Abstract

This work demonstrates a new photosensitive glassy material in the form of poly-di-methyl-siloxane (PDMS) loaded with novel Ge-derivatives. A femtosecond laser is used to write directly into the bulk of pristine and Ge-modified PDMS. Raman spectroscopy is used to study the origin of the stable refractive index (RI) change induced by fs laser exposure. Multimode waveguides, as well as a highly tunable diffraction gratings, were written into the bulk of the new material, Ge-PDMS, in order to demonstrate the inclusion of photonics structures embedded inside. Novel photonics functionality may now be incorporated into PDMS, which is a material widely used in the optics industry and for lab-on-chip application (LOC).

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Bliss, “Pulse duration dependence of laser damage mechanisms,” Opt. Quantum Electron. 3(2), 99–108 (1971).
    [Crossref]
  2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref]
  3. J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80(3), 359–361 (2002).
    [Crossref]
  4. H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass,” Opt. Lett. 31(23), 3495–3497 (2006).
    [Crossref]
  5. P. Abgrall and A. Gue, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” J. Micromech. Microeng. 17(5), R15–R49 (2007).
    [Crossref]
  6. J. Poulin and R. Kashyap, “Novel tuneable on-fiber polymeric phase-mask for fiber and planar waveguide Bragg grating fabrication,” Opt. Express 13(12), 4414–4419 (2005).
    [Crossref]
  7. K. Mochida, S.-S. Nagano, H. Kawata, M. Wakasa, and H. Hayashi, “Photodegradation of thin films of polygermanes,” J. Organomet. Chem. 542(1), 75–79 (1997).
    [Crossref]
  8. B. Potter Jr, K. Simmons-Potter, H. Chandra, G. Jamison, and W. Thomes Jr, “Photoprogrammable molecular hybrid materials for write-as-needed optical devices,” J. Non-Cryst. Solids 352(23-25), 2618–2627 (2006).
    [Crossref]
  9. A. Hlil, J.-S. Boisvert, P. Lorre, H. Iden, Y. García-Puente, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “NOFPHEM: Novel Optical Fibres and Photosensitive Elastomeric Materials,” in 21st Internationnal Symposium on Non-Oxide and New Optical Glasses, 2018).
  10. G. Panusa, Y. Pu, J. Wang, C. Moser, and D. Psaltis, “Photoinitiator-free multi-photon fabrication of compact optical waveguides in polydimethylsiloxane,” Opt. Mater. Express 9(1), 128–138 (2019).
    [Crossref]
  11. J.-S. Boisvert, A. Hlil, J. Thomas, P. Lorre, I. Hassan, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “Novel functionalization of PDMS for photosensitivity,” Integrated Optics: Devices, Materials, and Technologies XXIII (2019).
  12. R. Kashyap, Fiber bragg gratings (Academic press, 2009).
  13. G. Camino, S. Lomakin, and M. Lazzari, “Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects,” Polymer 42(6), 2395–2402 (2001).
    [Crossref]
  14. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [Crossref]
  15. A. Drouin, P. Lorre, J.-S. Boisvert, S. Loranger, V. L. Iezzi, and R. Kashyap, “Spatially resolved cross-sectional refractive index profile of fs laser–written waveguides using a genetic algorithm,” Opt. Express 27(3), 2488–2498 (2019).
    [Crossref]
  16. J. Zhu, C. Jiang, J. Han, H. Yu, J. Wang, Z. Jia, and R. Chen, “Optical and electrical properties of nonstoichiometric a-Ge1− xCx films prepared by magnetron co-sputtering,” Appl. Surf. Sci. 258(8), 3877–3881 (2012).
    [Crossref]
  17. E. Andreassen, “Infrared and Raman spectroscopy of polypropylene,” in Polypropylene (Springer, 1999), pp. 320–328.
  18. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
    [Crossref]
  19. J. Parker Jr, D. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
    [Crossref]
  20. M. Wilhelm, F. Beck, and P. J. Wellmann, “Towards the growth of SiGeC epitaxial layers for the application in Si solar cells,” Energy Procedia 84, 236–241 (2015).
    [Crossref]
  21. K. J. Kingma and R. J. Hemley, “Raman spectroscopic study of microcrystalline silica,” Am. Mineral. 79, 269–273 (1994).
  22. S. C. Bae, H. Lee, Z. Lin, and S. Granick, “Chemical imaging in a surface forces apparatus: confocal Raman spectroscopy of confined poly (dimethylsiloxane),” Langmuir 21(13), 5685–5688 (2005).
    [Crossref]
  23. A. L. Smith and D. R. Anderson, “Vibrational spectra of Me2SiCl2, Me3SiCl, Me3SiOSiMe3,(Me2SiO) 3,(Me2SiO) 4,(Me2SiO) x, and their deuterated analogs,” Appl. Spectrosc. 38(6), 822–834 (1984).
    [Crossref]
  24. J. Lapointe, M. Gagné, M.-J. Li, and R. Kashyap, “Making smart phones smarter with photonics,” Opt. Express 22(13), 15473–15483 (2014).
    [Crossref]

2019 (2)

2015 (1)

M. Wilhelm, F. Beck, and P. J. Wellmann, “Towards the growth of SiGeC epitaxial layers for the application in Si solar cells,” Energy Procedia 84, 236–241 (2015).
[Crossref]

2014 (1)

2012 (1)

J. Zhu, C. Jiang, J. Han, H. Yu, J. Wang, Z. Jia, and R. Chen, “Optical and electrical properties of nonstoichiometric a-Ge1− xCx films prepared by magnetron co-sputtering,” Appl. Surf. Sci. 258(8), 3877–3881 (2012).
[Crossref]

2007 (1)

P. Abgrall and A. Gue, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” J. Micromech. Microeng. 17(5), R15–R49 (2007).
[Crossref]

2006 (2)

H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass,” Opt. Lett. 31(23), 3495–3497 (2006).
[Crossref]

B. Potter Jr, K. Simmons-Potter, H. Chandra, G. Jamison, and W. Thomes Jr, “Photoprogrammable molecular hybrid materials for write-as-needed optical devices,” J. Non-Cryst. Solids 352(23-25), 2618–2627 (2006).
[Crossref]

2005 (3)

2002 (1)

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80(3), 359–361 (2002).
[Crossref]

2001 (1)

G. Camino, S. Lomakin, and M. Lazzari, “Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects,” Polymer 42(6), 2395–2402 (2001).
[Crossref]

2000 (1)

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

1997 (1)

K. Mochida, S.-S. Nagano, H. Kawata, M. Wakasa, and H. Hayashi, “Photodegradation of thin films of polygermanes,” J. Organomet. Chem. 542(1), 75–79 (1997).
[Crossref]

1996 (1)

1994 (1)

K. J. Kingma and R. J. Hemley, “Raman spectroscopic study of microcrystalline silica,” Am. Mineral. 79, 269–273 (1994).

1984 (1)

1971 (1)

E. Bliss, “Pulse duration dependence of laser damage mechanisms,” Opt. Quantum Electron. 3(2), 99–108 (1971).
[Crossref]

1967 (1)

J. Parker Jr, D. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Abgrall, P.

P. Abgrall and A. Gue, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” J. Micromech. Microeng. 17(5), R15–R49 (2007).
[Crossref]

Anderson, D. R.

Andreassen, E.

E. Andreassen, “Infrared and Raman spectroscopy of polypropylene,” in Polypropylene (Springer, 1999), pp. 320–328.

Arai, A. Y.

Ashkin, M.

J. Parker Jr, D. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Bae, S. C.

S. C. Bae, H. Lee, Z. Lin, and S. Granick, “Chemical imaging in a surface forces apparatus: confocal Raman spectroscopy of confined poly (dimethylsiloxane),” Langmuir 21(13), 5685–5688 (2005).
[Crossref]

Beck, F.

M. Wilhelm, F. Beck, and P. J. Wellmann, “Towards the growth of SiGeC epitaxial layers for the application in Si solar cells,” Energy Procedia 84, 236–241 (2015).
[Crossref]

Bliss, E.

E. Bliss, “Pulse duration dependence of laser damage mechanisms,” Opt. Quantum Electron. 3(2), 99–108 (1971).
[Crossref]

Boisvert, J.-S.

A. Drouin, P. Lorre, J.-S. Boisvert, S. Loranger, V. L. Iezzi, and R. Kashyap, “Spatially resolved cross-sectional refractive index profile of fs laser–written waveguides using a genetic algorithm,” Opt. Express 27(3), 2488–2498 (2019).
[Crossref]

A. Hlil, J.-S. Boisvert, P. Lorre, H. Iden, Y. García-Puente, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “NOFPHEM: Novel Optical Fibres and Photosensitive Elastomeric Materials,” in 21st Internationnal Symposium on Non-Oxide and New Optical Glasses, 2018).

J.-S. Boisvert, A. Hlil, J. Thomas, P. Lorre, I. Hassan, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “Novel functionalization of PDMS for photosensitivity,” Integrated Optics: Devices, Materials, and Technologies XXIII (2019).

Bovatsek, J.

Camino, G.

G. Camino, S. Lomakin, and M. Lazzari, “Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects,” Polymer 42(6), 2395–2402 (2001).
[Crossref]

Chandra, H.

B. Potter Jr, K. Simmons-Potter, H. Chandra, G. Jamison, and W. Thomes Jr, “Photoprogrammable molecular hybrid materials for write-as-needed optical devices,” J. Non-Cryst. Solids 352(23-25), 2618–2627 (2006).
[Crossref]

Chen, R.

J. Zhu, C. Jiang, J. Han, H. Yu, J. Wang, Z. Jia, and R. Chen, “Optical and electrical properties of nonstoichiometric a-Ge1− xCx films prepared by magnetron co-sputtering,” Appl. Surf. Sci. 258(8), 3877–3881 (2012).
[Crossref]

Davis, K. M.

Drouin, A.

Eaton, S. M.

Feldman, D.

J. Parker Jr, D. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Ferrari, A. C.

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

Gagné, M.

García-Puente, Y.

A. Hlil, J.-S. Boisvert, P. Lorre, H. Iden, Y. García-Puente, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “NOFPHEM: Novel Optical Fibres and Photosensitive Elastomeric Materials,” in 21st Internationnal Symposium on Non-Oxide and New Optical Glasses, 2018).

Granick, S.

S. C. Bae, H. Lee, Z. Lin, and S. Granick, “Chemical imaging in a surface forces apparatus: confocal Raman spectroscopy of confined poly (dimethylsiloxane),” Langmuir 21(13), 5685–5688 (2005).
[Crossref]

Gue, A.

P. Abgrall and A. Gue, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” J. Micromech. Microeng. 17(5), R15–R49 (2007).
[Crossref]

Han, J.

J. Zhu, C. Jiang, J. Han, H. Yu, J. Wang, Z. Jia, and R. Chen, “Optical and electrical properties of nonstoichiometric a-Ge1− xCx films prepared by magnetron co-sputtering,” Appl. Surf. Sci. 258(8), 3877–3881 (2012).
[Crossref]

Hassan, I.

J.-S. Boisvert, A. Hlil, J. Thomas, P. Lorre, I. Hassan, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “Novel functionalization of PDMS for photosensitivity,” Integrated Optics: Devices, Materials, and Technologies XXIII (2019).

Hayashi, H.

K. Mochida, S.-S. Nagano, H. Kawata, M. Wakasa, and H. Hayashi, “Photodegradation of thin films of polygermanes,” J. Organomet. Chem. 542(1), 75–79 (1997).
[Crossref]

Hemley, R. J.

K. J. Kingma and R. J. Hemley, “Raman spectroscopic study of microcrystalline silica,” Am. Mineral. 79, 269–273 (1994).

Herman, P. R.

Hirao, K.

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80(3), 359–361 (2002).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref]

Hlil, A.

A. Hlil, J.-S. Boisvert, P. Lorre, H. Iden, Y. García-Puente, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “NOFPHEM: Novel Optical Fibres and Photosensitive Elastomeric Materials,” in 21st Internationnal Symposium on Non-Oxide and New Optical Glasses, 2018).

J.-S. Boisvert, A. Hlil, J. Thomas, P. Lorre, I. Hassan, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “Novel functionalization of PDMS for photosensitivity,” Integrated Optics: Devices, Materials, and Technologies XXIII (2019).

Iden, H.

A. Hlil, J.-S. Boisvert, P. Lorre, H. Iden, Y. García-Puente, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “NOFPHEM: Novel Optical Fibres and Photosensitive Elastomeric Materials,” in 21st Internationnal Symposium on Non-Oxide and New Optical Glasses, 2018).

Iezzi, V. L.

Jamison, G.

B. Potter Jr, K. Simmons-Potter, H. Chandra, G. Jamison, and W. Thomes Jr, “Photoprogrammable molecular hybrid materials for write-as-needed optical devices,” J. Non-Cryst. Solids 352(23-25), 2618–2627 (2006).
[Crossref]

Jia, Z.

J. Zhu, C. Jiang, J. Han, H. Yu, J. Wang, Z. Jia, and R. Chen, “Optical and electrical properties of nonstoichiometric a-Ge1− xCx films prepared by magnetron co-sputtering,” Appl. Surf. Sci. 258(8), 3877–3881 (2012).
[Crossref]

Jiang, C.

J. Zhu, C. Jiang, J. Han, H. Yu, J. Wang, Z. Jia, and R. Chen, “Optical and electrical properties of nonstoichiometric a-Ge1− xCx films prepared by magnetron co-sputtering,” Appl. Surf. Sci. 258(8), 3877–3881 (2012).
[Crossref]

Kashyap, R.

A. Drouin, P. Lorre, J.-S. Boisvert, S. Loranger, V. L. Iezzi, and R. Kashyap, “Spatially resolved cross-sectional refractive index profile of fs laser–written waveguides using a genetic algorithm,” Opt. Express 27(3), 2488–2498 (2019).
[Crossref]

J. Lapointe, M. Gagné, M.-J. Li, and R. Kashyap, “Making smart phones smarter with photonics,” Opt. Express 22(13), 15473–15483 (2014).
[Crossref]

J. Poulin and R. Kashyap, “Novel tuneable on-fiber polymeric phase-mask for fiber and planar waveguide Bragg grating fabrication,” Opt. Express 13(12), 4414–4419 (2005).
[Crossref]

A. Hlil, J.-S. Boisvert, P. Lorre, H. Iden, Y. García-Puente, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “NOFPHEM: Novel Optical Fibres and Photosensitive Elastomeric Materials,” in 21st Internationnal Symposium on Non-Oxide and New Optical Glasses, 2018).

J.-S. Boisvert, A. Hlil, J. Thomas, P. Lorre, I. Hassan, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “Novel functionalization of PDMS for photosensitivity,” Integrated Optics: Devices, Materials, and Technologies XXIII (2019).

R. Kashyap, Fiber bragg gratings (Academic press, 2009).

Kawata, H.

K. Mochida, S.-S. Nagano, H. Kawata, M. Wakasa, and H. Hayashi, “Photodegradation of thin films of polygermanes,” J. Organomet. Chem. 542(1), 75–79 (1997).
[Crossref]

Kingma, K. J.

K. J. Kingma and R. J. Hemley, “Raman spectroscopic study of microcrystalline silica,” Am. Mineral. 79, 269–273 (1994).

Lapointe, J.

Lazzari, M.

G. Camino, S. Lomakin, and M. Lazzari, “Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects,” Polymer 42(6), 2395–2402 (2001).
[Crossref]

Ledemi, Y.

J.-S. Boisvert, A. Hlil, J. Thomas, P. Lorre, I. Hassan, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “Novel functionalization of PDMS for photosensitivity,” Integrated Optics: Devices, Materials, and Technologies XXIII (2019).

A. Hlil, J.-S. Boisvert, P. Lorre, H. Iden, Y. García-Puente, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “NOFPHEM: Novel Optical Fibres and Photosensitive Elastomeric Materials,” in 21st Internationnal Symposium on Non-Oxide and New Optical Glasses, 2018).

Lee, H.

S. C. Bae, H. Lee, Z. Lin, and S. Granick, “Chemical imaging in a surface forces apparatus: confocal Raman spectroscopy of confined poly (dimethylsiloxane),” Langmuir 21(13), 5685–5688 (2005).
[Crossref]

Li, J.

Li, M.-J.

Lin, Z.

S. C. Bae, H. Lee, Z. Lin, and S. Granick, “Chemical imaging in a surface forces apparatus: confocal Raman spectroscopy of confined poly (dimethylsiloxane),” Langmuir 21(13), 5685–5688 (2005).
[Crossref]

Lomakin, S.

G. Camino, S. Lomakin, and M. Lazzari, “Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects,” Polymer 42(6), 2395–2402 (2001).
[Crossref]

Loranger, S.

Lorre, P.

A. Drouin, P. Lorre, J.-S. Boisvert, S. Loranger, V. L. Iezzi, and R. Kashyap, “Spatially resolved cross-sectional refractive index profile of fs laser–written waveguides using a genetic algorithm,” Opt. Express 27(3), 2488–2498 (2019).
[Crossref]

J.-S. Boisvert, A. Hlil, J. Thomas, P. Lorre, I. Hassan, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “Novel functionalization of PDMS for photosensitivity,” Integrated Optics: Devices, Materials, and Technologies XXIII (2019).

A. Hlil, J.-S. Boisvert, P. Lorre, H. Iden, Y. García-Puente, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “NOFPHEM: Novel Optical Fibres and Photosensitive Elastomeric Materials,” in 21st Internationnal Symposium on Non-Oxide and New Optical Glasses, 2018).

Messaddeq, Y.

A. Hlil, J.-S. Boisvert, P. Lorre, H. Iden, Y. García-Puente, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “NOFPHEM: Novel Optical Fibres and Photosensitive Elastomeric Materials,” in 21st Internationnal Symposium on Non-Oxide and New Optical Glasses, 2018).

J.-S. Boisvert, A. Hlil, J. Thomas, P. Lorre, I. Hassan, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “Novel functionalization of PDMS for photosensitivity,” Integrated Optics: Devices, Materials, and Technologies XXIII (2019).

Miura, K.

Mochida, K.

K. Mochida, S.-S. Nagano, H. Kawata, M. Wakasa, and H. Hayashi, “Photodegradation of thin films of polygermanes,” J. Organomet. Chem. 542(1), 75–79 (1997).
[Crossref]

Moser, C.

Nagano, S.-S.

K. Mochida, S.-S. Nagano, H. Kawata, M. Wakasa, and H. Hayashi, “Photodegradation of thin films of polygermanes,” J. Organomet. Chem. 542(1), 75–79 (1997).
[Crossref]

Panusa, G.

Parker Jr, J.

J. Parker Jr, D. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Potter Jr, B.

B. Potter Jr, K. Simmons-Potter, H. Chandra, G. Jamison, and W. Thomes Jr, “Photoprogrammable molecular hybrid materials for write-as-needed optical devices,” J. Non-Cryst. Solids 352(23-25), 2618–2627 (2006).
[Crossref]

Poulin, J.

Psaltis, D.

Pu, Y.

Qiu, J.

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80(3), 359–361 (2002).
[Crossref]

Robertson, J.

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

Shah, L.

Shen, Y.

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80(3), 359–361 (2002).
[Crossref]

Si, J.

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80(3), 359–361 (2002).
[Crossref]

Simmons-Potter, K.

B. Potter Jr, K. Simmons-Potter, H. Chandra, G. Jamison, and W. Thomes Jr, “Photoprogrammable molecular hybrid materials for write-as-needed optical devices,” J. Non-Cryst. Solids 352(23-25), 2618–2627 (2006).
[Crossref]

Smith, A. L.

Sugimoto, N.

Thomas, J.

J.-S. Boisvert, A. Hlil, J. Thomas, P. Lorre, I. Hassan, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “Novel functionalization of PDMS for photosensitivity,” Integrated Optics: Devices, Materials, and Technologies XXIII (2019).

Thomes Jr, W.

B. Potter Jr, K. Simmons-Potter, H. Chandra, G. Jamison, and W. Thomes Jr, “Photoprogrammable molecular hybrid materials for write-as-needed optical devices,” J. Non-Cryst. Solids 352(23-25), 2618–2627 (2006).
[Crossref]

Wakasa, M.

K. Mochida, S.-S. Nagano, H. Kawata, M. Wakasa, and H. Hayashi, “Photodegradation of thin films of polygermanes,” J. Organomet. Chem. 542(1), 75–79 (1997).
[Crossref]

Wang, J.

G. Panusa, Y. Pu, J. Wang, C. Moser, and D. Psaltis, “Photoinitiator-free multi-photon fabrication of compact optical waveguides in polydimethylsiloxane,” Opt. Mater. Express 9(1), 128–138 (2019).
[Crossref]

J. Zhu, C. Jiang, J. Han, H. Yu, J. Wang, Z. Jia, and R. Chen, “Optical and electrical properties of nonstoichiometric a-Ge1− xCx films prepared by magnetron co-sputtering,” Appl. Surf. Sci. 258(8), 3877–3881 (2012).
[Crossref]

Wellmann, P. J.

M. Wilhelm, F. Beck, and P. J. Wellmann, “Towards the growth of SiGeC epitaxial layers for the application in Si solar cells,” Energy Procedia 84, 236–241 (2015).
[Crossref]

Wilhelm, M.

M. Wilhelm, F. Beck, and P. J. Wellmann, “Towards the growth of SiGeC epitaxial layers for the application in Si solar cells,” Energy Procedia 84, 236–241 (2015).
[Crossref]

Yoshino, F.

Yu, H.

J. Zhu, C. Jiang, J. Han, H. Yu, J. Wang, Z. Jia, and R. Chen, “Optical and electrical properties of nonstoichiometric a-Ge1− xCx films prepared by magnetron co-sputtering,” Appl. Surf. Sci. 258(8), 3877–3881 (2012).
[Crossref]

Zhai, J.

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80(3), 359–361 (2002).
[Crossref]

Zhang, H.

Zhu, J.

J. Zhu, C. Jiang, J. Han, H. Yu, J. Wang, Z. Jia, and R. Chen, “Optical and electrical properties of nonstoichiometric a-Ge1− xCx films prepared by magnetron co-sputtering,” Appl. Surf. Sci. 258(8), 3877–3881 (2012).
[Crossref]

Am. Mineral. (1)

K. J. Kingma and R. J. Hemley, “Raman spectroscopic study of microcrystalline silica,” Am. Mineral. 79, 269–273 (1994).

Appl. Phys. Lett. (1)

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80(3), 359–361 (2002).
[Crossref]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

J. Zhu, C. Jiang, J. Han, H. Yu, J. Wang, Z. Jia, and R. Chen, “Optical and electrical properties of nonstoichiometric a-Ge1− xCx films prepared by magnetron co-sputtering,” Appl. Surf. Sci. 258(8), 3877–3881 (2012).
[Crossref]

Energy Procedia (1)

M. Wilhelm, F. Beck, and P. J. Wellmann, “Towards the growth of SiGeC epitaxial layers for the application in Si solar cells,” Energy Procedia 84, 236–241 (2015).
[Crossref]

J. Micromech. Microeng. (1)

P. Abgrall and A. Gue, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” J. Micromech. Microeng. 17(5), R15–R49 (2007).
[Crossref]

J. Non-Cryst. Solids (1)

B. Potter Jr, K. Simmons-Potter, H. Chandra, G. Jamison, and W. Thomes Jr, “Photoprogrammable molecular hybrid materials for write-as-needed optical devices,” J. Non-Cryst. Solids 352(23-25), 2618–2627 (2006).
[Crossref]

J. Organomet. Chem. (1)

K. Mochida, S.-S. Nagano, H. Kawata, M. Wakasa, and H. Hayashi, “Photodegradation of thin films of polygermanes,” J. Organomet. Chem. 542(1), 75–79 (1997).
[Crossref]

Langmuir (1)

S. C. Bae, H. Lee, Z. Lin, and S. Granick, “Chemical imaging in a surface forces apparatus: confocal Raman spectroscopy of confined poly (dimethylsiloxane),” Langmuir 21(13), 5685–5688 (2005).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

E. Bliss, “Pulse duration dependence of laser damage mechanisms,” Opt. Quantum Electron. 3(2), 99–108 (1971).
[Crossref]

Phys. Rev. (1)

J. Parker Jr, D. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Phys. Rev. B (1)

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

Polymer (1)

G. Camino, S. Lomakin, and M. Lazzari, “Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects,” Polymer 42(6), 2395–2402 (2001).
[Crossref]

Other (4)

E. Andreassen, “Infrared and Raman spectroscopy of polypropylene,” in Polypropylene (Springer, 1999), pp. 320–328.

A. Hlil, J.-S. Boisvert, P. Lorre, H. Iden, Y. García-Puente, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “NOFPHEM: Novel Optical Fibres and Photosensitive Elastomeric Materials,” in 21st Internationnal Symposium on Non-Oxide and New Optical Glasses, 2018).

J.-S. Boisvert, A. Hlil, J. Thomas, P. Lorre, I. Hassan, Y. Ledemi, Y. Messaddeq, and R. Kashyap, “Novel functionalization of PDMS for photosensitivity,” Integrated Optics: Devices, Materials, and Technologies XXIII (2019).

R. Kashyap, Fiber bragg gratings (Academic press, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. DSC heating thermograms of pristine PDMS and Ge-doped PDMS in comparison to Soda-lime and Gorilla glasses. To erase thermal history a 2nd heating ramp (10 K/min) was undertaken after a cooling ramp.
Fig. 2.
Fig. 2. Thermogravimetric analysis of pristine PDMS and Ge-doped PDMS realize under nitrogen at a temperature ramp of 10οC per min. The 1% weight loss limit which is the temperature where material degradation starts to occur, is reached at a temperature of 265 οC.
Fig. 3.
Fig. 3. Transmission spectrum of pristine and unexposed Ge-doped PDMS including both writing wavelengths (515 and 1030 nm) used for fs laser writing.
Fig. 4.
Fig. 4. Evolution of the refractive index depending on the number of passes for pristine and Ge-loaded PDMS. Burnt areas, characteristic by their black appearance indicating decomposition of the polymer chain through oxidation process to carbon-carbon and silicon-oxygen-carbon bonds are observed after 34 passes. Top view [a-1), b-1)] and white light transmission side view [a-2), b-2)] of a waveguide written at 34 and 36 showing the profile of the waveguide.
Fig. 5.
Fig. 5. Raman spectrum at 633 nm of pristine (bleu), unexposed (orange) and exposed PDMS (red), and a table of the intensity ratio change for each of the peaks between the unexposed and exposed PDMS. 4 new peaks are observed in the spectrum by adding the Ge derivative compound.
Fig. 6.
Fig. 6. Waveguide written inside the PDMS. a) View under the microscope showing scattering from the waveguide. b) The position of the waveguide inside the PDMS layers. c) and d) shows two different modes supported by this waveguide. e) The refractive index profile of the waveguide. f) The light was butt coupled using an SMF-28 fiber into a 4 cm long waveguide sample.
Fig. 7.
Fig. 7. Fs written grating in the bulk PDMS. a) Scanning electron microscopy (SEM) showing the transverse view of the 2 µm pitch grating. The transverse view is visible in the SEM because of the formation of a relief grating at the broken surface. The reasons for the formation of this relief grating is still under investigation but is presumably due to the conformational changes in the molecular structure induced by the fs laser. b) Diffraction of white light by a 3 µm and 4 µm pitch grating, respectively.
Fig. 8.
Fig. 8. a) Diffraction angle and efficiency of a grating under stretching condition for the first order. b) Diffraction orders. c) Diffraction efficiency of the orders at higher strains on the RHS axis.
Fig. 9.
Fig. 9. Angular position of the first diffraction order before and after elongation of 20 cycles each in steps of 10% (the dots at the end of the stretch shows the scatter in the data for the different repeated stretch cycles). Mean value (µ), standard deviation (std) and p value of an ANOVA test between the 10% strain population and the others one, are presented on the table for this 1.5 µm pitch grating. One can observe that the angle of diffraction after stretching does not evolve linearly with the strain. This is due to the fact that the grating is inscribed inside the material and the first order will undergo a refraction at the PDMS-air interface resulting in this behavior.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q = Δ T R