelson, S. M. C. Robinson, N. Feindel, A. Sterling, A. Byrne, and K. Pee Ang, “Horizontal and vertical distribution of sea lice larvae (Lepeophtheirus salmonis) in and around salmon farms in the Bay of Fundy, Canada,” J. Fish Dis. 41(6), 885–899 (2018).
[Crossref]

Checkley, D. M.

S. Iwamoto, M. M. Trivedi, and D. M. Checkley, “Real-time detection and classification of objects in flowing water,” Proc. SPIE 3521, 214–220 (1998).
[Crossref]

Costello, M. J.

M. J. Costello, “The global economic cost of sea lice to the salmonid farming industry,” J. Fish Dis. 32(1), 115–118 (2009).
[Crossref]

Drozdowska, V.

V. Drozdowska, “The lidar investigation of the upper water layer fluorescence spectra of the Baltic Sea,” Eur. Phys. J.: Spec. Top. 144(1), 141–145 (2007).
[Crossref]

Duan, Z.

Feindel, N.

E. J. Nelson, S. M. C. Robinson, N. Feindel, A. Sterling, A. Byrne, and K. Pee Ang, “Horizontal and vertical distribution of sea lice larvae (Lepeophtheirus salmonis) in and around salmon farms in the Bay of Fundy, Canada,” J. Fish Dis. 41(6), 885–899 (2018).
[Crossref]

Feng, H.

Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
[Crossref]

Fontana, S.

M. K. Thomas, S. Fontana, M. Reyes, and F. Pomati, “Quantifying cell densities and biovolumes of phytoplankton communities and functional groups using scanning flow cytometry, machine learning and unsupervised clustering,” PLoS One 13(5), e0196225 (2018).
[Crossref]

Govindje, G.

G. Govindje, “Sixty-three years since Kautsky: chlorophyll a fluorescence,” Funct. Plant Biol. 22(2), 131–160 (1995).
[Crossref]

Hansson, L.-A.

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L.-A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Hay, S. J.

S. J. Hay, T. Kiørboe, and A. Matthews, “Zooplankton biomass and production in the North Sea during the autumn circulation experiment, October 1987-March 1988,” Cont. Shelf Res. 11(12), 1453–1476 (1991).
[Crossref]

He, Y.

Hendry, D. C.

H. Sun, P. W. Benzie, N. Burns, D. C. Hendry, M. A. Player, and J. Watson, “Underwater digital holography for studies of marine plankton,” Philos. Trans. R. Soc., A 366(1871), 1789–1806 (2008).
[Crossref]

Hu, L.

Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
[Crossref]

Huan, Y.

Iwamoto, S.

S. Iwamoto, M. M. Trivedi, and D. M. Checkley, “Real-time detection and classification of objects in flowing water,” Proc. SPIE 3521, 214–220 (1998).
[Crossref]

Jansson, S.

Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
[Crossref]

E. Malmqvist, S. Jansson, S. Török, and M. Brydegaard, “Effective parameterization of laser radar observations of atmospheric fauna,” IEEE J. Sel. Top. Quantum Electron. 22(3), 327–334 (2016).
[Crossref]

Kiørboe, T.

J. H. Nielsen, C. Pedersen, T. Kiørboe, T. Nikolajsen, M. Brydegaard, and P. J. Rodrigo, “Investigation of autofluorescence in zooplankton for use in classification of larval salmon lice,” Appl. Opt. 58(26), 7022–7027 (2019).
[Crossref]

S. J. Hay, T. Kiørboe, and A. Matthews, “Zooplankton biomass and production in the North Sea during the autumn circulation experiment, October 1987-March 1988,” Cont. Shelf Res. 11(12), 1453–1476 (1991).
[Crossref]

T. Kiørboe and P. T. Tiselius, “Gut clearance and pigment destruction in a herbivorous copepod, Acartia tonsa, and the determination of in situ grazing rates,” J. Plankton Res. 9(3), 525–534 (1987).
[Crossref]

Kristiansen, S. A.

S. L. Basedow, K. S. Tande, M. F. Norrbin, and S. A. Kristiansen, “Capturing quantitative zooplankton information in the sea: performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation,” Prog. Oceanogr. 108, 72–80 (2013).
[Crossref]

Lewis, A. G.

S. E. Allen and A. G. Lewis, “Lepeophtheirus salmonis (Krøyer, 1837): second nauplius and copepodid locomotor appendages, surface areas and possible appendage functions,” Crustac 86(13-14), 1695–1710 (2013).
[Crossref]

Li, D.

Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
[Crossref]

Li, Y.

Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
[Crossref]

Ling, Z.

Ljungholm, M.

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L.-A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Lu, J.

Malmqvist, E.

Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
[Crossref]

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L.-A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

E. Malmqvist, S. Jansson, S. Török, and M. Brydegaard, “Effective parameterization of laser radar observations of atmospheric fauna,” IEEE J. Sel. Top. Quantum Electron. 22(3), 327–334 (2016).
[Crossref]

Mao, Z.

Matthews, A.

S. J. Hay, T. Kiørboe, and A. Matthews, “Zooplankton biomass and production in the North Sea during the autumn circulation experiment, October 1987-March 1988,” Cont. Shelf Res. 11(12), 1453–1476 (1991).
[Crossref]

Nelson, E. J.

E. J. Nelson, S. M. C. Robinson, N. Feindel, A. Sterling, A. Byrne, and K. Pee Ang, “Horizontal and vertical distribution of sea lice larvae (Lepeophtheirus salmonis) in and around salmon farms in the Bay of Fundy, Canada,” J. Fish Dis. 41(6), 885–899 (2018).
[Crossref]

Nielsen, J. H.

Nikolajsen, T.

Norrbin, M. F.

S. L. Basedow, K. S. Tande, M. F. Norrbin, and S. A. Kristiansen, “Capturing quantitative zooplankton information in the sea: performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation,” Prog. Oceanogr. 108, 72–80 (2013).
[Crossref]

Pedersen, C.

Pee Ang, K.

E. J. Nelson, S. M. C. Robinson, N. Feindel, A. Sterling, A. Byrne, and K. Pee Ang, “Horizontal and vertical distribution of sea lice larvae (Lepeophtheirus salmonis) in and around salmon farms in the Bay of Fundy, Canada,” J. Fish Dis. 41(6), 885–899 (2018).
[Crossref]

Player, M. A.

H. Sun, P. W. Benzie, N. Burns, D. C. Hendry, M. A. Player, and J. Watson, “Underwater digital holography for studies of marine plankton,” Philos. Trans. R. Soc., A 366(1871), 1789–1806 (2008).
[Crossref]

Pomati, F.

M. K. Thomas, S. Fontana, M. Reyes, and F. Pomati, “Quantifying cell densities and biovolumes of phytoplankton communities and functional groups using scanning flow cytometry, machine learning and unsupervised clustering,” PLoS One 13(5), e0196225 (2018).
[Crossref]

Qiu, Z.

Reyes, M.

M. K. Thomas, S. Fontana, M. Reyes, and F. Pomati, “Quantifying cell densities and biovolumes of phytoplankton communities and functional groups using scanning flow cytometry, machine learning and unsupervised clustering,” PLoS One 13(5), e0196225 (2018).
[Crossref]

Robinson, S. M. C.

E. J. Nelson, S. M. C. Robinson, N. Feindel, A. Sterling, A. Byrne, and K. Pee Ang, “Horizontal and vertical distribution of sea lice larvae (Lepeophtheirus salmonis) in and around salmon farms in the Bay of Fundy, Canada,” J. Fish Dis. 41(6), 885–899 (2018).
[Crossref]

Rodrigo, P. J.

Song, Z.

Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
[Crossref]

Sterling, A.

E. J. Nelson, S. M. C. Robinson, N. Feindel, A. Sterling, A. Byrne, and K. Pee Ang, “Horizontal and vertical distribution of sea lice larvae (Lepeophtheirus salmonis) in and around salmon farms in the Bay of Fundy, Canada,” J. Fish Dis. 41(6), 885–899 (2018).
[Crossref]

Sun, D.

Sun, H.

H. Sun, P. W. Benzie, N. Burns, D. C. Hendry, M. A. Player, and J. Watson, “Underwater digital holography for studies of marine plankton,” Philos. Trans. R. Soc., A 366(1871), 1789–1806 (2008).
[Crossref]

Svanberg, K.

Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
[Crossref]

Svanberg, S.

Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
[Crossref]

J. Lu, Y. Yuan, Z. Duan, G. Zhao, and S. Svanberg, “Short-range remote sensing of water quality by a handheld fluorosensor system,” Appl. Opt. 59(10), C1–C7 (2020).
[Crossref]

M. Brydegaard and S. Svanberg, “Photonic monitoring of atmospheric and aquatic fauna,” Laser Photonics Rev. 12(12), 1800135 (2018).
[Crossref]

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L.-A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Tande, K. S.

S. L. Basedow, K. S. Tande, M. F. Norrbin, and S. A. Kristiansen, “Capturing quantitative zooplankton information in the sea: performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation,” Prog. Oceanogr. 108, 72–80 (2013).
[Crossref]

Thomas, M. K.

M. K. Thomas, S. Fontana, M. Reyes, and F. Pomati, “Quantifying cell densities and biovolumes of phytoplankton communities and functional groups using scanning flow cytometry, machine learning and unsupervised clustering,” PLoS One 13(5), e0196225 (2018).
[Crossref]

Tiselius, P. T.

T. Kiørboe and P. T. Tiselius, “Gut clearance and pigment destruction in a herbivorous copepod, Acartia tonsa, and the determination of in situ grazing rates,” J. Plankton Res. 9(3), 525–534 (1987).
[Crossref]

Török, S.

E. Malmqvist, S. Jansson, S. Török, and M. Brydegaard, “Effective parameterization of laser radar observations of atmospheric fauna,” IEEE J. Sel. Top. Quantum Electron. 22(3), 327–334 (2016).
[Crossref]

Trivedi, M. M.

S. Iwamoto, M. M. Trivedi, and D. M. Checkley, “Real-time detection and classification of objects in flowing water,” Proc. SPIE 3521, 214–220 (1998).
[Crossref]

Wang, S.

Watson, J.

H. Sun, P. W. Benzie, N. Burns, D. C. Hendry, M. A. Player, and J. Watson, “Underwater digital holography for studies of marine plankton,” Philos. Trans. R. Soc., A 366(1871), 1789–1806 (2008).
[Crossref]

Yuan, Y.

Zhang, B.

Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
[Crossref]

Zhao, G.

Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
[Crossref]

J. Lu, Y. Yuan, Z. Duan, G. Zhao, and S. Svanberg, “Short-range remote sensing of water quality by a handheld fluorosensor system,” Appl. Opt. 59(10), C1–C7 (2020).
[Crossref]

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L.-A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

Zhu, S.

Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
[Crossref]

Appl. Opt. (2)

Cont. Shelf Res. (1)

S. J. Hay, T. Kiørboe, and A. Matthews, “Zooplankton biomass and production in the North Sea during the autumn circulation experiment, October 1987-March 1988,” Cont. Shelf Res. 11(12), 1453–1476 (1991).
[Crossref]

Crustac (1)

S. E. Allen and A. G. Lewis, “Lepeophtheirus salmonis (Krøyer, 1837): second nauplius and copepodid locomotor appendages, surface areas and possible appendage functions,” Crustac 86(13-14), 1695–1710 (2013).
[Crossref]

Eur. Phys. J.: Spec. Top. (1)

V. Drozdowska, “The lidar investigation of the upper water layer fluorescence spectra of the Baltic Sea,” Eur. Phys. J.: Spec. Top. 144(1), 141–145 (2007).
[Crossref]

Funct. Plant Biol. (1)

G. Govindje, “Sixty-three years since Kautsky: chlorophyll a fluorescence,” Funct. Plant Biol. 22(2), 131–160 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Malmqvist, S. Jansson, S. Török, and M. Brydegaard, “Effective parameterization of laser radar observations of atmospheric fauna,” IEEE J. Sel. Top. Quantum Electron. 22(3), 327–334 (2016).
[Crossref]

J. Appl. Entomol. (1)

Z. Song, B. Zhang, H. Feng, S. Zhu, L. Hu, M. Brydegaard, Y. Li, S. Jansson, E. Malmqvist, K. Svanberg, G. Zhao, J. Bood, S. Svanberg, and D. Li, “Application of lidar remote sensing of insect in agricultural entomology on the Chinese scene,” J. Appl. Entomol. 144(3), 161–169 (2020).
[Crossref]

J. Fish Dis. (2)

E. J. Nelson, S. M. C. Robinson, N. Feindel, A. Sterling, A. Byrne, and K. Pee Ang, “Horizontal and vertical distribution of sea lice larvae (Lepeophtheirus salmonis) in and around salmon farms in the Bay of Fundy, Canada,” J. Fish Dis. 41(6), 885–899 (2018).
[Crossref]

M. J. Costello, “The global economic cost of sea lice to the salmonid farming industry,” J. Fish Dis. 32(1), 115–118 (2009).
[Crossref]

J. Plankton Res. (1)

T. Kiørboe and P. T. Tiselius, “Gut clearance and pigment destruction in a herbivorous copepod, Acartia tonsa, and the determination of in situ grazing rates,” J. Plankton Res. 9(3), 525–534 (1987).
[Crossref]

Laser Photonics Rev. (2)

G. Zhao, M. Ljungholm, E. Malmqvist, G. Bianco, L.-A. Hansson, S. Svanberg, and M. Brydegaard, “Inelastic hyperspectral lidar for profiling aquatic ecosystems,” Laser Photonics Rev. 10(5), 807–813 (2016).
[Crossref]

M. Brydegaard and S. Svanberg, “Photonic monitoring of atmospheric and aquatic fauna,” Laser Photonics Rev. 12(12), 1800135 (2018).
[Crossref]

Opt. Express (1)

Philos. Trans. R. Soc., A (1)

H. Sun, P. W. Benzie, N. Burns, D. C. Hendry, M. A. Player, and J. Watson, “Underwater digital holography for studies of marine plankton,” Philos. Trans. R. Soc., A 366(1871), 1789–1806 (2008).
[Crossref]

PLoS One (1)

M. K. Thomas, S. Fontana, M. Reyes, and F. Pomati, “Quantifying cell densities and biovolumes of phytoplankton communities and functional groups using scanning flow cytometry, machine learning and unsupervised clustering,” PLoS One 13(5), e0196225 (2018).
[Crossref]

Proc. SPIE (1)

S. Iwamoto, M. M. Trivedi, and D. M. Checkley, “Real-time detection and classification of objects in flowing water,” Proc. SPIE 3521, 214–220 (1998).
[Crossref]

Prog. Oceanogr. (1)

S. L. Basedow, K. S. Tande, M. F. Norrbin, and S. A. Kristiansen, “Capturing quantitative zooplankton information in the sea: performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation,” Prog. Oceanogr. 108, 72–80 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic overview of the setup. A collimated beam from a 410 nm laser diode, LD, illuminates a volume of water with free-swimming zooplankton. An achromatic lens, L, images the induced fluorescence unto two linear array detectors, LA1 and LA2, using a dichroic mirror, DM, with a cut-on wavelength of 550 nm. Two filter sets, FS1 and FS2, are used to filter the relevant wavelength bands of 500-550 nm and 675-725 nm, respectively. (b) Fluorescence spectra of L. salmonis and A. tonsa, with the spectral bands of FS1 and FS2 (shaded regions).
Fig. 2.
Fig. 2. Flow chart of the procedure to find, extract and filter events. Step 1: Subtract background from the raw signal. Step 2: Find and extract events. Step 3: Calculate the red and cyan signal strength for each event. This is done for all files in a measurement series and all points are plotted together in a scatter plot. Step 4: Filter away events that have a very low signal-to-noise ratio (SNR), are saturated, or are too narrow (with < 6 pixels generated masks).
Fig. 3.
Fig. 3. Cyan versus red signal scatter plot for a single individual of each species from two separate measurements. Each point corresponds to an event when that individual passes through the 410 nm excitation beam.
Fig. 4.
Fig. 4. Measurements performed for 5 hours on 50 individuals of each species in two separate single-species cultures. The dashed black line indicates the dividing line between the two groups, γS = 16. (a) Histogram of the training set consisting of 80% of the events. (b) Scatter plot of the remaining test set consisting of 20% of the events. (c) Resulting confusion matrix of the test set when using a linear classifier determined from the training set.
Fig. 5.
Fig. 5. Measurements on single-species and mixed-species culture of the two species in different ratios as indicated on the respective histograms. LS is the number of L. salmonis and AT is the number of A. tonsa in each measurement. The colors indicate which species the classifier has predicted for the events (blue = LS and red = AT).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ S = μ A T σ L S + μ L S σ A T σ A T + σ L S