Abstract

An Alexandrite laser on-peak pumped by a frequency doubled Raman Yb-fiber laser at 589 nm, which matches well with the absorption peak of Alexandrite crystal along b-axis, is demonstrated for the first time. With a pump power of 7.7 W, a maximum average output power of 2.51 W at 755 nm was achieved, with a beam quality factor better than 1.25. The slope efficiency was 41%, which is not the highest but moderate due to the experimentally confirmed high roundtrip loss of 2.3% resulting from the imperfect crystal coating quality and crystal quality. In addition, wide wavelength tuning from 727.2 nm to 787.3 nm was demonstrated by employing a 1 mm thick single plate birefringent filter (BRF). With the help of a 6 mm thick BRF, dual-wavelength operation was achieved at 755.2 nm and 764.2 nm, with a maximum average output power of 1.8 W. It is believed that much higher power Alexandrite laser with high beam quality and high efficiency could be expected considering the fact that 100-W level 589 nm laser is available now.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-power 7.4W TEM00 and wavelength-tunable alexandrite laser with a novel cavity design and efficient fibre-coupled diode-pumping

Goronwy Tawy, Ara Minassian, and Michael J. Damzen
OSA Continuum 3(6) 1638-1649 (2020)

Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor
Opt. Express 13(18) 6772-6776 (2005)

589 nm laser generation by frequency doubling of a single-frequency Raman fiber amplifier in PPSLT

Lei Zhang, Ye Yuan, Yanhua Liu, Jianhua Wang, Jinmeng Hu, Xinjie Lu, Yan Feng, and Shining Zhu
Appl. Opt. 52(8) 1636-1640 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
    [Crossref]
  2. J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
    [Crossref]
  3. S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” Opt. Express 24(13), 14836–14840 (2016).
    [Crossref]
  4. C. Cihan, C. Kocabas, U. Demirbas, and A. Sennaroglu, “Graphene mode-locked femtosecond Alexandrite laser,” Opt. Lett. 43(16), 3969–3972 (2018).
    [Crossref]
  5. S. Imai and H. Ito, “Long-pulse ultraviolet-laser sources based on tunable alexandrite lasers,” IEEE J. Quantum Electron. 34(3), 573–576 (1998).
    [Crossref]
  6. D. W. Chen and J. J. Yeh, “Alexandrite laser frequency doubling in β-BaB2O4 crystals,” Opt. Lett. 13(10), 808–810 (1988).
    [Crossref]
  7. S. Ghanbari and A. Major, “High power continuous-wave dual-wavelength alexandrite laser,” Laser Phys. Lett. 14(10), 105001 (2017).
    [Crossref]
  8. G. Tawy and M. J. Damzen, “Tunable, dual wavelength and self-Q-switched Alexandrite laser using crystal birefringence control,” Opt. Express 27(13), 17507–17520 (2019).
    [Crossref]
  9. A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26(12), 14928–14935 (2018).
    [Crossref]
  10. M. Strotkamp, A. Munk, B. Jungbluth, H.-D. Hoffmann, and J. Höffner, “Diode-pumped Alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11(4), 413–422 (2019).
    [Crossref]
  11. Y. J. Lee, H. J. Shin, T.-K. Noh, K.-H. Choi, and S.-E. Chang, “Treatment of Melasma and Post-inflammatory Hyperpigmentation by a picosecond 755-nm Alexandrite Laser in Asian Patients,” Ann. Dermatol. 29(6), 779–781 (2017).
    [Crossref]
  12. J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4(6), 182–183 (1979).
    [Crossref]
  13. S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54(10), 5642–5644 (1983).
    [Crossref]
  14. R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5-6), 363–366 (1993).
    [Crossref]
  15. M. Fibrich, J. Šulc, D. Vyhlídal, H. Jelínková, and M. Čech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400 K temperature range,” Laser Phys. 27(11), 115801 (2017).
    [Crossref]
  16. S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26(7), 075001 (2016).
    [Crossref]
  17. A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency > 26 W diode end-pumped Alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
    [Crossref]
  18. W. R. K. Johns and M. J. Damzen, “Analytical model of tunable Alexandrite lasing under diode end-pumping with experimental comparison,” J. Opt. Soc. Am. B 33(12), 2525–2534 (2016).
    [Crossref]
  19. E. Beyatli, I. Baali, B. Sumpf, G. Erbert, A. Leitenstorfer, A. Sennaroglu, and U. Demirbas, “Tapered diode-pumped continuous-wave alexandrite laser,” J. Opt. Soc. Am. B 30(12), 3184–3192 (2013).
    [Crossref]
  20. G. Tawy, J. Wang, and M. J. Damzen, “Pump-induced lensing effects in diode pumped Alexandrite lasers,” Opt. Express 27(24), 35865–35883 (2019).
    [Crossref]
  21. L. R. Taylor, Y. Feng, and D. B. Calia, “50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Opt. Express 18(8), 8540–8555 (2010).
    [Crossref]
  22. Y. Feng, L. R. Taylor, and D. B. Calia, “25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star,” Opt. Express 17(21), 19021–19206 (2009).
    [Crossref]
  23. E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
    [Crossref]
  24. W. R. K. Johns and M. J. Damzen, “Temperature effects on tunable cw Alexandrite lasers under diode end-pumping,” Opt. Express 26(6), 7771–7785 (2018).
    [Crossref]
  25. Y. H. Lu, L. Zhang, X. F. Xu, H. J. Ren, X. M. Chen, X. B. Wei, B. Wei, Y. Liao, J. L. Gu, F. Liu, L. Xu, J. T. Wang, T. J. Chen, M. Wan, W. Zhang, C. Tang, and G. B. Fan, “208 W all-solid-state sodium guide star laser operated at modulated-longitudinal mode,” Opt. Express 27(15), 20282–20289 (2019).
    [Crossref]

2019 (4)

2018 (3)

2017 (3)

S. Ghanbari and A. Major, “High power continuous-wave dual-wavelength alexandrite laser,” Laser Phys. Lett. 14(10), 105001 (2017).
[Crossref]

Y. J. Lee, H. J. Shin, T.-K. Noh, K.-H. Choi, and S.-E. Chang, “Treatment of Melasma and Post-inflammatory Hyperpigmentation by a picosecond 755-nm Alexandrite Laser in Asian Patients,” Ann. Dermatol. 29(6), 779–781 (2017).
[Crossref]

M. Fibrich, J. Šulc, D. Vyhlídal, H. Jelínková, and M. Čech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400 K temperature range,” Laser Phys. 27(11), 115801 (2017).
[Crossref]

2016 (4)

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26(7), 075001 (2016).
[Crossref]

W. R. K. Johns and M. J. Damzen, “Analytical model of tunable Alexandrite lasing under diode end-pumping with experimental comparison,” J. Opt. Soc. Am. B 33(12), 2525–2534 (2016).
[Crossref]

S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” Opt. Express 24(13), 14836–14840 (2016).
[Crossref]

E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
[Crossref]

2014 (1)

2013 (1)

2010 (1)

2009 (1)

1998 (1)

S. Imai and H. Ito, “Long-pulse ultraviolet-laser sources based on tunable alexandrite lasers,” IEEE J. Quantum Electron. 34(3), 573–576 (1998).
[Crossref]

1993 (1)

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

1988 (1)

1985 (1)

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

1983 (1)

S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54(10), 5642–5644 (1983).
[Crossref]

1980 (1)

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

1979 (1)

Akbari, R.

Arbabzadah, E. A.

E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
[Crossref]

Baali, I.

Beyatli, E.

Calia, D. B.

Cech, M.

M. Fibrich, J. Šulc, D. Vyhlídal, H. Jelínková, and M. Čech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400 K temperature range,” Laser Phys. 27(11), 115801 (2017).
[Crossref]

Chang, S.-E.

Y. J. Lee, H. J. Shin, T.-K. Noh, K.-H. Choi, and S.-E. Chang, “Treatment of Melasma and Post-inflammatory Hyperpigmentation by a picosecond 755-nm Alexandrite Laser in Asian Patients,” Ann. Dermatol. 29(6), 779–781 (2017).
[Crossref]

Chen, D. W.

Chen, T. J.

Chen, X. M.

Choi, K.-H.

Y. J. Lee, H. J. Shin, T.-K. Noh, K.-H. Choi, and S.-E. Chang, “Treatment of Melasma and Post-inflammatory Hyperpigmentation by a picosecond 755-nm Alexandrite Laser in Asian Patients,” Ann. Dermatol. 29(6), 779–781 (2017).
[Crossref]

Cihan, C.

Damzen, M. J.

Demirbas, U.

Erbert, G.

Fan, G. B.

Feng, Y.

Fibrich, M.

M. Fibrich, J. Šulc, D. Vyhlídal, H. Jelínková, and M. Čech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400 K temperature range,” Laser Phys. 27(11), 115801 (2017).
[Crossref]

Ghanbari, S.

S. Ghanbari and A. Major, “High power continuous-wave dual-wavelength alexandrite laser,” Laser Phys. Lett. 14(10), 105001 (2017).
[Crossref]

S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” Opt. Express 24(13), 14836–14840 (2016).
[Crossref]

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26(7), 075001 (2016).
[Crossref]

Glesne, T. R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

Gu, J. L.

Harter, D. J.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Heller, D. F.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Hoffmann, H.-D.

M. Strotkamp, A. Munk, B. Jungbluth, H.-D. Hoffmann, and J. Höffner, “Diode-pumped Alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11(4), 413–422 (2019).
[Crossref]

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26(12), 14928–14935 (2018).
[Crossref]

Höffner, J.

M. Strotkamp, A. Munk, B. Jungbluth, H.-D. Hoffmann, and J. Höffner, “Diode-pumped Alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11(4), 413–422 (2019).
[Crossref]

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26(12), 14928–14935 (2018).
[Crossref]

Imai, S.

S. Imai and H. Ito, “Long-pulse ultraviolet-laser sources based on tunable alexandrite lasers,” IEEE J. Quantum Electron. 34(3), 573–576 (1998).
[Crossref]

Ito, H.

S. Imai and H. Ito, “Long-pulse ultraviolet-laser sources based on tunable alexandrite lasers,” IEEE J. Quantum Electron. 34(3), 573–576 (1998).
[Crossref]

Jelínková, H.

M. Fibrich, J. Šulc, D. Vyhlídal, H. Jelínková, and M. Čech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400 K temperature range,” Laser Phys. 27(11), 115801 (2017).
[Crossref]

Jenssen, H. P.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4(6), 182–183 (1979).
[Crossref]

Johns, W. R. K.

Jungbluth, B.

M. Strotkamp, A. Munk, B. Jungbluth, H.-D. Hoffmann, and J. Höffner, “Diode-pumped Alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11(4), 413–422 (2019).
[Crossref]

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26(12), 14928–14935 (2018).
[Crossref]

Kocabas, C.

Lai, S. T.

S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54(10), 5642–5644 (1983).
[Crossref]

Lee, Y. J.

Y. J. Lee, H. J. Shin, T.-K. Noh, K.-H. Choi, and S.-E. Chang, “Treatment of Melasma and Post-inflammatory Hyperpigmentation by a picosecond 755-nm Alexandrite Laser in Asian Patients,” Ann. Dermatol. 29(6), 779–781 (2017).
[Crossref]

Leitenstorfer, A.

Liao, Y.

Liu, F.

Lu, Y. H.

Lübken, F.-J.

Major, A.

S. Ghanbari and A. Major, “High power continuous-wave dual-wavelength alexandrite laser,” Laser Phys. Lett. 14(10), 105001 (2017).
[Crossref]

S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” Opt. Express 24(13), 14836–14840 (2016).
[Crossref]

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26(7), 075001 (2016).
[Crossref]

Minassian, A.

Morris, R. C.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4(6), 182–183 (1979).
[Crossref]

Munk, A.

M. Strotkamp, A. Munk, B. Jungbluth, H.-D. Hoffmann, and J. Höffner, “Diode-pumped Alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11(4), 413–422 (2019).
[Crossref]

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26(12), 14928–14935 (2018).
[Crossref]

Myers, J. F.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

Noh, T.-K.

Y. J. Lee, H. J. Shin, T.-K. Noh, K.-H. Choi, and S.-E. Chang, “Treatment of Melasma and Post-inflammatory Hyperpigmentation by a picosecond 755-nm Alexandrite Laser in Asian Patients,” Ann. Dermatol. 29(6), 779–781 (2017).
[Crossref]

O’Dell, E. W.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4(6), 182–183 (1979).
[Crossref]

Pete, J. A.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Peterson, O. G.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4(6), 182–183 (1979).
[Crossref]

Poprawe, R.

Ren, H. J.

Samelson, H.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Scheps, R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

Sennaroglu, A.

Serreze, H. B.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

Shand, M. L.

S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54(10), 5642–5644 (1983).
[Crossref]

Shin, H. J.

Y. J. Lee, H. J. Shin, T.-K. Noh, K.-H. Choi, and S.-E. Chang, “Treatment of Melasma and Post-inflammatory Hyperpigmentation by a picosecond 755-nm Alexandrite Laser in Asian Patients,” Ann. Dermatol. 29(6), 779–781 (2017).
[Crossref]

Strotkamp, M.

M. Strotkamp, A. Munk, B. Jungbluth, H.-D. Hoffmann, and J. Höffner, “Diode-pumped Alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11(4), 413–422 (2019).
[Crossref]

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26(12), 14928–14935 (2018).
[Crossref]

Šulc, J.

M. Fibrich, J. Šulc, D. Vyhlídal, H. Jelínková, and M. Čech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400 K temperature range,” Laser Phys. 27(11), 115801 (2017).
[Crossref]

Sumpf, B.

Tang, C.

Tawy, G.

Taylor, L. R.

Teppitaksak, A.

Thomas, G. M.

Vyhlídal, D.

M. Fibrich, J. Šulc, D. Vyhlídal, H. Jelínková, and M. Čech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400 K temperature range,” Laser Phys. 27(11), 115801 (2017).
[Crossref]

Walling, J. C.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4(6), 182–183 (1979).
[Crossref]

Wan, M.

Wang, J.

Wang, J. T.

Wei, B.

Wei, X. B.

Xu, L.

Xu, X. F.

Yeh, J. J.

Zhang, L.

Zhang, W.

Ann. Dermatol. (1)

Y. J. Lee, H. J. Shin, T.-K. Noh, K.-H. Choi, and S.-E. Chang, “Treatment of Melasma and Post-inflammatory Hyperpigmentation by a picosecond 755-nm Alexandrite Laser in Asian Patients,” Ann. Dermatol. 29(6), 779–781 (2017).
[Crossref]

CEAS Space J. (1)

M. Strotkamp, A. Munk, B. Jungbluth, H.-D. Hoffmann, and J. Höffner, “Diode-pumped Alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11(4), 413–422 (2019).
[Crossref]

IEEE J. Quantum Electron. (3)

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

S. Imai and H. Ito, “Long-pulse ultraviolet-laser sources based on tunable alexandrite lasers,” IEEE J. Quantum Electron. 34(3), 573–576 (1998).
[Crossref]

J. Appl. Phys. (1)

S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54(10), 5642–5644 (1983).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (2)

M. Fibrich, J. Šulc, D. Vyhlídal, H. Jelínková, and M. Čech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400 K temperature range,” Laser Phys. 27(11), 115801 (2017).
[Crossref]

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26(7), 075001 (2016).
[Crossref]

Laser Phys. Lett. (2)

E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
[Crossref]

S. Ghanbari and A. Major, “High power continuous-wave dual-wavelength alexandrite laser,” Laser Phys. Lett. 14(10), 105001 (2017).
[Crossref]

Opt. Commun. (1)

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

Opt. Express (9)

G. Tawy, J. Wang, and M. J. Damzen, “Pump-induced lensing effects in diode pumped Alexandrite lasers,” Opt. Express 27(24), 35865–35883 (2019).
[Crossref]

L. R. Taylor, Y. Feng, and D. B. Calia, “50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Opt. Express 18(8), 8540–8555 (2010).
[Crossref]

Y. Feng, L. R. Taylor, and D. B. Calia, “25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star,” Opt. Express 17(21), 19021–19206 (2009).
[Crossref]

G. Tawy and M. J. Damzen, “Tunable, dual wavelength and self-Q-switched Alexandrite laser using crystal birefringence control,” Opt. Express 27(13), 17507–17520 (2019).
[Crossref]

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26(12), 14928–14935 (2018).
[Crossref]

S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” Opt. Express 24(13), 14836–14840 (2016).
[Crossref]

W. R. K. Johns and M. J. Damzen, “Temperature effects on tunable cw Alexandrite lasers under diode end-pumping,” Opt. Express 26(6), 7771–7785 (2018).
[Crossref]

Y. H. Lu, L. Zhang, X. F. Xu, H. J. Ren, X. M. Chen, X. B. Wei, B. Wei, Y. Liao, J. L. Gu, F. Liu, L. Xu, J. T. Wang, T. J. Chen, M. Wan, W. Zhang, C. Tang, and G. B. Fan, “208 W all-solid-state sodium guide star laser operated at modulated-longitudinal mode,” Opt. Express 27(15), 20282–20289 (2019).
[Crossref]

A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency > 26 W diode end-pumped Alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
[Crossref]

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Central wavelength of the frequency doubled Raman Yb-fiber laser. Inset (top): the schematic diagram of the experimental setup of a plane-plane linear cavity. Inset (middle): the schematic diagram of the experimental setup of a folded cavity. Inset (bottom): the typical beam profile of the pumping source at 589 nm.
Fig. 2.
Fig. 2. (a) Output power versus 589 nm pump power with different OC transmissions for the Alexandrite laser with a plane-plane linear cavity. Inset (left): the measured M2 and the spatial beam profile at maximum output power with 589 nm pumping source. Inset (right): the recorded spectrum at maximum output power. (b) Measured lasing threshold with different OC transmissions. (c) Laser output power versus incident pump power for both cases with an OC of R=99%. Inset (left): the measured M2 values and the spatial beam profile at maximum output power with 638 nm pumping source.
Fig. 3.
Fig. 3. (a) Output power versus 589 nm pump power in a folded cavity. (b) The (dual) laser wavelength spectrum at the maximum pump power for the Alexandrite laser in a folded cavity without BRF, with a 4 mm thick BRF, and with a 6 mm thick BRF, respectively.
Fig. 4.
Fig. 4. Wavelength tuning and the corresponding laser output power for the Alexandrite laser with a folded cavity using a 1 mm thick BRF.

Metrics