Abstract

The compression of extended, coded sequences allows for laser ranging measurements with low peak power levels. Previous realizations of this approach were restricted by additive noise of direct, incoherent detection. In this work we bring together pulse sequence coding and optical coherent detection to achieve very high sensitivity. Collected sequences with an overall energy equivalent to only 800 photons are successfully compressed. The observed sensitivity agrees with analytic predictions. Compared with incoherent detection, measurement durations are reduced by four orders of magnitude. The protocol is suitable for laser ranging over tens of kilometers, depending on atmospheric conditions.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hecht, “Lidar for self-driving Cars,” Opt. Photonics News 29(1), 26–33 (2018).
    [Crossref]
  2. B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
    [Crossref]
  3. F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic review of perception system and simulators for autonomous vehicles research,” Sensors 19(3), 648 (2019).
    [Crossref]
  4. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15(13), 746–748 (1990).
    [Crossref]
  5. D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
    [Crossref]
  6. A. Hauchecorne and M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7(8), 565–568 (1980).
    [Crossref]
  7. J. J. Degnan, “Millimeter accuracy satellite laser ranging: a review,” Contributions of space geodesy to Geodyn. Technol. 25, 133–162 (1993).
    [Crossref]
  8. D. Arnold, O. Montenbruck, S. Hackel, and K. Sośnica, “Satellite laser ranging to low Earth orbiters: orbit and network validation,” J. Geod. 93(11), 2315–2334 (2019).
    [Crossref]
  9. J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265(5171), 482–490 (1994).
    [Crossref]
  10. W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [Invited],” Opt. Express 27(3), 3642–3663 (2019).
    [Crossref]
  11. Y. Zhang, Y. Ling, K. Zhang, C. Gentry, D. Sadighi, G. Whaley, J. Colosimo, P. Suni, and S. Ben Yoo, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Express 27(3), 1929–1940 (2019).
    [Crossref]
  12. C. Poulton, A. Yaacobi, D. Cole, M. Byrd, M. Raval, D. Vermeulen, and M. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
    [Crossref]
  13. S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. Jimenez Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lipson, “512-element actively steered silicon phased array for low-power LIDAR,” 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2018, pp. 1–2.
  14. L. Cohen, E. S. Matekole, Y. Sher, I. Istrati, H. S. Eisenberg, and J. P. Dowling, “Thresholded quantum LIDAR: exploiting photon-number-resolving detection,” Phys. Rev. Lett. 123(20), 203601 (2019).
    [Crossref]
  15. A. Pawlikowska, A. Halimi, R. Lamb, and G. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
    [Crossref]
  16. R. Ula, Y. Noguchi, and K. Iiyama, “Three-dimensional object profiling using highly accurate FMCW optical ranging system,” J. Lightwave Technol. 37(15), 3826–3833 (2019).
    [Crossref]
  17. J. Pastor-Graells, L. Cortés, M. Fernández-Ruiz, H. Martins, J. Azaña, S. Martin-Lopez, and M. Gonzalez-Herraez, “SNR enhancement in high-resolution phase-sensitive OTDR systems using chirped pulse amplification concepts,” Opt. Lett. 42(9), 1728–1731 (2017).
    [Crossref]
  18. D. Arbel and A. Eyal, “Dynamic optical frequency domain reflectometry,” Opt. Express 22(8), 8823–8830 (2014).
    [Crossref]
  19. P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
    [Crossref]
  20. M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
    [Crossref]
  21. W. Zou, S. Yang, X. Long, and J. Chen, “Optical pulse compression reflectometry: proposal and proof-of-concept experiment,” Opt. Express 23(1), 512–522 (2015).
    [Crossref]
  22. J. Clement, C. Schnébelin, H. G. de Chatellus, and C. R. Fernández-Pousa, “Laser ranging using coherent pulse compression with frequency shifting loops,” Opt. Express 27(9), 12000–12010 (2019).
    [Crossref]
  23. N. Levanon and E. Mozeson, Radar Signals (John Wiley & Sons, 2004).
  24. J. J. Mompó, L. Shiloh, N. Arbel, N. Levanon, A. Loayssa, and A. Eyal, “Distributed dynamic strain sensing via perfect periodic coherent codes and a polarization diversity receiver,” J. Lightwave Technol. 37(18), 4597–4602 (2019).
    [Crossref]
  25. Z. Wang, B. Zhang, J. Xiong, Y. Fu, S. Lin, J. Jiang, Y. Chen, Y. Wu, Q. Meng, and Y. Rao, “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet Things J. 6(4), 6117–6124 (2019).
    [Crossref]
  26. N. Levanon, “Noncoherent pulse compression,” IEEE Trans. Aerosp. Electron. Syst. 42(2), 756–765 (2006).
    [Crossref]
  27. N. Levanon, I. Cohen, N. Arbel, and A. Zadok, “Non-coherent pulse compression-aperiodic and periodic waveforms,” IET Radar Sonar Navig. 10(1), 216–224 (2016).
    [Crossref]
  28. N. Arbel, L. Hirschbrand, S. Weiss, N. Levanon, and A. Zadok, “Continuously operating laser range finder based on incoherent pulse compression: noise analysis and experiment,” IEEE Photonics J. 8(2), 1–11 (2016).
    [Crossref]
  29. I. Kaminow, T. Li, and A. E. Willner, Optical fiber telecommunications VB: systems and networks (Elsevier, 2008).
  30. J. W. Armstrong, F. B. Estabrook, and M. Tinto, “Time-delay interferometry for space-based gravitational wave searches,” Astrophys. J. 527(2), 814–826 (1999).
    [Crossref]
  31. K. Danzmann, “LISA - an ESA cornerstone mission for a gravitational wave observatory,” Class. Quantum Grav. 14(6), 1399–1404 (1997).
    [Crossref]
  32. L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions,” J. Lightwave Technol. 33(17), 3660–3671 (2015).
    [Crossref]
  33. H. Iida, Y. Koshikiya, F. Ito, and K. Tanaka, “High-sensitivity coherent optical time domain reflectometry employing frequency-division multiplexing,” J. Lightwave Technol. 30(8), 1121–1126 (2012).
    [Crossref]
  34. Y. Chen, K. M. Birnbaum, and H. Hemmati, “Active laser ranging over planetary distances with millimeter accuracy,” Appl. Phys. Lett. 102(24), 241107 (2013).
    [Crossref]
  35. R. Goldman, A. Agmon, and M. Nazarathy, “Direct detection and coherent optical time-domain reflectometry with Golay complementary codes,” J. Lightwave Technol. 31(13), 2207–2222 (2013).
    [Crossref]
  36. J. Yang, B. Zhao, and B. Liu, “Coherent pulse-compression lidar based on 90-degree optical hybrid,” Sensors 19(20), 4570 (2019).
    [Crossref]
  37. K. Shemer, G. Bashan, H. H. Diamandi, Y. Lodnon, A. Charny, T. Raanan, Y. Israelashvili, I. Cohen, N. Levanon, and A. Zadok, “Sequence-coded coherent laser range-finder with hundreds of photons sensitivity,” in Asia Communications and Photonics Conference (ACP), Chengdu, ChinaNov. 2019. OSA Technical Digest (Optical Society of America, 2019).
  38. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).
    [Crossref]
  39. D. Chen, Q. Liu, X. Fan, and Z. He, “Distributed fiber-optic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio,” J. Lightwave Technol. 35(10), 2037–2043 (2017).
    [Crossref]
  40. H. Gabai and A. Eyal, “On the sensitivity of distributed acoustic sensing,” Opt. Lett. 41(24), 5648–5651 (2016).
    [Crossref]
  41. M. R. Fernández-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Lightwave Technol. 36(23), 5690–5696 (2018).
    [Crossref]
  42. A. Bergman, T. Langer, and M. Tur, “Coding-enhanced ultrafast and distributed Brillouin dynamic gratings sensing using coherent detection,” J. Lightwave Technol. 34(24), 5593–5600 (2016).
    [Crossref]
  43. A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, and A. Puerta-Notario, “A unifying statistical model for atmospheric optical scintillation,” Chapter 8, Numerical simulations of physical and engineering processes, J. Awrejcewicz, ed. (InTech, 2011).

2019 (10)

F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic review of perception system and simulators for autonomous vehicles research,” Sensors 19(3), 648 (2019).
[Crossref]

D. Arnold, O. Montenbruck, S. Hackel, and K. Sośnica, “Satellite laser ranging to low Earth orbiters: orbit and network validation,” J. Geod. 93(11), 2315–2334 (2019).
[Crossref]

W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [Invited],” Opt. Express 27(3), 3642–3663 (2019).
[Crossref]

Y. Zhang, Y. Ling, K. Zhang, C. Gentry, D. Sadighi, G. Whaley, J. Colosimo, P. Suni, and S. Ben Yoo, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Express 27(3), 1929–1940 (2019).
[Crossref]

L. Cohen, E. S. Matekole, Y. Sher, I. Istrati, H. S. Eisenberg, and J. P. Dowling, “Thresholded quantum LIDAR: exploiting photon-number-resolving detection,” Phys. Rev. Lett. 123(20), 203601 (2019).
[Crossref]

R. Ula, Y. Noguchi, and K. Iiyama, “Three-dimensional object profiling using highly accurate FMCW optical ranging system,” J. Lightwave Technol. 37(15), 3826–3833 (2019).
[Crossref]

J. Clement, C. Schnébelin, H. G. de Chatellus, and C. R. Fernández-Pousa, “Laser ranging using coherent pulse compression with frequency shifting loops,” Opt. Express 27(9), 12000–12010 (2019).
[Crossref]

J. J. Mompó, L. Shiloh, N. Arbel, N. Levanon, A. Loayssa, and A. Eyal, “Distributed dynamic strain sensing via perfect periodic coherent codes and a polarization diversity receiver,” J. Lightwave Technol. 37(18), 4597–4602 (2019).
[Crossref]

Z. Wang, B. Zhang, J. Xiong, Y. Fu, S. Lin, J. Jiang, Y. Chen, Y. Wu, Q. Meng, and Y. Rao, “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet Things J. 6(4), 6117–6124 (2019).
[Crossref]

J. Yang, B. Zhao, and B. Liu, “Coherent pulse-compression lidar based on 90-degree optical hybrid,” Sensors 19(20), 4570 (2019).
[Crossref]

2018 (4)

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
[Crossref]

J. Hecht, “Lidar for self-driving Cars,” Opt. Photonics News 29(1), 26–33 (2018).
[Crossref]

M. R. Fernández-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Lightwave Technol. 36(23), 5690–5696 (2018).
[Crossref]

2017 (4)

2016 (4)

H. Gabai and A. Eyal, “On the sensitivity of distributed acoustic sensing,” Opt. Lett. 41(24), 5648–5651 (2016).
[Crossref]

N. Levanon, I. Cohen, N. Arbel, and A. Zadok, “Non-coherent pulse compression-aperiodic and periodic waveforms,” IET Radar Sonar Navig. 10(1), 216–224 (2016).
[Crossref]

N. Arbel, L. Hirschbrand, S. Weiss, N. Levanon, and A. Zadok, “Continuously operating laser range finder based on incoherent pulse compression: noise analysis and experiment,” IEEE Photonics J. 8(2), 1–11 (2016).
[Crossref]

A. Bergman, T. Langer, and M. Tur, “Coding-enhanced ultrafast and distributed Brillouin dynamic gratings sensing using coherent detection,” J. Lightwave Technol. 34(24), 5593–5600 (2016).
[Crossref]

2015 (2)

2014 (1)

2013 (2)

Y. Chen, K. M. Birnbaum, and H. Hemmati, “Active laser ranging over planetary distances with millimeter accuracy,” Appl. Phys. Lett. 102(24), 241107 (2013).
[Crossref]

R. Goldman, A. Agmon, and M. Nazarathy, “Direct detection and coherent optical time-domain reflectometry with Golay complementary codes,” J. Lightwave Technol. 31(13), 2207–2222 (2013).
[Crossref]

2012 (1)

2010 (3)

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).
[Crossref]

B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
[Crossref]

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

2006 (1)

N. Levanon, “Noncoherent pulse compression,” IEEE Trans. Aerosp. Electron. Syst. 42(2), 756–765 (2006).
[Crossref]

1999 (1)

J. W. Armstrong, F. B. Estabrook, and M. Tinto, “Time-delay interferometry for space-based gravitational wave searches,” Astrophys. J. 527(2), 814–826 (1999).
[Crossref]

1997 (1)

K. Danzmann, “LISA - an ESA cornerstone mission for a gravitational wave observatory,” Class. Quantum Grav. 14(6), 1399–1404 (1997).
[Crossref]

1994 (1)

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

1993 (1)

J. J. Degnan, “Millimeter accuracy satellite laser ranging: a review,” Contributions of space geodesy to Geodyn. Technol. 25, 133–162 (1993).
[Crossref]

1990 (1)

1980 (1)

A. Hauchecorne and M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7(8), 565–568 (1980).
[Crossref]

Ackerman, S. A.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Agmon, A.

Ansmann, A.

Arbel, D.

Arbel, N.

J. J. Mompó, L. Shiloh, N. Arbel, N. Levanon, A. Loayssa, and A. Eyal, “Distributed dynamic strain sensing via perfect periodic coherent codes and a polarization diversity receiver,” J. Lightwave Technol. 37(18), 4597–4602 (2019).
[Crossref]

N. Arbel, L. Hirschbrand, S. Weiss, N. Levanon, and A. Zadok, “Continuously operating laser range finder based on incoherent pulse compression: noise analysis and experiment,” IEEE Photonics J. 8(2), 1–11 (2016).
[Crossref]

N. Levanon, I. Cohen, N. Arbel, and A. Zadok, “Non-coherent pulse compression-aperiodic and periodic waveforms,” IET Radar Sonar Navig. 10(1), 216–224 (2016).
[Crossref]

Armstrong, J. W.

J. W. Armstrong, F. B. Estabrook, and M. Tinto, “Time-delay interferometry for space-based gravitational wave searches,” Astrophys. J. 527(2), 814–826 (1999).
[Crossref]

Arnold, D.

D. Arnold, O. Montenbruck, S. Hackel, and K. Sośnica, “Satellite laser ranging to low Earth orbiters: orbit and network validation,” J. Geod. 93(11), 2315–2334 (2019).
[Crossref]

Azaña, J.

Bao, X.

Bashan, G.

K. Shemer, G. Bashan, H. H. Diamandi, Y. Lodnon, A. Charny, T. Raanan, Y. Israelashvili, I. Cohen, N. Levanon, and A. Zadok, “Sequence-coded coherent laser range-finder with hundreds of photons sensitivity,” in Asia Communications and Photonics Conference (ACP), Chengdu, ChinaNov. 2019. OSA Technical Digest (Optical Society of America, 2019).

Ben Yoo, S.

Bender, P. L.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Bergman, A.

Birnbaum, K. M.

Y. Chen, K. M. Birnbaum, and H. Hemmati, “Active laser ranging over planetary distances with millimeter accuracy,” Appl. Phys. Lett. 102(24), 241107 (2013).
[Crossref]

Bisyarin, M. A.

Bowers, J.

Buller, G.

Byrd, M.

Chang, Y.-C.

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. Jimenez Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lipson, “512-element actively steered silicon phased array for low-power LIDAR,” 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2018, pp. 1–2.

Chanin, M. L.

A. Hauchecorne and M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7(8), 565–568 (1980).
[Crossref]

Charlson, R. J.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Charny, A.

K. Shemer, G. Bashan, H. H. Diamandi, Y. Lodnon, A. Charny, T. Raanan, Y. Israelashvili, I. Cohen, N. Levanon, and A. Zadok, “Sequence-coded coherent laser range-finder with hundreds of photons sensitivity,” in Asia Communications and Photonics Conference (ACP), Chengdu, ChinaNov. 2019. OSA Technical Digest (Optical Society of America, 2019).

Chen, D.

Chen, J.

Chen, L.

Chen, Y.

Z. Wang, B. Zhang, J. Xiong, Y. Fu, S. Lin, J. Jiang, Y. Chen, Y. Wu, Q. Meng, and Y. Rao, “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet Things J. 6(4), 6117–6124 (2019).
[Crossref]

Y. Chen, K. M. Birnbaum, and H. Hemmati, “Active laser ranging over planetary distances with millimeter accuracy,” Appl. Phys. Lett. 102(24), 241107 (2013).
[Crossref]

Clement, J.

Coakley, J. A.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Cohen, I.

N. Levanon, I. Cohen, N. Arbel, and A. Zadok, “Non-coherent pulse compression-aperiodic and periodic waveforms,” IET Radar Sonar Navig. 10(1), 216–224 (2016).
[Crossref]

K. Shemer, G. Bashan, H. H. Diamandi, Y. Lodnon, A. Charny, T. Raanan, Y. Israelashvili, I. Cohen, N. Levanon, and A. Zadok, “Sequence-coded coherent laser range-finder with hundreds of photons sensitivity,” in Asia Communications and Photonics Conference (ACP), Chengdu, ChinaNov. 2019. OSA Technical Digest (Optical Society of America, 2019).

Cohen, L.

L. Cohen, E. S. Matekole, Y. Sher, I. Istrati, H. S. Eisenberg, and J. P. Dowling, “Thresholded quantum LIDAR: exploiting photon-number-resolving detection,” Phys. Rev. Lett. 123(20), 203601 (2019).
[Crossref]

Colarco, P. R.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Cole, D.

Colosimo, J.

Cortés, L.

Costa, L.

Danzmann, K.

K. Danzmann, “LISA - an ESA cornerstone mission for a gravitational wave observatory,” Class. Quantum Grav. 14(6), 1399–1404 (1997).
[Crossref]

Davenport, M.

de Chatellus, H. G.

Degnan, J. J.

J. J. Degnan, “Millimeter accuracy satellite laser ranging: a review,” Contributions of space geodesy to Geodyn. Technol. 25, 133–162 (1993).
[Crossref]

Diamandi, H. H.

K. Shemer, G. Bashan, H. H. Diamandi, Y. Lodnon, A. Charny, T. Raanan, Y. Israelashvili, I. Cohen, N. Levanon, and A. Zadok, “Sequence-coded coherent laser range-finder with hundreds of photons sensitivity,” in Asia Communications and Photonics Conference (ACP), Chengdu, ChinaNov. 2019. OSA Technical Digest (Optical Society of America, 2019).

Dickey, J. O.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Dowling, J. P.

L. Cohen, E. S. Matekole, Y. Sher, I. Istrati, H. S. Eisenberg, and J. P. Dowling, “Thresholded quantum LIDAR: exploiting photon-number-resolving detection,” Phys. Rev. Lett. 123(20), 203601 (2019).
[Crossref]

Eisenberg, H. S.

L. Cohen, E. S. Matekole, Y. Sher, I. Istrati, H. S. Eisenberg, and J. P. Dowling, “Thresholded quantum LIDAR: exploiting photon-number-resolving detection,” Phys. Rev. Lett. 123(20), 203601 (2019).
[Crossref]

Estabrook, F. B.

J. W. Armstrong, F. B. Estabrook, and M. Tinto, “Time-delay interferometry for space-based gravitational wave searches,” Astrophys. J. 527(2), 814–826 (1999).
[Crossref]

Eyal, A.

Faller, J. E.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Fan, X.

Fernández, C.

F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic review of perception system and simulators for autonomous vehicles research,” Sensors 19(3), 648 (2019).
[Crossref]

Fernández-Pousa, C. R.

Fernández-Ruiz, M.

Fernández-Ruiz, M. R.

Flamant, P.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Freude, W.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Fu, Q.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Fu, Y.

Z. Wang, B. Zhang, J. Xiong, Y. Fu, S. Lin, J. Jiang, Y. Chen, Y. Wu, Q. Meng, and Y. Rao, “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet Things J. 6(4), 6117–6124 (2019).
[Crossref]

Gabai, H.

Ganin, D.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Garrido-Balsells, J. M.

A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, and A. Puerta-Notario, “A unifying statistical model for atmospheric optical scintillation,” Chapter 8, Numerical simulations of physical and engineering processes, J. Awrejcewicz, ed. (InTech, 2011).

Gentry, C.

Goldman, R.

Gonzalez-Herraez, M.

Hackel, S.

D. Arnold, O. Montenbruck, S. Hackel, and K. Sośnica, “Satellite laser ranging to low Earth orbiters: orbit and network validation,” J. Geod. 93(11), 2315–2334 (2019).
[Crossref]

Halimi, A.

Hartog, A. H.

Hauchecorne, A.

A. Hauchecorne and M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7(8), 565–568 (1980).
[Crossref]

He, Z.

Hecht, J.

J. Hecht, “Lidar for self-driving Cars,” Opt. Photonics News 29(1), 26–33 (2018).
[Crossref]

Hemmati, H.

Y. Chen, K. M. Birnbaum, and H. Hemmati, “Active laser ranging over planetary distances with millimeter accuracy,” Appl. Phys. Lett. 102(24), 241107 (2013).
[Crossref]

Hirschbrand, L.

N. Arbel, L. Hirschbrand, S. Weiss, N. Levanon, and A. Zadok, “Continuously operating laser range finder based on incoherent pulse compression: noise analysis and experiment,” IEEE Photonics J. 8(2), 1–11 (2016).
[Crossref]

Hoff, R. M.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Huang, J.

Iida, H.

Iiyama, K.

Israelashvili, Y.

K. Shemer, G. Bashan, H. H. Diamandi, Y. Lodnon, A. Charny, T. Raanan, Y. Israelashvili, I. Cohen, N. Levanon, and A. Zadok, “Sequence-coded coherent laser range-finder with hundreds of photons sensitivity,” in Asia Communications and Photonics Conference (ACP), Chengdu, ChinaNov. 2019. OSA Technical Digest (Optical Society of America, 2019).

Istrati, I.

L. Cohen, E. S. Matekole, Y. Sher, I. Istrati, H. S. Eisenberg, and J. P. Dowling, “Thresholded quantum LIDAR: exploiting photon-number-resolving detection,” Phys. Rev. Lett. 123(20), 203601 (2019).
[Crossref]

Ito, F.

Ji, X.

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. Jimenez Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lipson, “512-element actively steered silicon phased array for low-power LIDAR,” 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2018, pp. 1–2.

Jiang, J.

Z. Wang, B. Zhang, J. Xiong, Y. Fu, S. Lin, J. Jiang, Y. Chen, Y. Wu, Q. Meng, and Y. Rao, “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet Things J. 6(4), 6117–6124 (2019).
[Crossref]

Jimenez Gordillo, O. A.

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. Jimenez Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lipson, “512-element actively steered silicon phased array for low-power LIDAR,” 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2018, pp. 1–2.

Jurado-Navas, A.

A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, and A. Puerta-Notario, “A unifying statistical model for atmospheric optical scintillation,” Chapter 8, Numerical simulations of physical and engineering processes, J. Awrejcewicz, ed. (InTech, 2011).

Kaminow, I.

I. Kaminow, T. Li, and A. E. Willner, Optical fiber telecommunications VB: systems and networks (Elsevier, 2008).

Karpov, M.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Kippenberg, T. J.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Kittaka, C.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Komljenovic, T.

Koos, C.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Kordts, A.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Koshikiya, Y.

Kotov, O. I.

Krockenberger, J.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Kubar, T. L.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Lamb, R.

Langer, T.

Le Treut, H.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Levanon, N.

J. J. Mompó, L. Shiloh, N. Arbel, N. Levanon, A. Loayssa, and A. Eyal, “Distributed dynamic strain sensing via perfect periodic coherent codes and a polarization diversity receiver,” J. Lightwave Technol. 37(18), 4597–4602 (2019).
[Crossref]

N. Levanon, I. Cohen, N. Arbel, and A. Zadok, “Non-coherent pulse compression-aperiodic and periodic waveforms,” IET Radar Sonar Navig. 10(1), 216–224 (2016).
[Crossref]

N. Arbel, L. Hirschbrand, S. Weiss, N. Levanon, and A. Zadok, “Continuously operating laser range finder based on incoherent pulse compression: noise analysis and experiment,” IEEE Photonics J. 8(2), 1–11 (2016).
[Crossref]

N. Levanon, “Noncoherent pulse compression,” IEEE Trans. Aerosp. Electron. Syst. 42(2), 756–765 (2006).
[Crossref]

N. Levanon and E. Mozeson, Radar Signals (John Wiley & Sons, 2004).

K. Shemer, G. Bashan, H. H. Diamandi, Y. Lodnon, A. Charny, T. Raanan, Y. Israelashvili, I. Cohen, N. Levanon, and A. Zadok, “Sequence-coded coherent laser range-finder with hundreds of photons sensitivity,” in Asia Communications and Photonics Conference (ACP), Chengdu, ChinaNov. 2019. OSA Technical Digest (Optical Society of America, 2019).

Li, T.

I. Kaminow, T. Li, and A. E. Willner, Optical fiber telecommunications VB: systems and networks (Elsevier, 2008).

Lin, S.

Z. Wang, B. Zhang, J. Xiong, Y. Fu, S. Lin, J. Jiang, Y. Chen, Y. Wu, Q. Meng, and Y. Rao, “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet Things J. 6(4), 6117–6124 (2019).
[Crossref]

Ling, Y.

Liokumovich, L. B.

Lipson, M.

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. Jimenez Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lipson, “512-element actively steered silicon phased array for low-power LIDAR,” 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2018, pp. 1–2.

Liu, B.

J. Yang, B. Zhao, and B. Liu, “Coherent pulse-compression lidar based on 90-degree optical hybrid,” Sensors 19(20), 4570 (2019).
[Crossref]

Liu, Q.

Loayssa, A.

Lodnon, Y.

K. Shemer, G. Bashan, H. H. Diamandi, Y. Lodnon, A. Charny, T. Raanan, Y. Israelashvili, I. Cohen, N. Levanon, and A. Zadok, “Sequence-coded coherent laser range-finder with hundreds of photons sensitivity,” in Asia Communications and Photonics Conference (ACP), Chengdu, ChinaNov. 2019. OSA Technical Digest (Optical Society of America, 2019).

Long, X.

Lu, Y.

Marin-Palomo, P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Martin-Lopez, S.

Martins, H.

Martins, H. F.

Matekole, E. S.

L. Cohen, E. S. Matekole, Y. Sher, I. Istrati, H. S. Eisenberg, and J. P. Dowling, “Thresholded quantum LIDAR: exploiting photon-number-resolving detection,” Phys. Rev. Lett. 123(20), 203601 (2019).
[Crossref]

McCormick, M. P.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Mégie, G.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Meng, Q.

Z. Wang, B. Zhang, J. Xiong, Y. Fu, S. Lin, J. Jiang, Y. Chen, Y. Wu, Q. Meng, and Y. Rao, “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet Things J. 6(4), 6117–6124 (2019).
[Crossref]

Miller, S. A.

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. Jimenez Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lipson, “512-element actively steered silicon phased array for low-power LIDAR,” 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2018, pp. 1–2.

Mohanty, A.

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. Jimenez Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lipson, “512-element actively steered silicon phased array for low-power LIDAR,” 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2018, pp. 1–2.

Mompó, J. J.

Montenbruck, O.

D. Arnold, O. Montenbruck, S. Hackel, and K. Sośnica, “Satellite laser ranging to low Earth orbiters: orbit and network validation,” J. Geod. 93(11), 2315–2334 (2019).
[Crossref]

Mozeson, E.

N. Levanon and E. Mozeson, Radar Signals (John Wiley & Sons, 2004).

Navarro, P. J.

F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic review of perception system and simulators for autonomous vehicles research,” Sensors 19(3), 648 (2019).
[Crossref]

Nazarathy, M.

Newhall, X. X.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Noguchi, Y.

Padilla, A.

F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic review of perception system and simulators for autonomous vehicles research,” Sensors 19(3), 648 (2019).
[Crossref]

Paris, J. F.

A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, and A. Puerta-Notario, “A unifying statistical model for atmospheric optical scintillation,” Chapter 8, Numerical simulations of physical and engineering processes, J. Awrejcewicz, ed. (InTech, 2011).

Pastor-Graells, J.

Pawlikowska, A.

Pelon, J.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Pfeiffer, M. H. P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Phare, C. T.

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. Jimenez Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lipson, “512-element actively steered silicon phased array for low-power LIDAR,” 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2018, pp. 1–2.

Pintus, P.

Poole, L.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Poulton, C.

Powell, K.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Puerta-Notario, A.

A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, and A. Puerta-Notario, “A unifying statistical model for atmospheric optical scintillation,” Chapter 8, Numerical simulations of physical and engineering processes, J. Awrejcewicz, ed. (InTech, 2011).

Raanan, T.

K. Shemer, G. Bashan, H. H. Diamandi, Y. Lodnon, A. Charny, T. Raanan, Y. Israelashvili, I. Cohen, N. Levanon, and A. Zadok, “Sequence-coded coherent laser range-finder with hundreds of photons sensitivity,” in Asia Communications and Photonics Conference (ACP), Chengdu, ChinaNov. 2019. OSA Technical Digest (Optical Society of America, 2019).

Randel, S.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Rao, Y.

Z. Wang, B. Zhang, J. Xiong, Y. Fu, S. Lin, J. Jiang, Y. Chen, Y. Wu, Q. Meng, and Y. Rao, “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet Things J. 6(4), 6117–6124 (2019).
[Crossref]

Raval, M.

Ricklefs, R. L.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Riebesell, M.

Ries, J. G.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Roberts, S. P.

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. Jimenez Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lipson, “512-element actively steered silicon phased array for low-power LIDAR,” 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2018, pp. 1–2.

Rosique, F.

F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic review of perception system and simulators for autonomous vehicles research,” Sensors 19(3), 648 (2019).
[Crossref]

Sadighi, D.

Schnébelin, C.

Schwarz, B.

B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
[Crossref]

Shelus, P. J.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Shemer, K.

K. Shemer, G. Bashan, H. H. Diamandi, Y. Lodnon, A. Charny, T. Raanan, Y. Israelashvili, I. Cohen, N. Levanon, and A. Zadok, “Sequence-coded coherent laser range-finder with hundreds of photons sensitivity,” in Asia Communications and Photonics Conference (ACP), Chengdu, ChinaNov. 2019. OSA Technical Digest (Optical Society of America, 2019).

Sher, Y.

L. Cohen, E. S. Matekole, Y. Sher, I. Istrati, H. S. Eisenberg, and J. P. Dowling, “Thresholded quantum LIDAR: exploiting photon-number-resolving detection,” Phys. Rev. Lett. 123(20), 203601 (2019).
[Crossref]

Shiloh, L.

Shin, M. C.

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. Jimenez Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lipson, “512-element actively steered silicon phased array for low-power LIDAR,” 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2018, pp. 1–2.

Sosnica, K.

D. Arnold, O. Montenbruck, S. Hackel, and K. Sośnica, “Satellite laser ranging to low Earth orbiters: orbit and network validation,” J. Geod. 93(11), 2315–2334 (2019).
[Crossref]

Stern, B.

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. Jimenez Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lipson, “512-element actively steered silicon phased array for low-power LIDAR,” 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2018, pp. 1–2.

Suh, M.-G.

M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
[Crossref]

Suni, P.

Tanaka, K.

Tinto, M.

J. W. Armstrong, F. B. Estabrook, and M. Tinto, “Time-delay interferometry for space-based gravitational wave searches,” Astrophys. J. 527(2), 814–826 (1999).
[Crossref]

Torres, A.

Tran, M.

Trepte, C.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Trocha, P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Tur, M.

Ula, R.

Ushakov, N. A.

Vahala, K. J.

M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
[Crossref]

Vaughan, M. A.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Veillet, C.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Vermeulen, D.

Wang, Z.

Z. Wang, B. Zhang, J. Xiong, Y. Fu, S. Lin, J. Jiang, Y. Chen, Y. Wu, Q. Meng, and Y. Rao, “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet Things J. 6(4), 6117–6124 (2019).
[Crossref]

Watts, M.

Weimann, C.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Weiss, S.

N. Arbel, L. Hirschbrand, S. Weiss, N. Levanon, and A. Zadok, “Continuously operating laser range finder based on incoherent pulse compression: noise analysis and experiment,” IEEE Photonics J. 8(2), 1–11 (2016).
[Crossref]

Weitkamp, C.

Whaley, G.

Whipple, A. L.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Wiant, J. R.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Wielicki, B. A.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Williams, J. G.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Willner, A. E.

I. Kaminow, T. Li, and A. E. Willner, Optical fiber telecommunications VB: systems and networks (Elsevier, 2008).

Winker, D. M.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Wolf, S.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Wu, Y.

Z. Wang, B. Zhang, J. Xiong, Y. Fu, S. Lin, J. Jiang, Y. Chen, Y. Wu, Q. Meng, and Y. Rao, “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet Things J. 6(4), 6117–6124 (2019).
[Crossref]

Xie, W.

Xiong, J.

Z. Wang, B. Zhang, J. Xiong, Y. Fu, S. Lin, J. Jiang, Y. Chen, Y. Wu, Q. Meng, and Y. Rao, “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet Things J. 6(4), 6117–6124 (2019).
[Crossref]

Yaacobi, A.

Yang, J.

J. Yang, B. Zhao, and B. Liu, “Coherent pulse-compression lidar based on 90-degree optical hybrid,” Sensors 19(20), 4570 (2019).
[Crossref]

Yang, S.

Yoder, C. F.

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Zadka, M.

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. Jimenez Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lipson, “512-element actively steered silicon phased array for low-power LIDAR,” 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2018, pp. 1–2.

Zadok, A.

N. Arbel, L. Hirschbrand, S. Weiss, N. Levanon, and A. Zadok, “Continuously operating laser range finder based on incoherent pulse compression: noise analysis and experiment,” IEEE Photonics J. 8(2), 1–11 (2016).
[Crossref]

N. Levanon, I. Cohen, N. Arbel, and A. Zadok, “Non-coherent pulse compression-aperiodic and periodic waveforms,” IET Radar Sonar Navig. 10(1), 216–224 (2016).
[Crossref]

K. Shemer, G. Bashan, H. H. Diamandi, Y. Lodnon, A. Charny, T. Raanan, Y. Israelashvili, I. Cohen, N. Levanon, and A. Zadok, “Sequence-coded coherent laser range-finder with hundreds of photons sensitivity,” in Asia Communications and Photonics Conference (ACP), Chengdu, ChinaNov. 2019. OSA Technical Digest (Optical Society of America, 2019).

Zhang, B.

Z. Wang, B. Zhang, J. Xiong, Y. Fu, S. Lin, J. Jiang, Y. Chen, Y. Wu, Q. Meng, and Y. Rao, “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet Things J. 6(4), 6117–6124 (2019).
[Crossref]

Zhang, K.

Zhang, Y.

Zhao, B.

J. Yang, B. Zhao, and B. Liu, “Coherent pulse-compression lidar based on 90-degree optical hybrid,” Sensors 19(20), 4570 (2019).
[Crossref]

Zhu, T.

Zou, W.

Appl. Phys. Lett. (1)

Y. Chen, K. M. Birnbaum, and H. Hemmati, “Active laser ranging over planetary distances with millimeter accuracy,” Appl. Phys. Lett. 102(24), 241107 (2013).
[Crossref]

Astrophys. J. (1)

J. W. Armstrong, F. B. Estabrook, and M. Tinto, “Time-delay interferometry for space-based gravitational wave searches,” Astrophys. J. 527(2), 814–826 (1999).
[Crossref]

Bull. Am. Meteorol. Soc. (1)

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO mission: a global 3D view of aerosols and clouds,” Bull. Am. Meteorol. Soc. 91(9), 1211–1230 (2010).
[Crossref]

Class. Quantum Grav. (1)

K. Danzmann, “LISA - an ESA cornerstone mission for a gravitational wave observatory,” Class. Quantum Grav. 14(6), 1399–1404 (1997).
[Crossref]

Contributions of space geodesy to Geodyn. Technol. (1)

J. J. Degnan, “Millimeter accuracy satellite laser ranging: a review,” Contributions of space geodesy to Geodyn. Technol. 25, 133–162 (1993).
[Crossref]

Geophys. Res. Lett. (1)

A. Hauchecorne and M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7(8), 565–568 (1980).
[Crossref]

IEEE Internet Things J. (1)

Z. Wang, B. Zhang, J. Xiong, Y. Fu, S. Lin, J. Jiang, Y. Chen, Y. Wu, Q. Meng, and Y. Rao, “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet Things J. 6(4), 6117–6124 (2019).
[Crossref]

IEEE Photonics J. (1)

N. Arbel, L. Hirschbrand, S. Weiss, N. Levanon, and A. Zadok, “Continuously operating laser range finder based on incoherent pulse compression: noise analysis and experiment,” IEEE Photonics J. 8(2), 1–11 (2016).
[Crossref]

IEEE Trans. Aerosp. Electron. Syst. (1)

N. Levanon, “Noncoherent pulse compression,” IEEE Trans. Aerosp. Electron. Syst. 42(2), 756–765 (2006).
[Crossref]

IET Radar Sonar Navig. (1)

N. Levanon, I. Cohen, N. Arbel, and A. Zadok, “Non-coherent pulse compression-aperiodic and periodic waveforms,” IET Radar Sonar Navig. 10(1), 216–224 (2016).
[Crossref]

J. Geod. (1)

D. Arnold, O. Montenbruck, S. Hackel, and K. Sośnica, “Satellite laser ranging to low Earth orbiters: orbit and network validation,” J. Geod. 93(11), 2315–2334 (2019).
[Crossref]

J. Lightwave Technol. (9)

L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions,” J. Lightwave Technol. 33(17), 3660–3671 (2015).
[Crossref]

A. Bergman, T. Langer, and M. Tur, “Coding-enhanced ultrafast and distributed Brillouin dynamic gratings sensing using coherent detection,” J. Lightwave Technol. 34(24), 5593–5600 (2016).
[Crossref]

D. Chen, Q. Liu, X. Fan, and Z. He, “Distributed fiber-optic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio,” J. Lightwave Technol. 35(10), 2037–2043 (2017).
[Crossref]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).
[Crossref]

H. Iida, Y. Koshikiya, F. Ito, and K. Tanaka, “High-sensitivity coherent optical time domain reflectometry employing frequency-division multiplexing,” J. Lightwave Technol. 30(8), 1121–1126 (2012).
[Crossref]

R. Goldman, A. Agmon, and M. Nazarathy, “Direct detection and coherent optical time-domain reflectometry with Golay complementary codes,” J. Lightwave Technol. 31(13), 2207–2222 (2013).
[Crossref]

M. R. Fernández-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Lightwave Technol. 36(23), 5690–5696 (2018).
[Crossref]

R. Ula, Y. Noguchi, and K. Iiyama, “Three-dimensional object profiling using highly accurate FMCW optical ranging system,” J. Lightwave Technol. 37(15), 3826–3833 (2019).
[Crossref]

J. J. Mompó, L. Shiloh, N. Arbel, N. Levanon, A. Loayssa, and A. Eyal, “Distributed dynamic strain sensing via perfect periodic coherent codes and a polarization diversity receiver,” J. Lightwave Technol. 37(18), 4597–4602 (2019).
[Crossref]

Nat. Photonics (1)

B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Opt. Photonics News (1)

J. Hecht, “Lidar for self-driving Cars,” Opt. Photonics News 29(1), 26–33 (2018).
[Crossref]

Phys. Rev. Lett. (1)

L. Cohen, E. S. Matekole, Y. Sher, I. Istrati, H. S. Eisenberg, and J. P. Dowling, “Thresholded quantum LIDAR: exploiting photon-number-resolving detection,” Phys. Rev. Lett. 123(20), 203601 (2019).
[Crossref]

Science (3)

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
[Crossref]

J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265(5171), 482–490 (1994).
[Crossref]

Sensors (2)

F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic review of perception system and simulators for autonomous vehicles research,” Sensors 19(3), 648 (2019).
[Crossref]

J. Yang, B. Zhao, and B. Liu, “Coherent pulse-compression lidar based on 90-degree optical hybrid,” Sensors 19(20), 4570 (2019).
[Crossref]

Other (5)

K. Shemer, G. Bashan, H. H. Diamandi, Y. Lodnon, A. Charny, T. Raanan, Y. Israelashvili, I. Cohen, N. Levanon, and A. Zadok, “Sequence-coded coherent laser range-finder with hundreds of photons sensitivity,” in Asia Communications and Photonics Conference (ACP), Chengdu, ChinaNov. 2019. OSA Technical Digest (Optical Society of America, 2019).

A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, and A. Puerta-Notario, “A unifying statistical model for atmospheric optical scintillation,” Chapter 8, Numerical simulations of physical and engineering processes, J. Awrejcewicz, ed. (InTech, 2011).

I. Kaminow, T. Li, and A. E. Willner, Optical fiber telecommunications VB: systems and networks (Elsevier, 2008).

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. Jimenez Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lipson, “512-element actively steered silicon phased array for low-power LIDAR,” 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2018, pp. 1–2.

N. Levanon and E. Mozeson, Radar Signals (John Wiley & Sons, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Illustration of the setup used in a proof-of-concept experiment of the compression of coherently-detected coded sequences [37].
Fig. 2.
Fig. 2. An experimental signal trace following coherent detection and post-processing compression through cross-correlation with a reference sequence. The average optical power of the collected signal was -92 dBm, and the acquisition duration was 400 µs. The main peak represents the propagation delay between transmitter and receiver (positioned arbitrarily at z = 0). The power ratio between the peak and the highest noise-induced sidelobe (PSLR) is 14 dB.
Fig. 3.
Fig. 3. Calculated power ratios between the compressed signal peak and the highest noise-induced sidelobe (PSLR), as a function of the signal power. Analytic predictions are shown in dashed lines. Experimental data is presented in solid lines and asterisk markers. Colors represent the acquisition duration (see legend). The threshold performance condition of PSLR = 10 dB is shown in a horizontal red dashed line.
Fig. 4.
Fig. 4. Experimental signal traces following coherent detection and post-processing compression through cross-correlation with a reference sequence. The average signal power in all measurements was -60 dBm, and the acquisition duration was 400 µs. The waveforms were propagated over four different lengths of fiber (see legend). The positions of the compressed peaks correctly identify length changes.
Fig. 5.
Fig. 5. Experimental signal traces following coherent detection and post-processing compression through cross-correlation with a reference sequence. The average optical power in all measurements was -36 dBm, and the acquisition duration was 400 µs. The signals were split in two fiber paths of variable length imbalance and recombined prior to detection. The paths lengths difference was 0 cm (a), 10 cm (b), 47 cm (c), and 66 (d). The two targets are clearly resolved in panels (c) and (d), but only barely resolved in panel (b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P ( t ) = P 0 n a n rect [ ( t n T ) / ( t n T ) T T ]
S N R C o r r = M N η P S 2 h ν Δ f cos 2 θ cos 2 φ η P S M N T 2 h ν cos 2 θ cos 2 φ = η P S T M e a s 2 h ν cos 2 θ cos 2 φ = η 2 N P h o t cos 2 θ cos 2 φ