Abstract

Spectral resonances in the mid-infrared region with polarization independence and angle tolerance are useful for filtering applications in infrared spectroscopy and imaging systems, when used with unpolarized light and across a wide field-of-view. Guided mode resonances are particularly attractive for this purpose due to the simple fabrication procedure to realize grating structures and the robust filter characteristics achievable through design. In this paper, the electromagnetic design, fabrication, and experimental characterization of polarization-independent, angle-tolerant mid-infrared spectral resonance using amorphous-germanium two-dimensional fully-etched high index contrast gratings on a calcium fluoride substrate is presented. The resonance, centered at 7.42 µm wavelength, exhibits polarization-independent, notch-type characteristics with minimal change across a 0 to 30° incidence angle. The angle tolerance of such dielectric high contrast grating filters is found to be intermediate between the highly angle sensitive dielectric partially etched grating structures and least angle sensitive metallic nano-aperture structures.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Angle- and polarization-independent mid-infrared narrowband optical filters using dense arrays of resonant cavities

Ivan Avrutsky, Evan M. Smith, Shivashankar Vangala, Ricky Gibson, Joshua R. Hendrickson, and Justin W. Cleary
Opt. Express 27(26) 37481-37493 (2019)

Planar asymmetric nano-resonators for highly angle tolerant trans-reflective color filters

Noha Anous, Tarek Ramadan, Mohamed Abdallah, Khalid Qaraqe, and Diaa Khalil
OSA Continuum 2(3) 890-904 (2019)

Polarization-independent guided-mode resonance filtering by all-dielectric gratings in the terahertz region

Zhongqiu Zhan, Danyan Wang, Guotao Sun, and Qinkang Wang
Appl. Opt. 59(8) 2482-2488 (2020)

References

  • View by:
  • |
  • |
  • |

  1. B. Stuart, Infrared Spectroscopy: Fundamentals and Applications (John Wiley & Sons, Inc., 2004).
  2. R. Bhargava, “Infrared spectroscopic imaging: The next generation,” Appl. Spectrosc. 66(10), 1091–1120 (2012).
    [Crossref]
  3. H. A. Mcleod, Thin Film Optical Filters (Taylor and Francis, 2010).
  4. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref]
  5. J.-N. Liu, M. V. Schulmerich, R. Bhargava, and B. T. Cunningham, “Sculpting narrowband Fano resonances inherent in the large-area mid-infrared photonic crystal microresonators for spectroscopic imaging,” Opt. Express 22(15), 18142–18158 (2014).
    [Crossref]
  6. Y. Zhong, Z. Goldenfeld, K. Li, W. Streyer, L. Yu, L. Nordin, N. Murphy, and D. Wasserman, “Mid-wave infrared narrow bandwidth guided mode resonance notch filter,” Opt. Lett. 42(2), 223–226 (2017).
    [Crossref]
  7. M. S. Mirotznik, N. Gupta, M. McElhiney, and V. Carey, “Long wave infrared tunable filter based on guided mode resonant effect,” Proc. SPIE 9855, 98550L (2016).
    [Crossref]
  8. N. Gupta and M. S. Mirotznik, “Development of Longwave Infrared Tunable Notch Filters,” in Conference on Lasers and Electro-Optics, OSA Technical Digest, paper JTh2A.37 (2019).
  9. D. J. Carney and R. Magnusson, “Fabrication methods for infrared resonant devices,” Opt. Lett. 43(21), 5198–5201 (2018).
    [Crossref]
  10. Y. H. Ko, M. Niraula, and R. Magnusson, “Divergence-tolerant resonant bandpass filters,” Opt. Lett. 41(14), 3305–3308 (2016).
    [Crossref]
  11. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
    [Crossref]
  12. D. V. Labeke, D. Gérard, B. Guizal, F. I. Baida, and L. Li, “An angle-independent Frequency Selective Surface in the optical range,” Opt. Express 14(25), 11945–11951 (2006).
    [Crossref]
  13. I. Avrutsky, E. M. Smith, S. Vangala, R. Gibson, J. R. Hendrickson, and J. W. Cleary, “Angle- and polarization-independent mid-infrared narrowband optical filters using dense arrays of resonant cavities,” Opt. Express 27(26), 37481–37493 (2019).
    [Crossref]
  14. F. Shen, Q. Kang, J. Wang, K. Guo, Q. Zhou, and Z. Guo, “Dielectric metasurface-based high-efficiency mid-infrared optical filter,” Nanomaterials 8(11), 938 (2018).
    [Crossref]
  15. L. Mace, O. Gauthier-Lafaye, A. Monmayrant, S. Calvez, H. Camon, and H. Leplan, “Highly-resonant two-polarization transmission guided-mode resonance filter,” AIP Adv. 8(11), 115228 (2018).
    [Crossref]
  16. Lumerical FDTD, https://www.lumerical.com/products/fdtd/
  17. A.-L. Fehrembach, D. Maystre, and A. Sentenac, “Phenomenological theory of filtering by resonant dielectric gratings,” J. Opt. Soc. Am. A 19(6), 1136–1144 (2002).
    [Crossref]
  18. V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
    [Crossref]
  19. G. Grinblat, Y. Li, M. P. Neilsen, R. F. Oulton, and S. Maier, “Enhanced Third Harmonic Generation in Single Germanium Nanodisks Excited at the Anapole Mode,” Nano Lett. 16(7), 4635–4640 (2016).
    [Crossref]
  20. M. Laikin, Lens Design, 4th ed., (CRC Press, 2012), chap. 17.
  21. A. Leitis, T. Andreas, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
    [Crossref]

2019 (2)

I. Avrutsky, E. M. Smith, S. Vangala, R. Gibson, J. R. Hendrickson, and J. W. Cleary, “Angle- and polarization-independent mid-infrared narrowband optical filters using dense arrays of resonant cavities,” Opt. Express 27(26), 37481–37493 (2019).
[Crossref]

A. Leitis, T. Andreas, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

2018 (3)

F. Shen, Q. Kang, J. Wang, K. Guo, Q. Zhou, and Z. Guo, “Dielectric metasurface-based high-efficiency mid-infrared optical filter,” Nanomaterials 8(11), 938 (2018).
[Crossref]

L. Mace, O. Gauthier-Lafaye, A. Monmayrant, S. Calvez, H. Camon, and H. Leplan, “Highly-resonant two-polarization transmission guided-mode resonance filter,” AIP Adv. 8(11), 115228 (2018).
[Crossref]

D. J. Carney and R. Magnusson, “Fabrication methods for infrared resonant devices,” Opt. Lett. 43(21), 5198–5201 (2018).
[Crossref]

2017 (1)

2016 (3)

M. S. Mirotznik, N. Gupta, M. McElhiney, and V. Carey, “Long wave infrared tunable filter based on guided mode resonant effect,” Proc. SPIE 9855, 98550L (2016).
[Crossref]

Y. H. Ko, M. Niraula, and R. Magnusson, “Divergence-tolerant resonant bandpass filters,” Opt. Lett. 41(14), 3305–3308 (2016).
[Crossref]

G. Grinblat, Y. Li, M. P. Neilsen, R. F. Oulton, and S. Maier, “Enhanced Third Harmonic Generation in Single Germanium Nanodisks Excited at the Anapole Mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref]

2014 (1)

2012 (3)

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

R. Bhargava, “Infrared spectroscopic imaging: The next generation,” Appl. Spectrosc. 66(10), 1091–1120 (2012).
[Crossref]

2006 (1)

2002 (1)

1993 (1)

Altug, H.

A. Leitis, T. Andreas, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

Andreas, T.

A. Leitis, T. Andreas, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

Avrutsky, I.

Baida, F. I.

Bhargava, R.

Calvez, S.

L. Mace, O. Gauthier-Lafaye, A. Monmayrant, S. Calvez, H. Camon, and H. Leplan, “Highly-resonant two-polarization transmission guided-mode resonance filter,” AIP Adv. 8(11), 115228 (2018).
[Crossref]

Camon, H.

L. Mace, O. Gauthier-Lafaye, A. Monmayrant, S. Calvez, H. Camon, and H. Leplan, “Highly-resonant two-polarization transmission guided-mode resonance filter,” AIP Adv. 8(11), 115228 (2018).
[Crossref]

Carey, V.

M. S. Mirotznik, N. Gupta, M. McElhiney, and V. Carey, “Long wave infrared tunable filter based on guided mode resonant effect,” Proc. SPIE 9855, 98550L (2016).
[Crossref]

Carney, D. J.

Chang-Hasnain, C. J.

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

Cleary, J. W.

Cunningham, B. T.

Fan, S.

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

Fehrembach, A.-L.

Gauthier-Lafaye, O.

L. Mace, O. Gauthier-Lafaye, A. Monmayrant, S. Calvez, H. Camon, and H. Leplan, “Highly-resonant two-polarization transmission guided-mode resonance filter,” AIP Adv. 8(11), 115228 (2018).
[Crossref]

Gérard, D.

Gibson, R.

Goldenfeld, Z.

Grinblat, G.

G. Grinblat, Y. Li, M. P. Neilsen, R. F. Oulton, and S. Maier, “Enhanced Third Harmonic Generation in Single Germanium Nanodisks Excited at the Anapole Mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref]

Gu, M. B.

A. Leitis, T. Andreas, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

Guizal, B.

Guo, K.

F. Shen, Q. Kang, J. Wang, K. Guo, Q. Zhou, and Z. Guo, “Dielectric metasurface-based high-efficiency mid-infrared optical filter,” Nanomaterials 8(11), 938 (2018).
[Crossref]

Guo, Z.

F. Shen, Q. Kang, J. Wang, K. Guo, Q. Zhou, and Z. Guo, “Dielectric metasurface-based high-efficiency mid-infrared optical filter,” Nanomaterials 8(11), 938 (2018).
[Crossref]

Gupta, N.

M. S. Mirotznik, N. Gupta, M. McElhiney, and V. Carey, “Long wave infrared tunable filter based on guided mode resonant effect,” Proc. SPIE 9855, 98550L (2016).
[Crossref]

N. Gupta and M. S. Mirotznik, “Development of Longwave Infrared Tunable Notch Filters,” in Conference on Lasers and Electro-Optics, OSA Technical Digest, paper JTh2A.37 (2019).

Hendrickson, J. R.

Kang, Q.

F. Shen, Q. Kang, J. Wang, K. Guo, Q. Zhou, and Z. Guo, “Dielectric metasurface-based high-efficiency mid-infrared optical filter,” Nanomaterials 8(11), 938 (2018).
[Crossref]

Kivshar, Y. S.

A. Leitis, T. Andreas, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

Ko, Y. H.

Labeke, D. V.

Laikin, M.

M. Laikin, Lens Design, 4th ed., (CRC Press, 2012), chap. 17.

Lee, B. H.

A. Leitis, T. Andreas, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

Leitis, A.

A. Leitis, T. Andreas, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

Leplan, H.

L. Mace, O. Gauthier-Lafaye, A. Monmayrant, S. Calvez, H. Camon, and H. Leplan, “Highly-resonant two-polarization transmission guided-mode resonance filter,” AIP Adv. 8(11), 115228 (2018).
[Crossref]

Li, K.

Li, L.

Li, Y.

G. Grinblat, Y. Li, M. P. Neilsen, R. F. Oulton, and S. Maier, “Enhanced Third Harmonic Generation in Single Germanium Nanodisks Excited at the Anapole Mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref]

Liu, J.-N.

Liu, M.

A. Leitis, T. Andreas, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

Liu, V.

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

Mace, L.

L. Mace, O. Gauthier-Lafaye, A. Monmayrant, S. Calvez, H. Camon, and H. Leplan, “Highly-resonant two-polarization transmission guided-mode resonance filter,” AIP Adv. 8(11), 115228 (2018).
[Crossref]

Magnusson, R.

Maier, S.

G. Grinblat, Y. Li, M. P. Neilsen, R. F. Oulton, and S. Maier, “Enhanced Third Harmonic Generation in Single Germanium Nanodisks Excited at the Anapole Mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref]

Maystre, D.

McElhiney, M.

M. S. Mirotznik, N. Gupta, M. McElhiney, and V. Carey, “Long wave infrared tunable filter based on guided mode resonant effect,” Proc. SPIE 9855, 98550L (2016).
[Crossref]

Mcleod, H. A.

H. A. Mcleod, Thin Film Optical Filters (Taylor and Francis, 2010).

Mirotznik, M. S.

M. S. Mirotznik, N. Gupta, M. McElhiney, and V. Carey, “Long wave infrared tunable filter based on guided mode resonant effect,” Proc. SPIE 9855, 98550L (2016).
[Crossref]

N. Gupta and M. S. Mirotznik, “Development of Longwave Infrared Tunable Notch Filters,” in Conference on Lasers and Electro-Optics, OSA Technical Digest, paper JTh2A.37 (2019).

Monmayrant, A.

L. Mace, O. Gauthier-Lafaye, A. Monmayrant, S. Calvez, H. Camon, and H. Leplan, “Highly-resonant two-polarization transmission guided-mode resonance filter,” AIP Adv. 8(11), 115228 (2018).
[Crossref]

Murphy, N.

Neilsen, M. P.

G. Grinblat, Y. Li, M. P. Neilsen, R. F. Oulton, and S. Maier, “Enhanced Third Harmonic Generation in Single Germanium Nanodisks Excited at the Anapole Mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref]

Niraula, M.

Nordin, L.

Oulton, R. F.

G. Grinblat, Y. Li, M. P. Neilsen, R. F. Oulton, and S. Maier, “Enhanced Third Harmonic Generation in Single Germanium Nanodisks Excited at the Anapole Mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref]

Schulmerich, M. V.

Sentenac, A.

Shen, F.

F. Shen, Q. Kang, J. Wang, K. Guo, Q. Zhou, and Z. Guo, “Dielectric metasurface-based high-efficiency mid-infrared optical filter,” Nanomaterials 8(11), 938 (2018).
[Crossref]

Smith, E. M.

Streyer, W.

Stuart, B.

B. Stuart, Infrared Spectroscopy: Fundamentals and Applications (John Wiley & Sons, Inc., 2004).

Vangala, S.

Wang, J.

F. Shen, Q. Kang, J. Wang, K. Guo, Q. Zhou, and Z. Guo, “Dielectric metasurface-based high-efficiency mid-infrared optical filter,” Nanomaterials 8(11), 938 (2018).
[Crossref]

Wang, S. S.

Wasserman, D.

Yang, W.

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

Yu, L.

Zhong, Y.

Zhou, Q.

F. Shen, Q. Kang, J. Wang, K. Guo, Q. Zhou, and Z. Guo, “Dielectric metasurface-based high-efficiency mid-infrared optical filter,” Nanomaterials 8(11), 938 (2018).
[Crossref]

Adv. Opt. Photonics (1)

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

AIP Adv. (1)

L. Mace, O. Gauthier-Lafaye, A. Monmayrant, S. Calvez, H. Camon, and H. Leplan, “Highly-resonant two-polarization transmission guided-mode resonance filter,” AIP Adv. 8(11), 115228 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

G. Grinblat, Y. Li, M. P. Neilsen, R. F. Oulton, and S. Maier, “Enhanced Third Harmonic Generation in Single Germanium Nanodisks Excited at the Anapole Mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref]

Nanomaterials (1)

F. Shen, Q. Kang, J. Wang, K. Guo, Q. Zhou, and Z. Guo, “Dielectric metasurface-based high-efficiency mid-infrared optical filter,” Nanomaterials 8(11), 938 (2018).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (1)

M. S. Mirotznik, N. Gupta, M. McElhiney, and V. Carey, “Long wave infrared tunable filter based on guided mode resonant effect,” Proc. SPIE 9855, 98550L (2016).
[Crossref]

Sci. Adv. (1)

A. Leitis, T. Andreas, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, “Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval,” Sci. Adv. 5(5), eaaw2871 (2019).
[Crossref]

Other (5)

N. Gupta and M. S. Mirotznik, “Development of Longwave Infrared Tunable Notch Filters,” in Conference on Lasers and Electro-Optics, OSA Technical Digest, paper JTh2A.37 (2019).

H. A. Mcleod, Thin Film Optical Filters (Taylor and Francis, 2010).

B. Stuart, Infrared Spectroscopy: Fundamentals and Applications (John Wiley & Sons, Inc., 2004).

M. Laikin, Lens Design, 4th ed., (CRC Press, 2012), chap. 17.

Lumerical FDTD, https://www.lumerical.com/products/fdtd/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic illustration of (a) top-view of the 2D lattice and (b) perspective-view of the aGe-on-CaF2 grating structures. The coordinate axes and polarization/ propagation directions are also shown.
Fig. 2.
Fig. 2. Simulated transmission spectra for varying aGe pillar heights and diameter. Pillar height considered are: h = (a) 0.5 µm, (b) 0.6 µm, (c) 0.7 µm, (d) 0.8 µm, (e) 0.9 µm, and (f) 1.0 µm. Pillar diameter considered are: d = 2.0 µm, 2.4 µm, 2.8 µm and 3.2 µm with the respective colors shown above. The polarization considered here is TE.
Fig. 3.
Fig. 3. (a) Photograph showing the fabricated sample (patterned area is 2 × 2 mm2) in comparison to standard measuring scale dimensions, SEM image of (b) aGe pillars illustrating the square lattice (scale bar is 5 µm) (c) individual aGe pillar having nearly vertical side-wall profile (scale bar is 300 nm), (d) AFM image (image size is 20 µm x 18 µm), (e) Experimental and (f) simulated transmission spectra are shown for both TM and TE incident polarizations.
Fig. 4.
Fig. 4. Transmission spectrum for different AOI for TM and TE polarizations as indicated in the figures. (a) and (c) correspond to experimental measurements, (b) and (d) correspond to simulation results.
Fig. 5.
Fig. 5. Simulated transmission spectra are shown as a function of normalized wavevector and x-component of the wavevector for (a) TM and (b) TE polarizations. The light lines for 90° AOI are shown by the white dashed lines. Blue arrow indicates the notch filter center wavelength and the white circles indicate the onset of higher order diffraction for varying AOI.
Fig. 6.
Fig. 6. Electric field intensity profiles along YZ plane for TM polarization at (a) θ = 0°, (b) θ = 10°, (c) θ = 20°, and (d) θ = 30° and TE polarization at (e) θ = 0°, (f) θ = 10°, (g) θ = 20°, and (h) θ = 30°.

Tables (1)

Tables Icon

Table 1. Comparison of various experimental reports of GMR based mid-IR notch-filters a

Metrics