Abstract

When illuminated by a white light source, the discrete resonances of a Fabry-Pérot interferometer (FP) provide a broad bandwidth, comb-like spectrum useful for frequency calibration. We report on the design, construction, and laboratory characterization of two planar, passively stabilized, low finesse (≈40) FPs spanning 380 nm to 930 nm and 780 nm to 1300 nm, with nominal free spectral ranges of 20 GHz and 30 GHz respectively. These instruments are intended to calibrate astronomical spectrographs in radial velocity searches for extrasolar planets. By tracking the frequency drift of three widely-separated resonances in each FP, we measure fractional frequency drift rates as low as 1 × 10−10 day−1. However, we find that the fractional drift rate varies across the three sample wavelengths, such that the drift of two given resonance modes disagrees with the ratio of their mode numbers. We explore possible causes of this behavior, as well as quantify the temperature and optical power sensitivity of the FPs. Our results demonstrate the advancement of Fabry-Pérot interferometers as robust and frequency-stable calibrators for astronomical and other broad bandwidth spectroscopy applications, but also highlight the need for chromatic characterization of these systems.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Fabry and A. Perot, “On a New Form of Interferometer,” Astrophys. J. 13, 265 (1901).
    [Crossref]
  2. J. M. Vaughan, The Fabry-Perot interferometer. History, theory, practice and applications (1989).
  3. H. Buisson, C. Fabry, and H. Bourget, “An application of interference to the the study of the Orion nebula,” Astrophys. J. 40, 241–258 (1914).
    [Crossref]
  4. F. Wildi, B. Chazelas, and F. Pepe, “A passive cost-effective solution for the high accuracy wavelength calibration of radial velocity spectrographs,” in Ground-based and Airborne Instrumentation for Astronomy IV, vol. 8446 of Proc. Soc. Photo-Opt. Instrum. Eng. (2012), p. 84468E.
  5. T. M. McCracken, C. A. Jurgenson, D. A. Fischer, R. A. Stoll, A. E. Szymkowiak, J. Bradford, and W. Rutter, “Single-lock: a stable Fabry-Perot based wavelength calibrator,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91473L.
  6. S. Halverson, S. Mahadevan, L. Ramsey, F. Hearty, J. Wilson, J. Holtzman, S. Redman, G. Nave, D. Nidever, M. Nelson, N. Venditti, D. Bizyaev, and S. Fleming, “Development of fiber fabry-perot interferometers as stable near-infrared calibration sources for high resolution spectrographs,” Publ. Astron. Soc. Pac. 126(939), 445–458 (2014).
    [Crossref]
  7. A. Reiners, R. K. Banyal, and R. G. Ulbrich, “A laser-lock concept to reach cm-precision in doppler experiments with fabry-pérot wavelength calibrators,” Astron. Astrophys. 569, A77 (2014).
    [Crossref]
  8. F. F. Bauer, M. Zechmeister, and A. Reiners, “Calibrating echelle spectrographs with Fabry-Pérot etalons,” Astron. Astrophys. 581, A117 (2015).
    [Crossref]
  9. C. Lovis and D. Fischer, Radial Velocity Techniques for Exoplanets (2010), pp. 27–53.
  10. C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s,” Opt. Lett. 39(17), 5102 (2014).
    [Crossref]
  11. J. M. Robinson, E. Oelker, W. R. Milner, W. Zhang, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Crystalline optical cavity at 4 k with thermal-noise-limited instability and ultralow drift,” Optica 6(2), 240–243 (2019).
    [Crossref]
  12. M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
    [Crossref]
  13. D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
    [Crossref]
  14. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1cms−1,” Nature 452(7187), 610–612 (2008).
    [Crossref]
  15. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
    [Crossref]
  16. G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express 20(6), 6631 (2012).
    [Crossref]
  17. T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
    [Crossref]
  18. S. Halverson, S. Mahadevan, L. Ramsey, R. Terrien, A. Roy, C. Schwab, C. Bender, F. Hearty, E. Levi, S. Osterman, G. Ycas, and S. Diddams, “The habitable-zone planet finder calibration system,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91477Z.
  19. C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.
  20. C. Schwab, J. Stürmer, Y. V. Gurevich, T. Führer, S. K. Lamoreaux, T. Walther, and A. Quirrenbach, “Stabilizing a fabry-perot etalon peak to 3 cm s−1 for spectrograph calibration,” Publ. Astron. Soc. Pac. 127(955), 880–889 (2015).
    [Crossref]
  21. J. Stürmer, A. Seifahrt, C. Schwab, and J. L. Bean, “Rubidium-traced white-light etalon calibrator for radial velocity measurements at the cm s−1 level,” J. Astron. Telesc. Instrum. Syst. 3(2), 025003 (2017).
    [Crossref]
  22. M. Zhu and J. L. Hall, “Short and long term stability of optical oscillators,” in Proceedings of the 1992 IEEE Frequency Control Symposium, (1992), pp. 44–55.
  23. C. Salomon, D. Hils, and J. L. Hall, “Laser stabilization at the millihertz level,” J. Opt. Soc. Am. B 5(8), 1576–1587 (1988).
    [Crossref]
  24. D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 µ m Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
    [Crossref]
  25. F. Cersullo, F. Wildi, B. Chazelas, and F. Pepe, “A new infrared Fabry-Pérot-based radial-velocity-reference module for the SPIRou radial-velocity spectrograph,” Astron. Astrophys. 601, A102 (2017).
    [Crossref]
  26. S. Schäfer, E. W. Guenther, A. Reiners, J. Winkler, M. Pluto, and J. Schiller, “Two Fabry-Pérots and two calibration units for CARMENES,” in Ground-based and Airborne Instrumentation for Astronomy VII, vol. 10702 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2018), p. 1070276.
  27. F. Cersullo, A. Coffinet, B. Chazelas, C. Lovis, and F. Pepe, “New wavelength calibration for echelle spectrographs using Fabry-Pérot etalons,” Astron. Astrophys. 624, A122 (2019).
    [Crossref]
  28. J. Jennings, S. Halverson, R. Terrien, S. Mahadevan, G. Ycas, and S. A. Diddams, “Frequency stability characterization of a broadband fiber Fabry-Pérot interferometer,” Opt. Express 25(14), 15599 (2017).
    [Crossref]
  29. G. Ycas, S. Osterman, and S. A. Diddams, “Generation of a 660-2100 nm laser frequency comb based on an erbium fiber laser,” Opt. Lett. 37(12), 2199 (2012).
    [Crossref]
  30. One may expect the nonlinearity in the laser scans to induce a signal noise (‘ringing’) in the calibration tick signal as the heterodyne beat between the CW laser and comb passes through the RF bandpass windows used to generate the ticks. We find no such discernible ringing and thus are confident that our Gaussian fits to individual ticks are not systematically biasing the separation between ticks over the nonlinear scan, i.e., that we are justified in assuming the separation between the fitted Gaussians to neighboring ticks is 62.5 MHz.
  31. H. Furuta and M. Ohtsu, “Evaluations of frequency shift and stability in rubidium vapor stabilized semiconductor lasers,” Appl. Opt. 28(17), 3737–3743 (1989).
    [Crossref]
  32. C. Affolderbach and G. Mileti, “Tuneable, stabilised diode lasers for compact atomic frequency standards and precision wavelength references,” Opt. Lasers Eng. 43(3-5), 291–302 (2005).
    [Crossref]
  33. W. Loh, M. T. Hummon, H. F. Leopardi, T. M. Fortier, F. Quinlan, J. Kitching, S. B. Papp, and S. A. Diddams, “Microresonator brillouin laser stabilization using a microfabricated rubidium cell,” Opt. Express 24(13), 14513–14524 (2016).
    [Crossref]
  34. T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92(4-6), 277–282 (1992).
    [Crossref]
  35. F. Riehle, “Use of optical frequency standards for measurements of dimensional stability,” Meas. Sci. Technol. 9(7), 1042–1048 (1998).
    [Crossref]
  36. R. M. Hill, “Some Fringe-broadening Defects in a Fabry-Perot Étalon,” Opt. Acta 10(2), 141–152 (1963).
    [Crossref]
  37. P. A. Wilksch, “Instrument function of the Fabry-Perot spectrometer,” Appl. Opt. 24(10), 1502–1511 (1985).
    [Crossref]
  38. K. P. Reardon and F. Cavallini, “Characterization of Fabry-Perot interferometers and multi-etalon transmission profiles. The IBIS instrumental profile,” Astron. Astrophys. 481(3), 897–912 (2008).
    [Crossref]
  39. D. P. Mahapatra and S. K. Mattoo, “Exact evaluation of the transmitted amplitude for a Fabry-Perot interferometer with surface defects,” Appl. Opt. 25(10), 1646–1649 (1986).
    [Crossref]

2019 (2)

J. M. Robinson, E. Oelker, W. R. Milner, W. Zhang, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Crystalline optical cavity at 4 k with thermal-noise-limited instability and ultralow drift,” Optica 6(2), 240–243 (2019).
[Crossref]

F. Cersullo, A. Coffinet, B. Chazelas, C. Lovis, and F. Pepe, “New wavelength calibration for echelle spectrographs using Fabry-Pérot etalons,” Astron. Astrophys. 624, A122 (2019).
[Crossref]

2017 (4)

J. Jennings, S. Halverson, R. Terrien, S. Mahadevan, G. Ycas, and S. A. Diddams, “Frequency stability characterization of a broadband fiber Fabry-Pérot interferometer,” Opt. Express 25(14), 15599 (2017).
[Crossref]

J. Stürmer, A. Seifahrt, C. Schwab, and J. L. Bean, “Rubidium-traced white-light etalon calibrator for radial velocity measurements at the cm s−1 level,” J. Astron. Telesc. Instrum. Syst. 3(2), 025003 (2017).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 µ m Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref]

F. Cersullo, F. Wildi, B. Chazelas, and F. Pepe, “A new infrared Fabry-Pérot-based radial-velocity-reference module for the SPIRou radial-velocity spectrograph,” Astron. Astrophys. 601, A102 (2017).
[Crossref]

2016 (1)

2015 (2)

C. Schwab, J. Stürmer, Y. V. Gurevich, T. Führer, S. K. Lamoreaux, T. Walther, and A. Quirrenbach, “Stabilizing a fabry-perot etalon peak to 3 cm s−1 for spectrograph calibration,” Publ. Astron. Soc. Pac. 127(955), 880–889 (2015).
[Crossref]

F. F. Bauer, M. Zechmeister, and A. Reiners, “Calibrating echelle spectrographs with Fabry-Pérot etalons,” Astron. Astrophys. 581, A117 (2015).
[Crossref]

2014 (3)

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s,” Opt. Lett. 39(17), 5102 (2014).
[Crossref]

S. Halverson, S. Mahadevan, L. Ramsey, F. Hearty, J. Wilson, J. Holtzman, S. Redman, G. Nave, D. Nidever, M. Nelson, N. Venditti, D. Bizyaev, and S. Fleming, “Development of fiber fabry-perot interferometers as stable near-infrared calibration sources for high resolution spectrographs,” Publ. Astron. Soc. Pac. 126(939), 445–458 (2014).
[Crossref]

A. Reiners, R. K. Banyal, and R. G. Ulbrich, “A laser-lock concept to reach cm-precision in doppler experiments with fabry-pérot wavelength calibrators,” Astron. Astrophys. 569, A77 (2014).
[Crossref]

2012 (3)

2008 (4)

K. P. Reardon and F. Cavallini, “Characterization of Fabry-Perot interferometers and multi-etalon transmission profiles. The IBIS instrumental profile,” Astron. Astrophys. 481(3), 897–912 (2008).
[Crossref]

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1cms−1,” Nature 452(7187), 610–612 (2008).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

2007 (1)

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

2005 (1)

C. Affolderbach and G. Mileti, “Tuneable, stabilised diode lasers for compact atomic frequency standards and precision wavelength references,” Opt. Lasers Eng. 43(3-5), 291–302 (2005).
[Crossref]

1998 (1)

F. Riehle, “Use of optical frequency standards for measurements of dimensional stability,” Meas. Sci. Technol. 9(7), 1042–1048 (1998).
[Crossref]

1992 (1)

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92(4-6), 277–282 (1992).
[Crossref]

1989 (1)

1988 (1)

1986 (1)

1985 (1)

1963 (1)

R. M. Hill, “Some Fringe-broadening Defects in a Fabry-Perot Étalon,” Opt. Acta 10(2), 141–152 (1963).
[Crossref]

1914 (1)

H. Buisson, C. Fabry, and H. Bourget, “An application of interference to the the study of the Orion nebula,” Astrophys. J. 40, 241–258 (1914).
[Crossref]

1901 (1)

C. Fabry and A. Perot, “On a New Form of Interferometer,” Astrophys. J. 13, 265 (1901).
[Crossref]

Affolderbach, C.

C. Affolderbach and G. Mileti, “Tuneable, stabilised diode lasers for compact atomic frequency standards and precision wavelength references,” Opt. Lasers Eng. 43(3-5), 291–302 (2005).
[Crossref]

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Banyal, R. K.

A. Reiners, R. K. Banyal, and R. G. Ulbrich, “A laser-lock concept to reach cm-precision in doppler experiments with fabry-pérot wavelength calibrators,” Astron. Astrophys. 569, A77 (2014).
[Crossref]

Bauer, F. F.

F. F. Bauer, M. Zechmeister, and A. Reiners, “Calibrating echelle spectrographs with Fabry-Pérot etalons,” Astron. Astrophys. 581, A117 (2015).
[Crossref]

Bean, J. L.

J. Stürmer, A. Seifahrt, C. Schwab, and J. L. Bean, “Rubidium-traced white-light etalon calibrator for radial velocity measurements at the cm s−1 level,” J. Astron. Telesc. Instrum. Syst. 3(2), 025003 (2017).
[Crossref]

Bender, C.

S. Halverson, S. Mahadevan, L. Ramsey, R. Terrien, A. Roy, C. Schwab, C. Bender, F. Hearty, E. Levi, S. Osterman, G. Ycas, and S. Diddams, “The habitable-zone planet finder calibration system,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91477Z.

Bender, C. F.

G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express 20(6), 6631 (2012).
[Crossref]

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

Benedick, A. J.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1cms−1,” Nature 452(7187), 610–612 (2008).
[Crossref]

Bizyaev, D.

S. Halverson, S. Mahadevan, L. Ramsey, F. Hearty, J. Wilson, J. Holtzman, S. Redman, G. Nave, D. Nidever, M. Nelson, N. Venditti, D. Bizyaev, and S. Fleming, “Development of fiber fabry-perot interferometers as stable near-infrared calibration sources for high resolution spectrographs,” Publ. Astron. Soc. Pac. 126(939), 445–458 (2014).
[Crossref]

Blake, C. H.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

Botzer, B.

Bourget, H.

H. Buisson, C. Fabry, and H. Bourget, “An application of interference to the the study of the Orion nebula,” Astrophys. J. 40, 241–258 (1914).
[Crossref]

Bradford, J.

T. M. McCracken, C. A. Jurgenson, D. A. Fischer, R. A. Stoll, A. E. Szymkowiak, J. Bradford, and W. Rutter, “Single-lock: a stable Fabry-Perot based wavelength calibrator,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91473L.

Braje, D. A.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

Buisson, H.

H. Buisson, C. Fabry, and H. Bourget, “An application of interference to the the study of the Orion nebula,” Astrophys. J. 40, 241–258 (1914).
[Crossref]

Cavallini, F.

K. P. Reardon and F. Cavallini, “Characterization of Fabry-Perot interferometers and multi-etalon transmission profiles. The IBIS instrumental profile,” Astron. Astrophys. 481(3), 897–912 (2008).
[Crossref]

Cersullo, F.

F. Cersullo, A. Coffinet, B. Chazelas, C. Lovis, and F. Pepe, “New wavelength calibration for echelle spectrographs using Fabry-Pérot etalons,” Astron. Astrophys. 624, A122 (2019).
[Crossref]

F. Cersullo, F. Wildi, B. Chazelas, and F. Pepe, “A new infrared Fabry-Pérot-based radial-velocity-reference module for the SPIRou radial-velocity spectrograph,” Astron. Astrophys. 601, A102 (2017).
[Crossref]

Chakraborty, A.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

Chazelas, B.

F. Cersullo, A. Coffinet, B. Chazelas, C. Lovis, and F. Pepe, “New wavelength calibration for echelle spectrographs using Fabry-Pérot etalons,” Astron. Astrophys. 624, A122 (2019).
[Crossref]

F. Cersullo, F. Wildi, B. Chazelas, and F. Pepe, “A new infrared Fabry-Pérot-based radial-velocity-reference module for the SPIRou radial-velocity spectrograph,” Astron. Astrophys. 601, A102 (2017).
[Crossref]

F. Wildi, B. Chazelas, and F. Pepe, “A passive cost-effective solution for the high accuracy wavelength calibration of radial velocity spectrographs,” in Ground-based and Airborne Instrumentation for Astronomy IV, vol. 8446 of Proc. Soc. Photo-Opt. Instrum. Eng. (2012), p. 84468E.

Coffinet, A.

F. Cersullo, A. Coffinet, B. Chazelas, C. Lovis, and F. Pepe, “New wavelength calibration for echelle spectrographs using Fabry-Pérot etalons,” Astron. Astrophys. 624, A122 (2019).
[Crossref]

Curto, G. L.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Dekker, H.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Diddams, S.

S. Halverson, S. Mahadevan, L. Ramsey, R. Terrien, A. Roy, C. Schwab, C. Bender, F. Hearty, E. Levi, S. Osterman, G. Ycas, and S. Diddams, “The habitable-zone planet finder calibration system,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91477Z.

Diddams, S. A.

Dinneen, T. P.

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92(4-6), 277–282 (1992).
[Crossref]

Fabry, C.

H. Buisson, C. Fabry, and H. Bourget, “An application of interference to the the study of the Orion nebula,” Astrophys. J. 40, 241–258 (1914).
[Crossref]

C. Fabry and A. Perot, “On a New Form of Interferometer,” Astrophys. J. 13, 265 (1901).
[Crossref]

Falke, S.

Fendel, P.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1cms−1,” Nature 452(7187), 610–612 (2008).
[Crossref]

Fischer, D.

C. Lovis and D. Fischer, Radial Velocity Techniques for Exoplanets (2010), pp. 27–53.

Fischer, D. A.

T. M. McCracken, C. A. Jurgenson, D. A. Fischer, R. A. Stoll, A. E. Szymkowiak, J. Bradford, and W. Rutter, “Single-lock: a stable Fabry-Perot based wavelength calibrator,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91473L.

Fischer, M.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Fleming, S.

S. Halverson, S. Mahadevan, L. Ramsey, F. Hearty, J. Wilson, J. Holtzman, S. Redman, G. Nave, D. Nidever, M. Nelson, N. Venditti, D. Bizyaev, and S. Fleming, “Development of fiber fabry-perot interferometers as stable near-infrared calibration sources for high resolution spectrographs,” Publ. Astron. Soc. Pac. 126(939), 445–458 (2014).
[Crossref]

Fortier, T.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

Fortier, T. M.

Führer, T.

C. Schwab, J. Stürmer, Y. V. Gurevich, T. Führer, S. K. Lamoreaux, T. Walther, and A. Quirrenbach, “Stabilizing a fabry-perot etalon peak to 3 cm s−1 for spectrograph calibration,” Publ. Astron. Soc. Pac. 127(955), 880–889 (2015).
[Crossref]

Furuta, H.

Glenday, A. G.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1cms−1,” Nature 452(7187), 610–612 (2008).
[Crossref]

Gong, Q.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

González Hernández, J. I.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref]

Gould, P. L.

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92(4-6), 277–282 (1992).
[Crossref]

Grebing, C.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 µ m Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s,” Opt. Lett. 39(17), 5102 (2014).
[Crossref]

Guenther, E. W.

S. Schäfer, E. W. Guenther, A. Reiners, J. Winkler, M. Pluto, and J. Schiller, “Two Fabry-Pérots and two calibration units for CARMENES,” in Ground-based and Airborne Instrumentation for Astronomy VII, vol. 10702 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2018), p. 1070276.

Gurevich, Y. V.

C. Schwab, J. Stürmer, Y. V. Gurevich, T. Führer, S. K. Lamoreaux, T. Walther, and A. Quirrenbach, “Stabilizing a fabry-perot etalon peak to 3 cm s−1 for spectrograph calibration,” Publ. Astron. Soc. Pac. 127(955), 880–889 (2015).
[Crossref]

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

Häfner, S.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 µ m Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref]

Hagemann, C.

Hall, J. L.

C. Salomon, D. Hils, and J. L. Hall, “Laser stabilization at the millihertz level,” J. Opt. Soc. Am. B 5(8), 1576–1587 (1988).
[Crossref]

M. Zhu and J. L. Hall, “Short and long term stability of optical oscillators,” in Proceedings of the 1992 IEEE Frequency Control Symposium, (1992), pp. 44–55.

Halverson, S.

J. Jennings, S. Halverson, R. Terrien, S. Mahadevan, G. Ycas, and S. A. Diddams, “Frequency stability characterization of a broadband fiber Fabry-Pérot interferometer,” Opt. Express 25(14), 15599 (2017).
[Crossref]

S. Halverson, S. Mahadevan, L. Ramsey, F. Hearty, J. Wilson, J. Holtzman, S. Redman, G. Nave, D. Nidever, M. Nelson, N. Venditti, D. Bizyaev, and S. Fleming, “Development of fiber fabry-perot interferometers as stable near-infrared calibration sources for high resolution spectrographs,” Publ. Astron. Soc. Pac. 126(939), 445–458 (2014).
[Crossref]

S. Halverson, S. Mahadevan, L. Ramsey, R. Terrien, A. Roy, C. Schwab, C. Bender, F. Hearty, E. Levi, S. Osterman, G. Ycas, and S. Diddams, “The habitable-zone planet finder calibration system,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91477Z.

Halverson, S. P.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

Hänsch, T. W.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Hearty, F.

S. Halverson, S. Mahadevan, L. Ramsey, F. Hearty, J. Wilson, J. Holtzman, S. Redman, G. Nave, D. Nidever, M. Nelson, N. Venditti, D. Bizyaev, and S. Fleming, “Development of fiber fabry-perot interferometers as stable near-infrared calibration sources for high resolution spectrographs,” Publ. Astron. Soc. Pac. 126(939), 445–458 (2014).
[Crossref]

S. Halverson, S. Mahadevan, L. Ramsey, R. Terrien, A. Roy, C. Schwab, C. Bender, F. Hearty, E. Levi, S. Osterman, G. Ycas, and S. Diddams, “The habitable-zone planet finder calibration system,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91477Z.

Hearty, F. R.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

Hill, R. M.

R. M. Hill, “Some Fringe-broadening Defects in a Fabry-Perot Étalon,” Opt. Acta 10(2), 141–152 (1963).
[Crossref]

Hils, D.

Holtzman, J.

S. Halverson, S. Mahadevan, L. Ramsey, F. Hearty, J. Wilson, J. Holtzman, S. Redman, G. Nave, D. Nidever, M. Nelson, N. Venditti, D. Bizyaev, and S. Fleming, “Development of fiber fabry-perot interferometers as stable near-infrared calibration sources for high resolution spectrographs,” Publ. Astron. Soc. Pac. 126(939), 445–458 (2014).
[Crossref]

Holzwarth, R.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Hummon, M. T.

Jennings, J.

Jurgenson, C. A.

T. M. McCracken, C. A. Jurgenson, D. A. Fischer, R. A. Stoll, A. E. Szymkowiak, J. Bradford, and W. Rutter, “Single-lock: a stable Fabry-Perot based wavelength calibrator,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91473L.

Kärtner, F. X.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1cms−1,” Nature 452(7187), 610–612 (2008).
[Crossref]

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

Kirchner, M. S.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

Kitching, J.

Lamoreaux, S. K.

C. Schwab, J. Stürmer, Y. V. Gurevich, T. Führer, S. K. Lamoreaux, T. Walther, and A. Quirrenbach, “Stabilizing a fabry-perot etalon peak to 3 cm s−1 for spectrograph calibration,” Publ. Astron. Soc. Pac. 127(955), 880–889 (2015).
[Crossref]

Legero, T.

Leopardi, H. F.

Levi, E.

S. Halverson, S. Mahadevan, L. Ramsey, R. Terrien, A. Roy, C. Schwab, C. Bender, F. Hearty, E. Levi, S. Osterman, G. Ycas, and S. Diddams, “The habitable-zone planet finder calibration system,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91477Z.

Levi, E. I.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

Li, C.-H.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1cms−1,” Nature 452(7187), 610–612 (2008).
[Crossref]

Lisdat, C.

Loh, W.

Lovis, C.

F. Cersullo, A. Coffinet, B. Chazelas, C. Lovis, and F. Pepe, “New wavelength calibration for echelle spectrographs using Fabry-Pérot etalons,” Astron. Astrophys. 624, A122 (2019).
[Crossref]

C. Lovis and D. Fischer, Radial Velocity Techniques for Exoplanets (2010), pp. 27–53.

Mahadevan, S.

J. Jennings, S. Halverson, R. Terrien, S. Mahadevan, G. Ycas, and S. A. Diddams, “Frequency stability characterization of a broadband fiber Fabry-Pérot interferometer,” Opt. Express 25(14), 15599 (2017).
[Crossref]

S. Halverson, S. Mahadevan, L. Ramsey, F. Hearty, J. Wilson, J. Holtzman, S. Redman, G. Nave, D. Nidever, M. Nelson, N. Venditti, D. Bizyaev, and S. Fleming, “Development of fiber fabry-perot interferometers as stable near-infrared calibration sources for high resolution spectrographs,” Publ. Astron. Soc. Pac. 126(939), 445–458 (2014).
[Crossref]

G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express 20(6), 6631 (2012).
[Crossref]

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

S. Halverson, S. Mahadevan, L. Ramsey, R. Terrien, A. Roy, C. Schwab, C. Bender, F. Hearty, E. Levi, S. Osterman, G. Ycas, and S. Diddams, “The habitable-zone planet finder calibration system,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91477Z.

Mahapatra, D. P.

Manescau, A.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Martin, M. J.

Matei, D. G.

J. M. Robinson, E. Oelker, W. R. Milner, W. Zhang, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Crystalline optical cavity at 4 k with thermal-noise-limited instability and ultralow drift,” Optica 6(2), 240–243 (2019).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 µ m Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref]

Mattoo, S. K.

McCracken, T. M.

T. M. McCracken, C. A. Jurgenson, D. A. Fischer, R. A. Stoll, A. E. Szymkowiak, J. Bradford, and W. Rutter, “Single-lock: a stable Fabry-Perot based wavelength calibrator,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91473L.

McElwain, M. W.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

Mileti, G.

C. Affolderbach and G. Mileti, “Tuneable, stabilised diode lasers for compact atomic frequency standards and precision wavelength references,” Opt. Lasers Eng. 43(3-5), 291–302 (2005).
[Crossref]

Milner, W. R.

Monson, A. J.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Nave, G.

S. Halverson, S. Mahadevan, L. Ramsey, F. Hearty, J. Wilson, J. Holtzman, S. Redman, G. Nave, D. Nidever, M. Nelson, N. Venditti, D. Bizyaev, and S. Fleming, “Development of fiber fabry-perot interferometers as stable near-infrared calibration sources for high resolution spectrographs,” Publ. Astron. Soc. Pac. 126(939), 445–458 (2014).
[Crossref]

Nelson, M.

S. Halverson, S. Mahadevan, L. Ramsey, F. Hearty, J. Wilson, J. Holtzman, S. Redman, G. Nave, D. Nidever, M. Nelson, N. Venditti, D. Bizyaev, and S. Fleming, “Development of fiber fabry-perot interferometers as stable near-infrared calibration sources for high resolution spectrographs,” Publ. Astron. Soc. Pac. 126(939), 445–458 (2014).
[Crossref]

Nidever, D.

S. Halverson, S. Mahadevan, L. Ramsey, F. Hearty, J. Wilson, J. Holtzman, S. Redman, G. Nave, D. Nidever, M. Nelson, N. Venditti, D. Bizyaev, and S. Fleming, “Development of fiber fabry-perot interferometers as stable near-infrared calibration sources for high resolution spectrographs,” Publ. Astron. Soc. Pac. 126(939), 445–458 (2014).
[Crossref]

Oelker, E.

Ohtsu, M.

Osterman, S.

G. Ycas, S. Osterman, and S. A. Diddams, “Generation of a 660-2100 nm laser frequency comb based on an erbium fiber laser,” Opt. Lett. 37(12), 2199 (2012).
[Crossref]

G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express 20(6), 6631 (2012).
[Crossref]

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

S. Halverson, S. Mahadevan, L. Ramsey, R. Terrien, A. Roy, C. Schwab, C. Bender, F. Hearty, E. Levi, S. Osterman, G. Ycas, and S. Diddams, “The habitable-zone planet finder calibration system,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91477Z.

Papp, S. B.

Pasquini, L.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Pepe, F.

F. Cersullo, A. Coffinet, B. Chazelas, C. Lovis, and F. Pepe, “New wavelength calibration for echelle spectrographs using Fabry-Pérot etalons,” Astron. Astrophys. 624, A122 (2019).
[Crossref]

F. Cersullo, F. Wildi, B. Chazelas, and F. Pepe, “A new infrared Fabry-Pérot-based radial-velocity-reference module for the SPIRou radial-velocity spectrograph,” Astron. Astrophys. 601, A102 (2017).
[Crossref]

F. Wildi, B. Chazelas, and F. Pepe, “A passive cost-effective solution for the high accuracy wavelength calibration of radial velocity spectrographs,” in Ground-based and Airborne Instrumentation for Astronomy IV, vol. 8446 of Proc. Soc. Photo-Opt. Instrum. Eng. (2012), p. 84468E.

Perot, A.

C. Fabry and A. Perot, “On a New Form of Interferometer,” Astrophys. J. 13, 265 (1901).
[Crossref]

Phillips, D. F.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1cms−1,” Nature 452(7187), 610–612 (2008).
[Crossref]

Pluto, M.

S. Schäfer, E. W. Guenther, A. Reiners, J. Winkler, M. Pluto, and J. Schiller, “Two Fabry-Pérots and two calibration units for CARMENES,” in Ground-based and Airborne Instrumentation for Astronomy VII, vol. 10702 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2018), p. 1070276.

Probst, R. A.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref]

Quinlan, F.

Quirrenbach, A.

C. Schwab, J. Stürmer, Y. V. Gurevich, T. Führer, S. K. Lamoreaux, T. Walther, and A. Quirrenbach, “Stabilizing a fabry-perot etalon peak to 3 cm s−1 for spectrograph calibration,” Publ. Astron. Soc. Pac. 127(955), 880–889 (2015).
[Crossref]

Rakich, A.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

Ramsey, L.

S. Halverson, S. Mahadevan, L. Ramsey, F. Hearty, J. Wilson, J. Holtzman, S. Redman, G. Nave, D. Nidever, M. Nelson, N. Venditti, D. Bizyaev, and S. Fleming, “Development of fiber fabry-perot interferometers as stable near-infrared calibration sources for high resolution spectrographs,” Publ. Astron. Soc. Pac. 126(939), 445–458 (2014).
[Crossref]

G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express 20(6), 6631 (2012).
[Crossref]

S. Halverson, S. Mahadevan, L. Ramsey, R. Terrien, A. Roy, C. Schwab, C. Bender, F. Hearty, E. Levi, S. Osterman, G. Ycas, and S. Diddams, “The habitable-zone planet finder calibration system,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91477Z.

Ramsey, L. W.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

Reardon, K. P.

K. P. Reardon and F. Cavallini, “Characterization of Fabry-Perot interferometers and multi-etalon transmission profiles. The IBIS instrumental profile,” Astron. Astrophys. 481(3), 897–912 (2008).
[Crossref]

Rebolo, R.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref]

Redman, S.

S. Halverson, S. Mahadevan, L. Ramsey, F. Hearty, J. Wilson, J. Holtzman, S. Redman, G. Nave, D. Nidever, M. Nelson, N. Venditti, D. Bizyaev, and S. Fleming, “Development of fiber fabry-perot interferometers as stable near-infrared calibration sources for high resolution spectrographs,” Publ. Astron. Soc. Pac. 126(939), 445–458 (2014).
[Crossref]

G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express 20(6), 6631 (2012).
[Crossref]

Reiners, A.

F. F. Bauer, M. Zechmeister, and A. Reiners, “Calibrating echelle spectrographs with Fabry-Pérot etalons,” Astron. Astrophys. 581, A117 (2015).
[Crossref]

A. Reiners, R. K. Banyal, and R. G. Ulbrich, “A laser-lock concept to reach cm-precision in doppler experiments with fabry-pérot wavelength calibrators,” Astron. Astrophys. 569, A77 (2014).
[Crossref]

S. Schäfer, E. W. Guenther, A. Reiners, J. Winkler, M. Pluto, and J. Schiller, “Two Fabry-Pérots and two calibration units for CARMENES,” in Ground-based and Airborne Instrumentation for Astronomy VII, vol. 10702 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2018), p. 1070276.

Riehle, F.

J. M. Robinson, E. Oelker, W. R. Milner, W. Zhang, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Crystalline optical cavity at 4 k with thermal-noise-limited instability and ultralow drift,” Optica 6(2), 240–243 (2019).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 µ m Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s,” Opt. Lett. 39(17), 5102 (2014).
[Crossref]

F. Riehle, “Use of optical frequency standards for measurements of dimensional stability,” Meas. Sci. Technol. 9(7), 1042–1048 (1998).
[Crossref]

Robertson, P. M.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

Robinson, J. M.

J. M. Robinson, E. Oelker, W. R. Milner, W. Zhang, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Crystalline optical cavity at 4 k with thermal-noise-limited instability and ultralow drift,” Optica 6(2), 240–243 (2019).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 µ m Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref]

Roy, A.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

S. Halverson, S. Mahadevan, L. Ramsey, R. Terrien, A. Roy, C. Schwab, C. Bender, F. Hearty, E. Levi, S. Osterman, G. Ycas, and S. Diddams, “The habitable-zone planet finder calibration system,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91477Z.

Rutter, W.

T. M. McCracken, C. A. Jurgenson, D. A. Fischer, R. A. Stoll, A. E. Szymkowiak, J. Bradford, and W. Rutter, “Single-lock: a stable Fabry-Perot based wavelength calibrator,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91473L.

Salomon, C.

Sasselov, D.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1cms−1,” Nature 452(7187), 610–612 (2008).
[Crossref]

Schäfer, S.

S. Schäfer, E. W. Guenther, A. Reiners, J. Winkler, M. Pluto, and J. Schiller, “Two Fabry-Pérots and two calibration units for CARMENES,” in Ground-based and Airborne Instrumentation for Astronomy VII, vol. 10702 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2018), p. 1070276.

Schiller, J.

S. Schäfer, E. W. Guenther, A. Reiners, J. Winkler, M. Pluto, and J. Schiller, “Two Fabry-Pérots and two calibration units for CARMENES,” in Ground-based and Airborne Instrumentation for Astronomy VII, vol. 10702 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2018), p. 1070276.

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

Schwab, C.

J. Stürmer, A. Seifahrt, C. Schwab, and J. L. Bean, “Rubidium-traced white-light etalon calibrator for radial velocity measurements at the cm s−1 level,” J. Astron. Telesc. Instrum. Syst. 3(2), 025003 (2017).
[Crossref]

C. Schwab, J. Stürmer, Y. V. Gurevich, T. Führer, S. K. Lamoreaux, T. Walther, and A. Quirrenbach, “Stabilizing a fabry-perot etalon peak to 3 cm s−1 for spectrograph calibration,” Publ. Astron. Soc. Pac. 127(955), 880–889 (2015).
[Crossref]

S. Halverson, S. Mahadevan, L. Ramsey, R. Terrien, A. Roy, C. Schwab, C. Bender, F. Hearty, E. Levi, S. Osterman, G. Ycas, and S. Diddams, “The habitable-zone planet finder calibration system,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91477Z.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

Seifahrt, A.

J. Stürmer, A. Seifahrt, C. Schwab, and J. L. Bean, “Rubidium-traced white-light etalon calibrator for radial velocity measurements at the cm s−1 level,” J. Astron. Telesc. Instrum. Syst. 3(2), 025003 (2017).
[Crossref]

Sigurdsson, S.

Sizmann, A.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Sonderhouse, L.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 µ m Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref]

Steinmetz, T.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

Sterr, U.

Stoll, R. A.

T. M. McCracken, C. A. Jurgenson, D. A. Fischer, R. A. Stoll, A. E. Szymkowiak, J. Bradford, and W. Rutter, “Single-lock: a stable Fabry-Perot based wavelength calibrator,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91473L.

Stürmer, J.

J. Stürmer, A. Seifahrt, C. Schwab, and J. L. Bean, “Rubidium-traced white-light etalon calibrator for radial velocity measurements at the cm s−1 level,” J. Astron. Telesc. Instrum. Syst. 3(2), 025003 (2017).
[Crossref]

C. Schwab, J. Stürmer, Y. V. Gurevich, T. Führer, S. K. Lamoreaux, T. Walther, and A. Quirrenbach, “Stabilizing a fabry-perot etalon peak to 3 cm s−1 for spectrograph calibration,” Publ. Astron. Soc. Pac. 127(955), 880–889 (2015).
[Crossref]

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

Szentgyorgyi, A.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1cms−1,” Nature 452(7187), 610–612 (2008).
[Crossref]

Szymkowiak, A. E.

T. M. McCracken, C. A. Jurgenson, D. A. Fischer, R. A. Stoll, A. E. Szymkowiak, J. Bradford, and W. Rutter, “Single-lock: a stable Fabry-Perot based wavelength calibrator,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91473L.

Terrien, R.

Terrien, R. C.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

Udem, T.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Ulbrich, R. G.

A. Reiners, R. K. Banyal, and R. G. Ulbrich, “A laser-lock concept to reach cm-precision in doppler experiments with fabry-pérot wavelength calibrators,” Astron. Astrophys. 569, A77 (2014).
[Crossref]

Vaughan, J. M.

J. M. Vaughan, The Fabry-Perot interferometer. History, theory, practice and applications (1989).

Venditti, N.

S. Halverson, S. Mahadevan, L. Ramsey, F. Hearty, J. Wilson, J. Holtzman, S. Redman, G. Nave, D. Nidever, M. Nelson, N. Venditti, D. Bizyaev, and S. Fleming, “Development of fiber fabry-perot interferometers as stable near-infrared calibration sources for high resolution spectrographs,” Publ. Astron. Soc. Pac. 126(939), 445–458 (2014).
[Crossref]

Wallace, C. D.

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92(4-6), 277–282 (1992).
[Crossref]

Walsworth, R. L.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1cms−1,” Nature 452(7187), 610–612 (2008).
[Crossref]

Walther, T.

C. Schwab, J. Stürmer, Y. V. Gurevich, T. Führer, S. K. Lamoreaux, T. Walther, and A. Quirrenbach, “Stabilizing a fabry-perot etalon peak to 3 cm s−1 for spectrograph calibration,” Publ. Astron. Soc. Pac. 127(955), 880–889 (2015).
[Crossref]

Weyrich, R.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 µ m Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref]

Wildi, F.

F. Cersullo, F. Wildi, B. Chazelas, and F. Pepe, “A new infrared Fabry-Pérot-based radial-velocity-reference module for the SPIRou radial-velocity spectrograph,” Astron. Astrophys. 601, A102 (2017).
[Crossref]

F. Wildi, B. Chazelas, and F. Pepe, “A passive cost-effective solution for the high accuracy wavelength calibration of radial velocity spectrographs,” in Ground-based and Airborne Instrumentation for Astronomy IV, vol. 8446 of Proc. Soc. Photo-Opt. Instrum. Eng. (2012), p. 84468E.

Wilken, T.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

Wilksch, P. A.

Wilson, J.

S. Halverson, S. Mahadevan, L. Ramsey, F. Hearty, J. Wilson, J. Holtzman, S. Redman, G. Nave, D. Nidever, M. Nelson, N. Venditti, D. Bizyaev, and S. Fleming, “Development of fiber fabry-perot interferometers as stable near-infrared calibration sources for high resolution spectrographs,” Publ. Astron. Soc. Pac. 126(939), 445–458 (2014).
[Crossref]

Winkler, J.

S. Schäfer, E. W. Guenther, A. Reiners, J. Winkler, M. Pluto, and J. Schiller, “Two Fabry-Pérots and two calibration units for CARMENES,” in Ground-based and Airborne Instrumentation for Astronomy VII, vol. 10702 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2018), p. 1070276.

Wright, J. T.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

Ycas, G.

J. Jennings, S. Halverson, R. Terrien, S. Mahadevan, G. Ycas, and S. A. Diddams, “Frequency stability characterization of a broadband fiber Fabry-Pérot interferometer,” Opt. Express 25(14), 15599 (2017).
[Crossref]

G. Ycas, S. Osterman, and S. A. Diddams, “Generation of a 660-2100 nm laser frequency comb based on an erbium fiber laser,” Opt. Lett. 37(12), 2199 (2012).
[Crossref]

S. Halverson, S. Mahadevan, L. Ramsey, R. Terrien, A. Roy, C. Schwab, C. Bender, F. Hearty, E. Levi, S. Osterman, G. Ycas, and S. Diddams, “The habitable-zone planet finder calibration system,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91477Z.

Ycas, G. G.

Ye, J.

Zechmeister, M.

F. F. Bauer, M. Zechmeister, and A. Reiners, “Calibrating echelle spectrographs with Fabry-Pérot etalons,” Astron. Astrophys. 581, A117 (2015).
[Crossref]

Zhang, W.

J. M. Robinson, E. Oelker, W. R. Milner, W. Zhang, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Crystalline optical cavity at 4 k with thermal-noise-limited instability and ultralow drift,” Optica 6(2), 240–243 (2019).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 µ m Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref]

Zhu, M.

M. Zhu and J. L. Hall, “Short and long term stability of optical oscillators,” in Proceedings of the 1992 IEEE Frequency Control Symposium, (1992), pp. 44–55.

Appl. Opt. (3)

Astron. Astrophys. (5)

K. P. Reardon and F. Cavallini, “Characterization of Fabry-Perot interferometers and multi-etalon transmission profiles. The IBIS instrumental profile,” Astron. Astrophys. 481(3), 897–912 (2008).
[Crossref]

F. Cersullo, F. Wildi, B. Chazelas, and F. Pepe, “A new infrared Fabry-Pérot-based radial-velocity-reference module for the SPIRou radial-velocity spectrograph,” Astron. Astrophys. 601, A102 (2017).
[Crossref]

F. Cersullo, A. Coffinet, B. Chazelas, C. Lovis, and F. Pepe, “New wavelength calibration for echelle spectrographs using Fabry-Pérot etalons,” Astron. Astrophys. 624, A122 (2019).
[Crossref]

A. Reiners, R. K. Banyal, and R. G. Ulbrich, “A laser-lock concept to reach cm-precision in doppler experiments with fabry-pérot wavelength calibrators,” Astron. Astrophys. 569, A77 (2014).
[Crossref]

F. F. Bauer, M. Zechmeister, and A. Reiners, “Calibrating echelle spectrographs with Fabry-Pérot etalons,” Astron. Astrophys. 581, A117 (2015).
[Crossref]

Astrophys. J. (2)

C. Fabry and A. Perot, “On a New Form of Interferometer,” Astrophys. J. 13, 265 (1901).
[Crossref]

H. Buisson, C. Fabry, and H. Bourget, “An application of interference to the the study of the Orion nebula,” Astrophys. J. 40, 241–258 (1914).
[Crossref]

Eur. Phys. J. D (1)

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

J. Astron. Telesc. Instrum. Syst. (1)

J. Stürmer, A. Seifahrt, C. Schwab, and J. L. Bean, “Rubidium-traced white-light etalon calibrator for radial velocity measurements at the cm s−1 level,” J. Astron. Telesc. Instrum. Syst. 3(2), 025003 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

F. Riehle, “Use of optical frequency standards for measurements of dimensional stability,” Meas. Sci. Technol. 9(7), 1042–1048 (1998).
[Crossref]

Mon. Not. R. Astron. Soc. (1)

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[Crossref]

Nature (2)

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1cms−1,” Nature 452(7187), 610–612 (2008).
[Crossref]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref]

Opt. Acta (1)

R. M. Hill, “Some Fringe-broadening Defects in a Fabry-Perot Étalon,” Opt. Acta 10(2), 141–152 (1963).
[Crossref]

Opt. Commun. (1)

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92(4-6), 277–282 (1992).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

C. Affolderbach and G. Mileti, “Tuneable, stabilised diode lasers for compact atomic frequency standards and precision wavelength references,” Opt. Lasers Eng. 43(3-5), 291–302 (2005).
[Crossref]

Opt. Lett. (2)

Optica (1)

Phys. Rev. Lett. (1)

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 µ m Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref]

Publ. Astron. Soc. Pac. (2)

C. Schwab, J. Stürmer, Y. V. Gurevich, T. Führer, S. K. Lamoreaux, T. Walther, and A. Quirrenbach, “Stabilizing a fabry-perot etalon peak to 3 cm s−1 for spectrograph calibration,” Publ. Astron. Soc. Pac. 127(955), 880–889 (2015).
[Crossref]

S. Halverson, S. Mahadevan, L. Ramsey, F. Hearty, J. Wilson, J. Holtzman, S. Redman, G. Nave, D. Nidever, M. Nelson, N. Venditti, D. Bizyaev, and S. Fleming, “Development of fiber fabry-perot interferometers as stable near-infrared calibration sources for high resolution spectrographs,” Publ. Astron. Soc. Pac. 126(939), 445–458 (2014).
[Crossref]

Science (1)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

Other (9)

S. Halverson, S. Mahadevan, L. Ramsey, R. Terrien, A. Roy, C. Schwab, C. Bender, F. Hearty, E. Levi, S. Osterman, G. Ycas, and S. Diddams, “The habitable-zone planet finder calibration system,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91477Z.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien, P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W. McElwain, C. F. Bender, C. H. Blake, J. Stürmer, Y. V. Gurevich, A. Chakraborty, and L. W. Ramsey, “Design of NEID, an extreme precision Doppler spectrograph for WIYN,” in Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908 of Proc. Soc. Photo-Opt. Instrum. Eng. (2016), p. 99087H.

C. Lovis and D. Fischer, Radial Velocity Techniques for Exoplanets (2010), pp. 27–53.

F. Wildi, B. Chazelas, and F. Pepe, “A passive cost-effective solution for the high accuracy wavelength calibration of radial velocity spectrographs,” in Ground-based and Airborne Instrumentation for Astronomy IV, vol. 8446 of Proc. Soc. Photo-Opt. Instrum. Eng. (2012), p. 84468E.

T. M. McCracken, C. A. Jurgenson, D. A. Fischer, R. A. Stoll, A. E. Szymkowiak, J. Bradford, and W. Rutter, “Single-lock: a stable Fabry-Perot based wavelength calibrator,” in Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Proc. Soc. Photo-Opt. Instrum. Eng. (2014), p. 91473L.

J. M. Vaughan, The Fabry-Perot interferometer. History, theory, practice and applications (1989).

M. Zhu and J. L. Hall, “Short and long term stability of optical oscillators,” in Proceedings of the 1992 IEEE Frequency Control Symposium, (1992), pp. 44–55.

One may expect the nonlinearity in the laser scans to induce a signal noise (‘ringing’) in the calibration tick signal as the heterodyne beat between the CW laser and comb passes through the RF bandpass windows used to generate the ticks. We find no such discernible ringing and thus are confident that our Gaussian fits to individual ticks are not systematically biasing the separation between ticks over the nonlinear scan, i.e., that we are justified in assuming the separation between the fitted Gaussians to neighboring ticks is 62.5 MHz.

S. Schäfer, E. W. Guenther, A. Reiners, J. Winkler, M. Pluto, and J. Schiller, “Two Fabry-Pérots and two calibration units for CARMENES,” in Ground-based and Airborne Instrumentation for Astronomy VII, vol. 10702 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2018), p. 1070276.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. NIR and visible etalons. a) Schematic of both Fabry-Pérot etalons under study. Cavity length and fiber types for the NIR etalon are in red text, those for the visible etalon in green. ULE, ultra low expansion glass; OAP, off-axis parabolic mirror; APC, angled physical contact connector; SMF, single mode fiber; LMA, large mode area; 780HP SMF, Thorlabs single mode fiber; LMA-5 ESMF, NKT Photonics endlessly single mode fiber. b) Photo of the visible etalon face-on and diagram showing components and scale (dimensions of NIR etalon in red, of visible etalon in green). c) Concept of the laboratory characterization scheme. CW lasers are scanned across spectrally displaced FP resonances while their frequency positions are tracked relative to a 250 MHz, self-referenced optical frequency comb. Frequencies in red text correspond to the NIR etalon setup, those in green to the visible etalon setup (780 nm is common to both systems). d) More detailed experimental configuration for both etalons, showing major optical and radio frequency components used to scan the FP resonances. Components in red text are unique to the NIR etalon setup (a portion of the 780 nm light in the NIR setup is sent through a rubidium saturated absorption cell), those in green text to the visible etalon setup (light from the 1064 and 1319 nm CWs is frequency doubled before entering the visible etalon). Three lasers are employed, with either the 780 nm or 1064 nm laser selected for a specific measurement in the NIR setup, while all 3 scan simultaneously in the visible setup. D, photodiode; Rb sat. spec., a rubidium saturated absorption spectroscopy setup; $2\nu$ , frequency doubler.
Fig. 2.
Fig. 2. NIR etalon. a) Normalized transmission of the etalon resonance at 384.2 THz ( $\approx 780$ nm) for a single scan, with Lorentzian fit shown and fit linewidth $\Delta \nu$ given. The calibration ‘ticks’ used to define and interpolate the frequency axis are shown above. Residuals to the Lorentzian fit at the $1\%$ level (normalized to the fit peak) are shown below with a 5 MHz rolling average and vertical lines indicating the fit peak and FWHM. b – c) As in (a) for the resonances at 281.6 THz and 227.2 THz ( $\approx 1064$ nm and 1319 nm).
Fig. 3.
Fig. 3. Visible etalon. a) Normalized transmission of the etalon resonance at 384.2 THz ( $\approx 780$ nm) for a single scan, with Lorentzian fit shown and fit linewidth $\Delta \nu$ given. The calibration ’ticks’ used to define and interpolate the frequency axis are shown above. Residuals to the Lorentzian fit at the few % level (normalized to the fit peak) are shown below with a 5 MHz rolling average and vertical lines indicating the fit peak and FWHM. b – c) As in (a) for the resonances at 563.2 THz and 454.4 THz ( $\approx 532$ nm and 660 nm).
Fig. 4.
Fig. 4. a) Saturated absorption features of atomic rubidium lines $^{87}$ Rb D $_2$ and $^{85}$ Rb D $_2$ (780.24 nm) as measured over a single scan of the 780 nm laser that simultaneously traces the NIR etalon resonance. The frequency axis is arbitrarily offset by the scan centerpoint. Insets zoom on the Doppler-free hyperfine transitions (including crossover, ’co.’, transitions) that superimpose on the Doppler broadened peaks. The left inset shows $F = 2 \rightarrow F'$ features for $^{87}$ Rb D $_2$ and the right inset $F = 3 \rightarrow F'$ for $^{85}$ Rb D $_2$ . b) Fit of a sloped double Lorentzian to the $^{87}$ Rb D $_2,\ F = 2 \rightarrow F' = 3,1$ co. and $F = 2 \rightarrow F' = 3,2$ co. lines. All labeled features in (a) are fit over the full timespan of Fig. 6(a). c) Frequency of the $^{87}$ Rb D $_2,\ F = 2 \rightarrow F' = 3,1$ co. line over the timespan of Fig. 6(a). d) Allan deviation of the data in (c), showing no discernible linear drift down to the 50 kHz level over periods of a few days.
Fig. 5.
Fig. 5. NIR etalon. a) Frequency response of the 1064 nm resonance to heating of the cavity by a 976 nm broadband ( $\approx 1$ nm) source. Inset: The trial at $P_{\textrm {incident}} = 19$ mW. All trials have 12 hr duration. Error bars are the single measurement frequency uncertainties (Allan deviations) for each trial. b) Frequency response of the 1064 nm and 1319 nm resonances to steps in the cavity temperature setpoint. Inset: The 1064 resonance frequency response during the trial in which the temperature is stepped from 36.5 $^{\circ}$ C to 38.5 $^{\circ}$ C. All trials have 25 hr duration. Uncertainty on the linear fits in (a) and (b) is of order 1%. c) – f) Resonance frequency sensitivity to temperature in ambient conditions (when the temperature is held at $32.5\ ^{\circ}\textrm {C}$ and the input power $<500\ \mu \textrm {W}$ ). c) Relative resonance frequency at 1064 nm during a typical 25 hr segment of data. d) Temperature reported by a witness thermistor on the thermal shield surrounding the etalon. e) Ambient lab temperature. f) Resonance frequency as a function of lab temperature.
Fig. 6.
Fig. 6. NIR etalon. a) Frequency drift $df/dt$ of the etalon resonance at 780 nm as the materials age, with a linear fit shown whose slope and uncertainty as reported by the linear regression are given in the legend. Residuals to this fit are shown below, as well as Allan deviations for the frequency stability of the resonance frequency with the drift (solid line) and for the residuals (dashed). b – c) As in (a) for the 1064 nm and 1319 nm resonances. Drift rates are examined in Section 4.2. The reduced scatter in the 1319 nm data after day 9 is a result of improved SNR. In the NIR setup, the 1319 nm resonance is scanned during all measurement periods, while either the 780 nm or 1064 nm resonance is selected for a specific measurement.
Fig. 7.
Fig. 7. Visible etalon. a) Frequency drift $df/dt$ of the etalon resonance at 780 nm as the materials age, with a linear fit shown whose slope and uncertainty as reported by the linear regression are given in the legend. Residuals to this fit are shown below, as well as Allan deviations for the frequency stability of the resonance frequency with the drift (solid line) and for the residuals (dashed). b – c) As in (a) for the 532 nm and 660 nm resonances.
Fig. 8.
Fig. 8. NIR and visible etalons. a) Frequency drift rate $df/dt$ for the NIR etalon resonances at 780 nm, 1064 nm and 1319 nm, shown in successively larger cumulative portions of the full dataset to demonstrate how the rates evolve as observation time increases. All points have $1\sigma$ error bars. In the NIR setup, the 1319 nm resonance is scanned during all measurement periods, while either the 780 nm or 1064 nm resonance is selected for a specific measurement. b) As in (a) for the visible etalon resonances at 780 nm, 532 nm and 660 nm.
Fig. 9.
Fig. 9. NIR etalon. a) 2D histogram of residuals to a Lorentzian fit on the 1064 nm resonance for 12 hr of continuous data ( $\approx 500$ resonance scans; compare with residuals for a single scan in Fig. 2(b)). Residuals are normalized to the mean Lorentzian fit amplitude across all scans. Vertical lines show the mean fit linecenter and linewidth. Data are binned in 10 MHz intervals and 100 bins in normalized amplitude. The linear colorbar at right (common to all subplots excluding (d)) shows counts in each bin, with a minimum of 5000 counts. b) As in (a) for the 1319 nm resonance (compare with residuals for a single scan in Fig. 2(c)). c) As in (a) for the 780 nm resonance (compare with residuals for a single scan in Fig. 2(a)). d) A Lorentzian profile fit to one of the resonance scans used to produce (a), as well as the fit’s third derivative. The third derivative is qualitatively similar to the structure in (a), as discussed in Appendix A. e) Parasitic etaloning can alter the structure in (a) – (c). Here is shown a case of parasitic etaloning at 1319 nm, with 3 hr of continuous data used to produce the histogram. This demonstrates both the parasite stability on the same timescale and its ability to set the envelope of the residuals in (a) – (c). f) A case of more severe parasitic etaloning at 1319 nm (using 12 hr of continuous data), showing the distortion to the underlying residual structure in (b).

Tables (2)

Tables Icon

Table 1. Targeted and measured mechanical and optical properties of the near infrared and visible etalons under investigation. The NIR etalon is designed for the Habitable Zone Planet Finder (HPF) spectrograph, the visible etalon for the NN-EXPLORE Exoplanet Investigations with Doppler Spectroscopy (NEID) spectrograph.

Tables Icon

Table 2. Theoretical and measured drifts of the near infrared and visible etalons under investigation. See Section 4.2 for an explanation and Section 5 for a discussion of these values.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 π m = k 2 L + 2 ϕ r ,
ω m = c L ( π m ϕ r ) ,
Δ ω m Δ L = c L 2 ( π m ϕ r ) c L Δ ϕ r Δ L ,

Metrics