Abstract

Free-space optical time transfer that features high precision will act as a crucial role in near-future outdoor timing service and ground-to-satellite/inter-satellite clock networks. Here we propose a free-space optical two-way time transfer method using flexible binary offset carrier modulation. The alternative method could yield a comparative precision compared to optical binary phase-shift keyed modulation. For verification, a time transfer experiment with our home-built system between two sites separated by a 30-m free-space path outside the laboratory was conducted. Over a 15 h period, the time deviation is 2.3 ps at 1-s averaging time, and averages down to 1.1 ps until ∼30 s. The fractional frequency instability exhibits 4.0×10−12 at a gate time of 1 s, and approaches to 1.3×10−15 at 10000 s.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical Two-Way Time and Frequency Transfer over Free Space,” Nat. Photonics 7(6), 434–438 (2013).
    [Crossref]
  2. J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
    [Crossref]
  3. H. Bergeron, L. C. Sinclair, W. C. Swann, I. Khader, K. C. Cossel, M. Cermak, J.-D. Deschênes, and N. R. Newbury, “Femtosecond synchronization of optical clocks off of a flying quadcopter,” Nat. Commun. 10(1), 1819 (2019).
    [Crossref]
  4. H. Zhang, H. Wei, H. Yang, and Y. Li, “Active laser ranging with frequency transfer using frequency comb,” Appl. Phys. Lett. 108(18), 181101 (2016).
    [Crossref]
  5. L. C. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10(17 in frequency,” Phys. Rev. Lett. 120(5), 050801 (2018).
    [Crossref]
  6. I. Khader, H. Bergeron, L. C. Sinclair, W. C. Swann, N. R. Newbury, and J.-D. Deschênes, “Time synchronization over a free-space optical communication channel,” Optica 5(12), 1542–1548 (2018).
    [Crossref]
  7. K. U. Schreiber, I. Prochazka, P. Lauber, U. Hugentobler, W. Schafer, L. Cacciapuoti, and R. Nasca, “Ground-based demonstration of the European laser timing (ELT) experiment,” IEEE Trans. Sonics Ultrason. 57(3), 728–737 (2010).
    [Crossref]
  8. E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).
  9. Elliott Kaplan and Christopher Hegarty, “Understanding GPS: Principles and Applications,” 2nd Edition, Artech House: Boston, (2006).
  10. J. W. Betz, “Binary Offset Carrier Modulations for Radionavigation,” Navigation 48(4), 227–246 (2001).
    [Crossref]
  11. J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), S162–S174 (2008).
    [Crossref]
  12. H. Wang, X. Wang, H. Wang, H. Yi, S. Wang, W. Yang, and S. Zhang, “Three loops - A method for tracking a new TWSTFT signal FBOC,” in Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), pp375–377 (2017).
  13. T. Gotoh, J. Amagai, T. Hobiger, M. Fujieda, and M. Aida, “Development of a GPU-Based Two-Way Time Transfer Modem,” IEEE Trans. Instrum. Meas. 60(7), 2495–2499 (2011).
    [Crossref]
  14. M. Fujieda, D. Piester, T. Gotoh, J. Becker, M. Aida, and A. Bauch, “Carrier-phase two-way satellite frequency transfer over a very long baseline,” Metrologia 51(3), 253–262 (2014).
    [Crossref]
  15. M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
    [Crossref]
  16. J. Miao, B. Wang, C. Gao, Y. Bai, X. Zhu, and L. J. Wang, “Ultra-stable radio frequency dissemination in free space,” Rev. Sci. Instrum. 84(10), 104703 (2013).
    [Crossref]
  17. J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
    [Crossref]
  18. W. C. Swann, L. C. Sinclair, I. Khader, H. Bergeron, J.-D. Deschênes, and N. R. Newbury, “Low-loss reciprocal optical terminals for two-way time-frequency transfer,” Appl. Opt. 56(34), 9406–9413 (2017).
    [Crossref]

2019 (1)

H. Bergeron, L. C. Sinclair, W. C. Swann, I. Khader, K. C. Cossel, M. Cermak, J.-D. Deschênes, and N. R. Newbury, “Femtosecond synchronization of optical clocks off of a flying quadcopter,” Nat. Commun. 10(1), 1819 (2019).
[Crossref]

2018 (3)

L. C. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10(17 in frequency,” Phys. Rev. Lett. 120(5), 050801 (2018).
[Crossref]

I. Khader, H. Bergeron, L. C. Sinclair, W. C. Swann, N. R. Newbury, and J.-D. Deschênes, “Time synchronization over a free-space optical communication channel,” Optica 5(12), 1542–1548 (2018).
[Crossref]

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
[Crossref]

2017 (1)

2016 (2)

H. Zhang, H. Wei, H. Yang, and Y. Li, “Active laser ranging with frequency transfer using frequency comb,” Appl. Phys. Lett. 108(18), 181101 (2016).
[Crossref]

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

2015 (1)

J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
[Crossref]

2014 (1)

M. Fujieda, D. Piester, T. Gotoh, J. Becker, M. Aida, and A. Bauch, “Carrier-phase two-way satellite frequency transfer over a very long baseline,” Metrologia 51(3), 253–262 (2014).
[Crossref]

2013 (2)

J. Miao, B. Wang, C. Gao, Y. Bai, X. Zhu, and L. J. Wang, “Ultra-stable radio frequency dissemination in free space,” Rev. Sci. Instrum. 84(10), 104703 (2013).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical Two-Way Time and Frequency Transfer over Free Space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

2011 (1)

T. Gotoh, J. Amagai, T. Hobiger, M. Fujieda, and M. Aida, “Development of a GPU-Based Two-Way Time Transfer Modem,” IEEE Trans. Instrum. Meas. 60(7), 2495–2499 (2011).
[Crossref]

2010 (1)

K. U. Schreiber, I. Prochazka, P. Lauber, U. Hugentobler, W. Schafer, L. Cacciapuoti, and R. Nasca, “Ground-based demonstration of the European laser timing (ELT) experiment,” IEEE Trans. Sonics Ultrason. 57(3), 728–737 (2010).
[Crossref]

2008 (1)

J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), S162–S174 (2008).
[Crossref]

2001 (1)

J. W. Betz, “Binary Offset Carrier Modulations for Radionavigation,” Navigation 48(4), 227–246 (2001).
[Crossref]

Abgrall, M.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Achkar, J.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Aida, M.

M. Fujieda, D. Piester, T. Gotoh, J. Becker, M. Aida, and A. Bauch, “Carrier-phase two-way satellite frequency transfer over a very long baseline,” Metrologia 51(3), 253–262 (2014).
[Crossref]

T. Gotoh, J. Amagai, T. Hobiger, M. Fujieda, and M. Aida, “Development of a GPU-Based Two-Way Time Transfer Modem,” IEEE Trans. Instrum. Meas. 60(7), 2495–2499 (2011).
[Crossref]

Albanese, D.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Amagai, J.

T. Gotoh, J. Amagai, T. Hobiger, M. Fujieda, and M. Aida, “Development of a GPU-Based Two-Way Time Transfer Modem,” IEEE Trans. Instrum. Meas. 60(7), 2495–2499 (2011).
[Crossref]

Bai, Y.

J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
[Crossref]

J. Miao, B. Wang, C. Gao, Y. Bai, X. Zhu, and L. J. Wang, “Ultra-stable radio frequency dissemination in free space,” Rev. Sci. Instrum. 84(10), 104703 (2013).
[Crossref]

Bauch, A.

M. Fujieda, D. Piester, T. Gotoh, J. Becker, M. Aida, and A. Bauch, “Carrier-phase two-way satellite frequency transfer over a very long baseline,” Metrologia 51(3), 253–262 (2014).
[Crossref]

Baumann, E.

L. C. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10(17 in frequency,” Phys. Rev. Lett. 120(5), 050801 (2018).
[Crossref]

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical Two-Way Time and Frequency Transfer over Free Space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Becker, J.

M. Fujieda, D. Piester, T. Gotoh, J. Becker, M. Aida, and A. Bauch, “Carrier-phase two-way satellite frequency transfer over a very long baseline,” Metrologia 51(3), 253–262 (2014).
[Crossref]

Bergeron, H.

H. Bergeron, L. C. Sinclair, W. C. Swann, I. Khader, K. C. Cossel, M. Cermak, J.-D. Deschênes, and N. R. Newbury, “Femtosecond synchronization of optical clocks off of a flying quadcopter,” Nat. Commun. 10(1), 1819 (2019).
[Crossref]

L. C. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10(17 in frequency,” Phys. Rev. Lett. 120(5), 050801 (2018).
[Crossref]

I. Khader, H. Bergeron, L. C. Sinclair, W. C. Swann, N. R. Newbury, and J.-D. Deschênes, “Time synchronization over a free-space optical communication channel,” Optica 5(12), 1542–1548 (2018).
[Crossref]

W. C. Swann, L. C. Sinclair, I. Khader, H. Bergeron, J.-D. Deschênes, and N. R. Newbury, “Low-loss reciprocal optical terminals for two-way time-frequency transfer,” Appl. Opt. 56(34), 9406–9413 (2017).
[Crossref]

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

Betz, J. W.

J. W. Betz, “Binary Offset Carrier Modulations for Radionavigation,” Navigation 48(4), 227–246 (2001).
[Crossref]

Bourez, M. L.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Cacciapuoti, L.

K. U. Schreiber, I. Prochazka, P. Lauber, U. Hugentobler, W. Schafer, L. Cacciapuoti, and R. Nasca, “Ground-based demonstration of the European laser timing (ELT) experiment,” IEEE Trans. Sonics Ultrason. 57(3), 728–737 (2010).
[Crossref]

Cermak, M.

H. Bergeron, L. C. Sinclair, W. C. Swann, I. Khader, K. C. Cossel, M. Cermak, J.-D. Deschênes, and N. R. Newbury, “Femtosecond synchronization of optical clocks off of a flying quadcopter,” Nat. Commun. 10(1), 1819 (2019).
[Crossref]

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

Coddington, I.

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical Two-Way Time and Frequency Transfer over Free Space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Cossel, K. C.

H. Bergeron, L. C. Sinclair, W. C. Swann, I. Khader, K. C. Cossel, M. Cermak, J.-D. Deschênes, and N. R. Newbury, “Femtosecond synchronization of optical clocks off of a flying quadcopter,” Nat. Commun. 10(1), 1819 (2019).
[Crossref]

Courde, C.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Deschênes, J.-D.

H. Bergeron, L. C. Sinclair, W. C. Swann, I. Khader, K. C. Cossel, M. Cermak, J.-D. Deschênes, and N. R. Newbury, “Femtosecond synchronization of optical clocks off of a flying quadcopter,” Nat. Commun. 10(1), 1819 (2019).
[Crossref]

L. C. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10(17 in frequency,” Phys. Rev. Lett. 120(5), 050801 (2018).
[Crossref]

I. Khader, H. Bergeron, L. C. Sinclair, W. C. Swann, N. R. Newbury, and J.-D. Deschênes, “Time synchronization over a free-space optical communication channel,” Optica 5(12), 1542–1548 (2018).
[Crossref]

W. C. Swann, L. C. Sinclair, I. Khader, H. Bergeron, J.-D. Deschênes, and N. R. Newbury, “Low-loss reciprocal optical terminals for two-way time-frequency transfer,” Appl. Opt. 56(34), 9406–9413 (2017).
[Crossref]

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

Djeroud, K.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Exertier, P.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Fujieda, M.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
[Crossref]

M. Fujieda, D. Piester, T. Gotoh, J. Becker, M. Aida, and A. Bauch, “Carrier-phase two-way satellite frequency transfer over a very long baseline,” Metrologia 51(3), 253–262 (2014).
[Crossref]

T. Gotoh, J. Amagai, T. Hobiger, M. Fujieda, and M. Aida, “Development of a GPU-Based Two-Way Time Transfer Modem,” IEEE Trans. Instrum. Meas. 60(7), 2495–2499 (2011).
[Crossref]

Gao, C.

J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
[Crossref]

J. Miao, B. Wang, C. Gao, Y. Bai, X. Zhu, and L. J. Wang, “Ultra-stable radio frequency dissemination in free space,” Rev. Sci. Instrum. 84(10), 104703 (2013).
[Crossref]

Giorgetta, F. R.

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical Two-Way Time and Frequency Transfer over Free Space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Gotoh, T.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
[Crossref]

M. Fujieda, D. Piester, T. Gotoh, J. Becker, M. Aida, and A. Bauch, “Carrier-phase two-way satellite frequency transfer over a very long baseline,” Metrologia 51(3), 253–262 (2014).
[Crossref]

T. Gotoh, J. Amagai, T. Hobiger, M. Fujieda, and M. Aida, “Development of a GPU-Based Two-Way Time Transfer Modem,” IEEE Trans. Instrum. Meas. 60(7), 2495–2499 (2011).
[Crossref]

Guillemot, P.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Hachisu, H.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
[Crossref]

Hegarty, Christopher

Elliott Kaplan and Christopher Hegarty, “Understanding GPS: Principles and Applications,” 2nd Edition, Artech House: Boston, (2006).

Heo, M.-S.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
[Crossref]

Hobiger, T.

T. Gotoh, J. Amagai, T. Hobiger, M. Fujieda, and M. Aida, “Development of a GPU-Based Two-Way Time Transfer Modem,” IEEE Trans. Instrum. Meas. 60(7), 2495–2499 (2011).
[Crossref]

Hugentobler, U.

K. U. Schreiber, I. Prochazka, P. Lauber, U. Hugentobler, W. Schafer, L. Cacciapuoti, and R. Nasca, “Ground-based demonstration of the European laser timing (ELT) experiment,” IEEE Trans. Sonics Ultrason. 57(3), 728–737 (2010).
[Crossref]

Hwang, S.-W.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
[Crossref]

Ido, T.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
[Crossref]

Kaplan, Elliott

Elliott Kaplan and Christopher Hegarty, “Understanding GPS: Principles and Applications,” 2nd Edition, Artech House: Boston, (2006).

Khader, I.

Kim, H.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
[Crossref]

Lauber, P.

K. U. Schreiber, I. Prochazka, P. Lauber, U. Hugentobler, W. Schafer, L. Cacciapuoti, and R. Nasca, “Ground-based demonstration of the European laser timing (ELT) experiment,” IEEE Trans. Sonics Ultrason. 57(3), 728–737 (2010).
[Crossref]

Laurent, P.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Lee, W.-K.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
[Crossref]

Lee, Y. K.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
[Crossref]

Leon, S.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Levine, J.

J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), S162–S174 (2008).
[Crossref]

Li, Y.

H. Zhang, H. Wei, H. Yang, and Y. Li, “Active laser ranging with frequency transfer using frequency comb,” Appl. Phys. Lett. 108(18), 181101 (2016).
[Crossref]

Mariey, H.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Martinot-Lagarde, G.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Miao, J.

J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
[Crossref]

J. Miao, B. Wang, C. Gao, Y. Bai, X. Zhu, and L. J. Wang, “Ultra-stable radio frequency dissemination in free space,” Rev. Sci. Instrum. 84(10), 104703 (2013).
[Crossref]

Nasca, R.

K. U. Schreiber, I. Prochazka, P. Lauber, U. Hugentobler, W. Schafer, L. Cacciapuoti, and R. Nasca, “Ground-based demonstration of the European laser timing (ELT) experiment,” IEEE Trans. Sonics Ultrason. 57(3), 728–737 (2010).
[Crossref]

Newbury, N. R.

H. Bergeron, L. C. Sinclair, W. C. Swann, I. Khader, K. C. Cossel, M. Cermak, J.-D. Deschênes, and N. R. Newbury, “Femtosecond synchronization of optical clocks off of a flying quadcopter,” Nat. Commun. 10(1), 1819 (2019).
[Crossref]

L. C. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10(17 in frequency,” Phys. Rev. Lett. 120(5), 050801 (2018).
[Crossref]

I. Khader, H. Bergeron, L. C. Sinclair, W. C. Swann, N. R. Newbury, and J.-D. Deschênes, “Time synchronization over a free-space optical communication channel,” Optica 5(12), 1542–1548 (2018).
[Crossref]

W. C. Swann, L. C. Sinclair, I. Khader, H. Bergeron, J.-D. Deschênes, and N. R. Newbury, “Low-loss reciprocal optical terminals for two-way time-frequency transfer,” Appl. Opt. 56(34), 9406–9413 (2017).
[Crossref]

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical Two-Way Time and Frequency Transfer over Free Space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Oneto, J. L.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Paris, J.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Park, C. Y.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
[Crossref]

Petit, G.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
[Crossref]

Pierron, F.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Pierron, M.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Piester, D.

M. Fujieda, D. Piester, T. Gotoh, J. Becker, M. Aida, and A. Bauch, “Carrier-phase two-way satellite frequency transfer over a very long baseline,” Metrologia 51(3), 253–262 (2014).
[Crossref]

Prochazka, I.

K. U. Schreiber, I. Prochazka, P. Lauber, U. Hugentobler, W. Schafer, L. Cacciapuoti, and R. Nasca, “Ground-based demonstration of the European laser timing (ELT) experiment,” IEEE Trans. Sonics Ultrason. 57(3), 728–737 (2010).
[Crossref]

Rovera, D.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Samain, E.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Schafer, W.

K. U. Schreiber, I. Prochazka, P. Lauber, U. Hugentobler, W. Schafer, L. Cacciapuoti, and R. Nasca, “Ground-based demonstration of the European laser timing (ELT) experiment,” IEEE Trans. Sonics Ultrason. 57(3), 728–737 (2010).
[Crossref]

Schreiber, K. U.

K. U. Schreiber, I. Prochazka, P. Lauber, U. Hugentobler, W. Schafer, L. Cacciapuoti, and R. Nasca, “Ground-based demonstration of the European laser timing (ELT) experiment,” IEEE Trans. Sonics Ultrason. 57(3), 728–737 (2010).
[Crossref]

Sinclair, L. C.

H. Bergeron, L. C. Sinclair, W. C. Swann, I. Khader, K. C. Cossel, M. Cermak, J.-D. Deschênes, and N. R. Newbury, “Femtosecond synchronization of optical clocks off of a flying quadcopter,” Nat. Commun. 10(1), 1819 (2019).
[Crossref]

I. Khader, H. Bergeron, L. C. Sinclair, W. C. Swann, N. R. Newbury, and J.-D. Deschênes, “Time synchronization over a free-space optical communication channel,” Optica 5(12), 1542–1548 (2018).
[Crossref]

L. C. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10(17 in frequency,” Phys. Rev. Lett. 120(5), 050801 (2018).
[Crossref]

W. C. Swann, L. C. Sinclair, I. Khader, H. Bergeron, J.-D. Deschênes, and N. R. Newbury, “Low-loss reciprocal optical terminals for two-way time-frequency transfer,” Appl. Opt. 56(34), 9406–9413 (2017).
[Crossref]

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical Two-Way Time and Frequency Transfer over Free Space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Swann, W. C.

H. Bergeron, L. C. Sinclair, W. C. Swann, I. Khader, K. C. Cossel, M. Cermak, J.-D. Deschênes, and N. R. Newbury, “Femtosecond synchronization of optical clocks off of a flying quadcopter,” Nat. Commun. 10(1), 1819 (2019).
[Crossref]

I. Khader, H. Bergeron, L. C. Sinclair, W. C. Swann, N. R. Newbury, and J.-D. Deschênes, “Time synchronization over a free-space optical communication channel,” Optica 5(12), 1542–1548 (2018).
[Crossref]

L. C. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10(17 in frequency,” Phys. Rev. Lett. 120(5), 050801 (2018).
[Crossref]

W. C. Swann, L. C. Sinclair, I. Khader, H. Bergeron, J.-D. Deschênes, and N. R. Newbury, “Low-loss reciprocal optical terminals for two-way time-frequency transfer,” Appl. Opt. 56(34), 9406–9413 (2017).
[Crossref]

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical Two-Way Time and Frequency Transfer over Free Space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Tabuchi, R.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
[Crossref]

Torre, J.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Viot, H.

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Wang, B.

J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
[Crossref]

J. Miao, B. Wang, C. Gao, Y. Bai, X. Zhu, and L. J. Wang, “Ultra-stable radio frequency dissemination in free space,” Rev. Sci. Instrum. 84(10), 104703 (2013).
[Crossref]

Wang, H.

H. Wang, X. Wang, H. Wang, H. Yi, S. Wang, W. Yang, and S. Zhang, “Three loops - A method for tracking a new TWSTFT signal FBOC,” in Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), pp375–377 (2017).

H. Wang, X. Wang, H. Wang, H. Yi, S. Wang, W. Yang, and S. Zhang, “Three loops - A method for tracking a new TWSTFT signal FBOC,” in Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), pp375–377 (2017).

Wang, L. J.

J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
[Crossref]

J. Miao, B. Wang, C. Gao, Y. Bai, X. Zhu, and L. J. Wang, “Ultra-stable radio frequency dissemination in free space,” Rev. Sci. Instrum. 84(10), 104703 (2013).
[Crossref]

Wang, S.

H. Wang, X. Wang, H. Wang, H. Yi, S. Wang, W. Yang, and S. Zhang, “Three loops - A method for tracking a new TWSTFT signal FBOC,” in Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), pp375–377 (2017).

Wang, X.

H. Wang, X. Wang, H. Wang, H. Yi, S. Wang, W. Yang, and S. Zhang, “Three loops - A method for tracking a new TWSTFT signal FBOC,” in Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), pp375–377 (2017).

Wei, H.

H. Zhang, H. Wei, H. Yang, and Y. Li, “Active laser ranging with frequency transfer using frequency comb,” Appl. Phys. Lett. 108(18), 181101 (2016).
[Crossref]

Yang, H.

H. Zhang, H. Wei, H. Yang, and Y. Li, “Active laser ranging with frequency transfer using frequency comb,” Appl. Phys. Lett. 108(18), 181101 (2016).
[Crossref]

Yang, S.-H.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
[Crossref]

Yang, W.

H. Wang, X. Wang, H. Wang, H. Yi, S. Wang, W. Yang, and S. Zhang, “Three loops - A method for tracking a new TWSTFT signal FBOC,” in Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), pp375–377 (2017).

Yi, H.

H. Wang, X. Wang, H. Wang, H. Yi, S. Wang, W. Yang, and S. Zhang, “Three loops - A method for tracking a new TWSTFT signal FBOC,” in Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), pp375–377 (2017).

Yu, D.-H.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
[Crossref]

Yuan, Y. B.

J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
[Crossref]

Zhang, H.

H. Zhang, H. Wei, H. Yang, and Y. Li, “Active laser ranging with frequency transfer using frequency comb,” Appl. Phys. Lett. 108(18), 181101 (2016).
[Crossref]

Zhang, S.

H. Wang, X. Wang, H. Wang, H. Yi, S. Wang, W. Yang, and S. Zhang, “Three loops - A method for tracking a new TWSTFT signal FBOC,” in Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), pp375–377 (2017).

Zhu, X.

J. Miao, B. Wang, C. Gao, Y. Bai, X. Zhu, and L. J. Wang, “Ultra-stable radio frequency dissemination in free space,” Rev. Sci. Instrum. 84(10), 104703 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Zhang, H. Wei, H. Yang, and Y. Li, “Active laser ranging with frequency transfer using frequency comb,” Appl. Phys. Lett. 108(18), 181101 (2016).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

T. Gotoh, J. Amagai, T. Hobiger, M. Fujieda, and M. Aida, “Development of a GPU-Based Two-Way Time Transfer Modem,” IEEE Trans. Instrum. Meas. 60(7), 2495–2499 (2011).
[Crossref]

IEEE Trans. Sonics Ultrason. (2)

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced Satellite-Based Frequency Transfer at the 10(16 Level,” IEEE Trans. Sonics Ultrason. 65(6), 973–978 (2018).
[Crossref]

K. U. Schreiber, I. Prochazka, P. Lauber, U. Hugentobler, W. Schafer, L. Cacciapuoti, and R. Nasca, “Ground-based demonstration of the European laser timing (ELT) experiment,” IEEE Trans. Sonics Ultrason. 57(3), 728–737 (2010).
[Crossref]

Metrologia (2)

J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), S162–S174 (2008).
[Crossref]

M. Fujieda, D. Piester, T. Gotoh, J. Becker, M. Aida, and A. Bauch, “Carrier-phase two-way satellite frequency transfer over a very long baseline,” Metrologia 51(3), 253–262 (2014).
[Crossref]

Nat. Commun. (1)

H. Bergeron, L. C. Sinclair, W. C. Swann, I. Khader, K. C. Cossel, M. Cermak, J.-D. Deschênes, and N. R. Newbury, “Femtosecond synchronization of optical clocks off of a flying quadcopter,” Nat. Commun. 10(1), 1819 (2019).
[Crossref]

Nat. Photonics (1)

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical Two-Way Time and Frequency Transfer over Free Space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Navigation (1)

J. W. Betz, “Binary Offset Carrier Modulations for Radionavigation,” Navigation 48(4), 227–246 (2001).
[Crossref]

Optica (1)

Phys. Rev. Lett. (1)

L. C. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10(17 in frequency,” Phys. Rev. Lett. 120(5), 050801 (2018).
[Crossref]

Phys. Rev. X (1)

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

Rev. Sci. Instrum. (2)

J. Miao, B. Wang, C. Gao, Y. Bai, X. Zhu, and L. J. Wang, “Ultra-stable radio frequency dissemination in free space,” Rev. Sci. Instrum. 84(10), 104703 (2013).
[Crossref]

J. Miao, B. Wang, Y. Bai, Y. B. Yuan, C. Gao, and L. J. Wang, “Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization,” Rev. Sci. Instrum. 86(5), 054704 (2015).
[Crossref]

Other (3)

H. Wang, X. Wang, H. Wang, H. Yi, S. Wang, W. Yang, and S. Zhang, “Three loops - A method for tracking a new TWSTFT signal FBOC,” in Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), pp375–377 (2017).

E. Samain, P. Exertier, P. Guillemot, P. Laurent, F. Pierron, D. Rovera, J. Torre, M. Abgrall, J. Achkar, D. Albanese, C. Courde, K. Djeroud, M. L. Bourez, S. Leon, H. Mariey, G. Martinot-Lagarde, J. L. Oneto, J. Paris, M. Pierron, and H. Viot, “Time transfer by laser link-T2L2: current status and future experiments,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum(IFCS/EFTF), pp1–6 (2011).

Elliott Kaplan and Christopher Hegarty, “Understanding GPS: Principles and Applications,” 2nd Edition, Artech House: Boston, (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Principle of optical two-way time transfer. (a) Timing diagram; (b) System architecture. TX, transmitter; RX, receiver; E/O, electronic-to-optical converter; O/E, optical-to-electronic converter; CLK, clock.
Fig. 2.
Fig. 2. (a) Schematic of the free-space optical time transfer system using FlexBOC modulation. (b) Top-level design of the FlexBOC transceiver. (c) Snapshot of the experimental system. syn, synthesizer; gen., generator; ADC, analog-to-digital converter; DAC, digital-to-analog converter; PD, photodiode; PN, pseudorandom noise; TI, Time interval; Time diff., Time difference.
Fig. 3.
Fig. 3. (a) Functional architecture of optical module. (b) Bandwidth test. Mod, modulation input; deMod, demodulation output; I-V, current-to-voltage conversion; VR, voltage regulator; C, capacitor; LD, laser diode; PD, photodiode; AMP, amplifier; SC, signal conditioner.
Fig. 4.
Fig. 4. (a) RF spectrum of FlexBOC signal; (b) Components of FlexBOC signal. The gray shadows mask the sidebands.
Fig. 5.
Fig. 5. Numerical simulation of the autocorrelation of FlexBOC signal (red line) and BPSK signal (black line). The top inset gives a clear view of the centerburst, and the bottom inset shows the center peak of the autocorrelation. In the simulation of FlexBOC modulation, the sub carrier frequency is 10 MHz, the chip rate of PN code is 125 kHz, the number of chips is 125. To compare with the work in Ref [6], in the simulation of BPSK modulation, the chip rate of PN code is 10 MHz, the number of chips is 10000. The sampling rate is 200 MHz.
Fig. 6.
Fig. 6. Typical RF spectra of the FlexBOC signals in the transmitter and receiver.
Fig. 7.
Fig. 7. (a) Carrier-to-noise ratio; (b) and (c) Time delay fluctuations of one-way time intervals during a 15-h period over a 30 m free-space link in forward and backward directions, respectively; (d) Clock difference with temperature correction. Ambient temperature is repeatedly drawn in subplot (a)-(c) for clear view. C/N0, carrier-to-noise ratio; Clock Diff, Clock difference.
Fig. 8.
Fig. 8. (a) Modified Allan deviation and (b) Time deviation over a 30-m free-space path.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ T A = T AR T AT = ( T AR T BT ) + Δ τ ,
Δ T B = T BR T BT = ( T BR T AT ) Δ τ
T AR T BT = τ T X B + τ B A + τ RXA ,
T BR T AT = τ T X A + τ A B + τ RXB ,
Δ τ = 1 2 [ ( T A T B ) ( τ B A τ AB ) ( τ T X B + τ RXA τ T X A τ RXB ) ] ,