Abstract

We report a novel hollow-core asymmetric conjoined-tube anti-resonant (HC-ACTAR) fiber for efficient and low-loss THz wave guidance. The cladding tubes of the proposed HC-ACTAR fiber is formed by conjoining a half circle and a half elliptical tube and is placed in the radial direction. We observe that the proposed fiber is superior in terms of achieving low-loss and low dispersion in a wide range of frequencies than the previously reported designs. We show that our proposed HC-ACTAR fiber ensures lowest loss of 0.034 dB/m at 1 THz and marinates a low-loss window of 0.5 THz. Moreover, the proposed fiber has promising optical properties in the THz regime such as low bending loss, broadband flattened dispersion, and effective single-mode guidance, which are essential for efficient THz wave guidance.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Redo-Sanchez and X.-C. Zhang, “Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14(2), 260–269 (2008).
    [Crossref]
  2. S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
    [Crossref]
  3. S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
    [Crossref]
  4. J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Kaushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14 (2020).
    [Crossref]
  5. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
    [Crossref]
  6. A. Argyros, “Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials,” ISRN Opt. 2013, 1–22 (2013).
    [Crossref]
  7. M. S. Islam, J. Sultana, M. Faisal, M. R. Islam, A. Dinovitser, B. W. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
    [Crossref]
  8. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
    [Crossref]
  9. M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23(13), 17394–17406 (2015).
    [Crossref]
  10. Y. Wang, M. I. Hasan, M. R. A. Hassan, and W. Chang, “Effect of the second ring of antiresonant tubes in negative-curvature fibers,” Opt. Express 28(2), 1168–1176 (2020).
    [Crossref]
  11. V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
    [Crossref]
  12. W. Lu, S. Lou, and A. Argyros, “Investigation of flexible low-loss hollow-core fibres with tube-lattice cladding for terahertz radiation,” IEEE J. Sel. Top. Quantum Electron. 22(2), 214–220 (2016).
    [Crossref]
  13. G. Hasanuzzaman, S. Iezekiel, C. Markos, and M. S. Habib, “Hollow-core fiber with nested anti-resonant tubes for low-loss THz guidance,” Opt. Commun. 426, 477–482 (2018).
    [Crossref]
  14. M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24(8), 8429–8436 (2016).
    [Crossref]
  15. A. Van Newkirk, J. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, Z. S. Eznaveh, G. Lopez-Galmiche, R. Amezcua-Correa, and A. Schülzgen, “Modal analysis of antiresonant hollow core fibers using s2 imaging,” Opt. Lett. 41(14), 3277–3280 (2016).
    [Crossref]
  16. H. Xiao, H. Li, B. Wu, Y. Dong, S. Xiao, and S. Jian, “Low-loss polarization-maintaining hollow-core anti-resonant terahertz fiber,” J. Opt. 21(8), 085708 (2019).
    [Crossref]
  17. M. A. Mollah, S. Rana, and H. Subbaraman, “Polarization filter realization using low-loss hollow-core anti-resonant fiber in THz regime,” Results Phys. 17, 103092 (2020).
    [Crossref]
  18. F.-C. Meng, B.-W. Liu, Y.-F. Li, C.-Y. Wang, and M.-L. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
    [Crossref]
  19. S.-f. Gao, Y.-y. Wang, W. Ding, D.-l. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
    [Crossref]
  20. A. Ge, F. Meng, Y. Li, B. Liu, and M. Hu, “Higher-order mode suppression in antiresonant nodeless hollow-core fibers,” Micromachines 10(2), 128 (2019).
    [Crossref]
  21. J. Anthony, R. Leonhardt, A. Argyros, and M. C. Large, “Characterization of a microstructured zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011).
    [Crossref]
  22. J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss THz waveguide based on kagome photonic crystal structure,” Opt. Express 24(20), 22454–22460 (2016).
    [Crossref]
  23. A. L. Cruz, C. Cordeiro, and M. A. Franco, “3D printed hollow-core terahertz fibers,” Fibers 6(3), 43 (2018).
    [Crossref]
  24. L. Van Putten, J. Gorecki, E. N. Fokoua, V. Apostolopoulos, and F. Poletti, “3D-printed polymer antiresonant waveguides for short-reach terahertz applications,” Appl. Opt. 57(14), 3953–3958 (2018).
    [Crossref]
  25. A. Ventura, J. G. Hayashi, J. Cimek, F. B. Slimen, N. White, H. Sakr, N. V. Wheeler, and F. Poletti, “Tellurite antiresonant hollow core microstructured fiber for mid-ir power delivery,” in Laser Science (Optical Society of America, 2019), pp. JTu4A–17
  26. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
    [Crossref]
  27. R. M. Carter, F. Yu, W. J. Wadsworth, J. D. Shephard, T. Birks, J. C. Knight, and D. P. Hand, “Measurement of resonant bend loss in anti-resonant hollow core optical fiber,” Opt. Express 25(17), 20612–20621 (2017).
    [Crossref]
  28. W. Belardi, “Design and properties of hollow antiresonant fibers for the visible and near infrared spectral range,” J. Lightwave Technol. 33(21), 4497–4503 (2015).
    [Crossref]
  29. M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
    [Crossref]
  30. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
    [Crossref]

2020 (3)

Y. Wang, M. I. Hasan, M. R. A. Hassan, and W. Chang, “Effect of the second ring of antiresonant tubes in negative-curvature fibers,” Opt. Express 28(2), 1168–1176 (2020).
[Crossref]

M. A. Mollah, S. Rana, and H. Subbaraman, “Polarization filter realization using low-loss hollow-core anti-resonant fiber in THz regime,” Results Phys. 17, 103092 (2020).
[Crossref]

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Kaushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14 (2020).
[Crossref]

2019 (2)

H. Xiao, H. Li, B. Wu, Y. Dong, S. Xiao, and S. Jian, “Low-loss polarization-maintaining hollow-core anti-resonant terahertz fiber,” J. Opt. 21(8), 085708 (2019).
[Crossref]

A. Ge, F. Meng, Y. Li, B. Liu, and M. Hu, “Higher-order mode suppression in antiresonant nodeless hollow-core fibers,” Micromachines 10(2), 128 (2019).
[Crossref]

2018 (6)

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

L. Van Putten, J. Gorecki, E. N. Fokoua, V. Apostolopoulos, and F. Poletti, “3D-printed polymer antiresonant waveguides for short-reach terahertz applications,” Appl. Opt. 57(14), 3953–3958 (2018).
[Crossref]

M. S. Islam, J. Sultana, M. Faisal, M. R. Islam, A. Dinovitser, B. W. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
[Crossref]

G. Hasanuzzaman, S. Iezekiel, C. Markos, and M. S. Habib, “Hollow-core fiber with nested anti-resonant tubes for low-loss THz guidance,” Opt. Commun. 426, 477–482 (2018).
[Crossref]

A. L. Cruz, C. Cordeiro, and M. A. Franco, “3D printed hollow-core terahertz fibers,” Fibers 6(3), 43 (2018).
[Crossref]

S.-f. Gao, Y.-y. Wang, W. Ding, D.-l. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

2017 (3)

F.-C. Meng, B.-W. Liu, Y.-F. Li, C.-Y. Wang, and M.-L. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

R. M. Carter, F. Yu, W. J. Wadsworth, J. D. Shephard, T. Birks, J. C. Knight, and D. P. Hand, “Measurement of resonant bend loss in anti-resonant hollow core optical fiber,” Opt. Express 25(17), 20612–20621 (2017).
[Crossref]

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

2016 (4)

2015 (2)

2014 (2)

2013 (3)

2011 (1)

2008 (2)

S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
[Crossref]

A. Redo-Sanchez and X.-C. Zhang, “Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14(2), 260–269 (2008).
[Crossref]

2001 (1)

Abbott, D.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Kaushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14 (2020).
[Crossref]

M. S. Islam, J. Sultana, M. Faisal, M. R. Islam, A. Dinovitser, B. W. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
[Crossref]

S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
[Crossref]

Afshar, S.

Alvarez-Aguirre, R.

Amezcua-Correa, R.

Anderson, J.

Anthony, J.

Antonio-Lopez, J.

Apostolopoulos, V.

Argyros, A.

W. Lu, S. Lou, and A. Argyros, “Investigation of flexible low-loss hollow-core fibres with tube-lattice cladding for terahertz radiation,” IEEE J. Sel. Top. Quantum Electron. 22(2), 214–220 (2016).
[Crossref]

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
[Crossref]

A. Argyros, “Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials,” ISRN Opt. 2013, 1–22 (2013).
[Crossref]

J. Anthony, R. Leonhardt, A. Argyros, and M. C. Large, “Characterization of a microstructured zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011).
[Crossref]

Atakaramians, S.

Bache, M.

Bang, O.

Belardi, W.

Biriukov, A. S.

Birks, T.

Carter, R. M.

Chang, W.

Chen, P.

Cimek, J.

A. Ventura, J. G. Hayashi, J. Cimek, F. B. Slimen, N. White, H. Sakr, N. V. Wheeler, and F. Poletti, “Tellurite antiresonant hollow core microstructured fiber for mid-ir power delivery,” in Laser Science (Optical Society of America, 2019), pp. JTu4A–17

Cordeiro, C.

A. L. Cruz, C. Cordeiro, and M. A. Franco, “3D printed hollow-core terahertz fibers,” Fibers 6(3), 43 (2018).
[Crossref]

Cordeiro, C. M. B.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Kaushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14 (2020).
[Crossref]

Cruz, A. L.

A. L. Cruz, C. Cordeiro, and M. A. Franco, “3D printed hollow-core terahertz fibers,” Fibers 6(3), 43 (2018).
[Crossref]

Dianov, E. M.

Ding, W.

S.-f. Gao, Y.-y. Wang, W. Ding, D.-l. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Dinovitser, A.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Kaushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14 (2020).
[Crossref]

M. S. Islam, J. Sultana, M. Faisal, M. R. Islam, A. Dinovitser, B. W. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
[Crossref]

Dong, Y.

H. Xiao, H. Li, B. Wu, Y. Dong, S. Xiao, and S. Jian, “Low-loss polarization-maintaining hollow-core anti-resonant terahertz fiber,” J. Opt. 21(8), 085708 (2019).
[Crossref]

Eznaveh, Z. S.

Faisal, M.

M. S. Islam, J. Sultana, M. Faisal, M. R. Islam, A. Dinovitser, B. W. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
[Crossref]

Fischer, B. M.

Fokoua, E. N.

Franco, M. A.

A. L. Cruz, C. Cordeiro, and M. A. Franco, “3D printed hollow-core terahertz fibers,” Fibers 6(3), 43 (2018).
[Crossref]

Frosz, M. H.

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

Gao, S.-f.

S.-f. Gao, Y.-y. Wang, W. Ding, D.-l. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Ge, A.

A. Ge, F. Meng, Y. Li, B. Liu, and M. Hu, “Higher-order mode suppression in antiresonant nodeless hollow-core fibers,” Micromachines 10(2), 128 (2019).
[Crossref]

Gong, C.

Gorecki, J.

Grischkowsky, D.

Gu, S.

S.-f. Gao, Y.-y. Wang, W. Ding, D.-l. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Günendi, M. C.

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

Habib, M. S.

Hand, D. P.

Hasan, M. I.

Hasanuzzaman, G.

G. Hasanuzzaman, S. Iezekiel, C. Markos, and M. S. Habib, “Hollow-core fiber with nested anti-resonant tubes for low-loss THz guidance,” Opt. Commun. 426, 477–482 (2018).
[Crossref]

Hassan, M. R. A.

Hayashi, J. G.

A. Ventura, J. G. Hayashi, J. Cimek, F. B. Slimen, N. White, H. Sakr, N. V. Wheeler, and F. Poletti, “Tellurite antiresonant hollow core microstructured fiber for mid-ir power delivery,” in Laser Science (Optical Society of America, 2019), pp. JTu4A–17

Hu, M.

A. Ge, F. Meng, Y. Li, B. Liu, and M. Hu, “Higher-order mode suppression in antiresonant nodeless hollow-core fibers,” Micromachines 10(2), 128 (2019).
[Crossref]

Hu, M.-L.

F.-C. Meng, B.-W. Liu, Y.-F. Li, C.-Y. Wang, and M.-L. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

Iezekiel, S.

G. Hasanuzzaman, S. Iezekiel, C. Markos, and M. S. Habib, “Hollow-core fiber with nested anti-resonant tubes for low-loss THz guidance,” Opt. Commun. 426, 477–482 (2018).
[Crossref]

Islam, M. R.

M. S. Islam, J. Sultana, M. Faisal, M. R. Islam, A. Dinovitser, B. W. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
[Crossref]

Islam, M. S.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Kaushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14 (2020).
[Crossref]

M. S. Islam, J. Sultana, M. Faisal, M. R. Islam, A. Dinovitser, B. W. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
[Crossref]

Jian, S.

H. Xiao, H. Li, B. Wu, Y. Dong, S. Xiao, and S. Jian, “Low-loss polarization-maintaining hollow-core anti-resonant terahertz fiber,” J. Opt. 21(8), 085708 (2019).
[Crossref]

Jiang, D.-l.

S.-f. Gao, Y.-y. Wang, W. Ding, D.-l. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Kaushik, M.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Kaushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14 (2020).
[Crossref]

Knight, J. C.

Kolyadin, A. N.

Kosolapov, A. F.

Large, M. C.

Leonhardt, R.

Li, H.

H. Xiao, H. Li, B. Wu, Y. Dong, S. Xiao, and S. Jian, “Low-loss polarization-maintaining hollow-core anti-resonant terahertz fiber,” J. Opt. 21(8), 085708 (2019).
[Crossref]

Li, Y.

A. Ge, F. Meng, Y. Li, B. Liu, and M. Hu, “Higher-order mode suppression in antiresonant nodeless hollow-core fibers,” Micromachines 10(2), 128 (2019).
[Crossref]

Li, Y.-F.

F.-C. Meng, B.-W. Liu, Y.-F. Li, C.-Y. Wang, and M.-L. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

Lin, L.

Liu, B.

A. Ge, F. Meng, Y. Li, B. Liu, and M. Hu, “Higher-order mode suppression in antiresonant nodeless hollow-core fibers,” Micromachines 10(2), 128 (2019).
[Crossref]

Liu, B.-W.

F.-C. Meng, B.-W. Liu, Y.-F. Li, C.-Y. Wang, and M.-L. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

Liu, W.

Lopez-Galmiche, G.

Lou, S.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

W. Lu, S. Lou, and A. Argyros, “Investigation of flexible low-loss hollow-core fibres with tube-lattice cladding for terahertz radiation,” IEEE J. Sel. Top. Quantum Electron. 22(2), 214–220 (2016).
[Crossref]

Lu, W.

W. Lu, S. Lou, and A. Argyros, “Investigation of flexible low-loss hollow-core fibres with tube-lattice cladding for terahertz radiation,” IEEE J. Sel. Top. Quantum Electron. 22(2), 214–220 (2016).
[Crossref]

Markos, C.

G. Hasanuzzaman, S. Iezekiel, C. Markos, and M. S. Habib, “Hollow-core fiber with nested anti-resonant tubes for low-loss THz guidance,” Opt. Commun. 426, 477–482 (2018).
[Crossref]

Mendis, R.

Meng, F.

A. Ge, F. Meng, Y. Li, B. Liu, and M. Hu, “Higher-order mode suppression in antiresonant nodeless hollow-core fibers,” Micromachines 10(2), 128 (2019).
[Crossref]

Meng, F.-C.

F.-C. Meng, B.-W. Liu, Y.-F. Li, C.-Y. Wang, and M.-L. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

Mollah, M. A.

M. A. Mollah, S. Rana, and H. Subbaraman, “Polarization filter realization using low-loss hollow-core anti-resonant fiber in THz regime,” Results Phys. 17, 103092 (2020).
[Crossref]

Monro, T. M.

Ng, B. W.

M. S. Islam, J. Sultana, M. Faisal, M. R. Islam, A. Dinovitser, B. W. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
[Crossref]

Ng, B. W.-H.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Kaushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14 (2020).
[Crossref]

Plotnichenko, V. G.

Poletti, F.

L. Van Putten, J. Gorecki, E. N. Fokoua, V. Apostolopoulos, and F. Poletti, “3D-printed polymer antiresonant waveguides for short-reach terahertz applications,” Appl. Opt. 57(14), 3953–3958 (2018).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref]

A. Ventura, J. G. Hayashi, J. Cimek, F. B. Slimen, N. White, H. Sakr, N. V. Wheeler, and F. Poletti, “Tellurite antiresonant hollow core microstructured fiber for mid-ir power delivery,” in Laser Science (Optical Society of America, 2019), pp. JTu4A–17

Pryamikov, A. D.

Rana, S.

M. A. Mollah, S. Rana, and H. Subbaraman, “Polarization filter realization using low-loss hollow-core anti-resonant fiber in THz regime,” Results Phys. 17, 103092 (2020).
[Crossref]

Redo-Sanchez, A.

A. Redo-Sanchez and X.-C. Zhang, “Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14(2), 260–269 (2008).
[Crossref]

Roth, P.

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

Russell, P. S. J.

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

Sakr, H.

A. Ventura, J. G. Hayashi, J. Cimek, F. B. Slimen, N. White, H. Sakr, N. V. Wheeler, and F. Poletti, “Tellurite antiresonant hollow core microstructured fiber for mid-ir power delivery,” in Laser Science (Optical Society of America, 2019), pp. JTu4A–17

Schülzgen, A.

Setti, V.

Shephard, J. D.

Slimen, F. B.

A. Ventura, J. G. Hayashi, J. Cimek, F. B. Slimen, N. White, H. Sakr, N. V. Wheeler, and F. Poletti, “Tellurite antiresonant hollow core microstructured fiber for mid-ir power delivery,” in Laser Science (Optical Society of America, 2019), pp. JTu4A–17

Subbaraman, H.

M. A. Mollah, S. Rana, and H. Subbaraman, “Polarization filter realization using low-loss hollow-core anti-resonant fiber in THz regime,” Results Phys. 17, 103092 (2020).
[Crossref]

Sultana, J.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Kaushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14 (2020).
[Crossref]

M. S. Islam, J. Sultana, M. Faisal, M. R. Islam, A. Dinovitser, B. W. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
[Crossref]

Sun, L.

Tian, H.

Van Newkirk, A.

Van Putten, L.

Ventura, A.

A. Ventura, J. G. Hayashi, J. Cimek, F. B. Slimen, N. White, H. Sakr, N. V. Wheeler, and F. Poletti, “Tellurite antiresonant hollow core microstructured fiber for mid-ir power delivery,” in Laser Science (Optical Society of America, 2019), pp. JTu4A–17

Vincetti, L.

Wadsworth, W. J.

Wang, C.-Y.

F.-C. Meng, B.-W. Liu, Y.-F. Li, C.-Y. Wang, and M.-L. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

Wang, P.

S.-f. Gao, Y.-y. Wang, W. Ding, D.-l. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Wang, X.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Wang, Y.

Wang, Y.-y.

S.-f. Gao, Y.-y. Wang, W. Ding, D.-l. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Wheeler, N. V.

A. Ventura, J. G. Hayashi, J. Cimek, F. B. Slimen, N. White, H. Sakr, N. V. Wheeler, and F. Poletti, “Tellurite antiresonant hollow core microstructured fiber for mid-ir power delivery,” in Laser Science (Optical Society of America, 2019), pp. JTu4A–17

White, N.

A. Ventura, J. G. Hayashi, J. Cimek, F. B. Slimen, N. White, H. Sakr, N. V. Wheeler, and F. Poletti, “Tellurite antiresonant hollow core microstructured fiber for mid-ir power delivery,” in Laser Science (Optical Society of America, 2019), pp. JTu4A–17

Wu, B.

H. Xiao, H. Li, B. Wu, Y. Dong, S. Xiao, and S. Jian, “Low-loss polarization-maintaining hollow-core anti-resonant terahertz fiber,” J. Opt. 21(8), 085708 (2019).
[Crossref]

Xiao, H.

H. Xiao, H. Li, B. Wu, Y. Dong, S. Xiao, and S. Jian, “Low-loss polarization-maintaining hollow-core anti-resonant terahertz fiber,” J. Opt. 21(8), 085708 (2019).
[Crossref]

Xiao, S.

H. Xiao, H. Li, B. Wu, Y. Dong, S. Xiao, and S. Jian, “Low-loss polarization-maintaining hollow-core anti-resonant terahertz fiber,” J. Opt. 21(8), 085708 (2019).
[Crossref]

Yan, S.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Yang, J.

Yu, F.

Zhang, W.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Zhang, X.

S.-f. Gao, Y.-y. Wang, W. Ding, D.-l. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Zhang, X.-C.

A. Redo-Sanchez and X.-C. Zhang, “Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14(2), 260–269 (2008).
[Crossref]

Zhao, J.

Zhao, T.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Appl. Opt. (1)

Fibers (2)

A. L. Cruz, C. Cordeiro, and M. A. Franco, “3D printed hollow-core terahertz fibers,” Fibers 6(3), 43 (2018).
[Crossref]

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Kaushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14 (2020).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Redo-Sanchez and X.-C. Zhang, “Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14(2), 260–269 (2008).
[Crossref]

W. Lu, S. Lou, and A. Argyros, “Investigation of flexible low-loss hollow-core fibres with tube-lattice cladding for terahertz radiation,” IEEE J. Sel. Top. Quantum Electron. 22(2), 214–220 (2016).
[Crossref]

IEEE Photonics J. (1)

F.-C. Meng, B.-W. Liu, Y.-F. Li, C.-Y. Wang, and M.-L. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

ISRN Opt. (1)

A. Argyros, “Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials,” ISRN Opt. 2013, 1–22 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

H. Xiao, H. Li, B. Wu, Y. Dong, S. Xiao, and S. Jian, “Low-loss polarization-maintaining hollow-core anti-resonant terahertz fiber,” J. Opt. 21(8), 085708 (2019).
[Crossref]

J. Opt. Soc. Am. B (1)

Micromachines (1)

A. Ge, F. Meng, Y. Li, B. Liu, and M. Hu, “Higher-order mode suppression in antiresonant nodeless hollow-core fibers,” Micromachines 10(2), 128 (2019).
[Crossref]

Nat. Commun. (1)

S.-f. Gao, Y.-y. Wang, W. Ding, D.-l. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Opt. Commun. (1)

G. Hasanuzzaman, S. Iezekiel, C. Markos, and M. S. Habib, “Hollow-core fiber with nested anti-resonant tubes for low-loss THz guidance,” Opt. Commun. 426, 477–482 (2018).
[Crossref]

Opt. Express (9)

M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24(8), 8429–8436 (2016).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref]

M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23(13), 17394–17406 (2015).
[Crossref]

Y. Wang, M. I. Hasan, M. R. A. Hassan, and W. Chang, “Effect of the second ring of antiresonant tubes in negative-curvature fibers,” Opt. Express 28(2), 1168–1176 (2020).
[Crossref]

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
[Crossref]

S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
[Crossref]

J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss THz waveguide based on kagome photonic crystal structure,” Opt. Express 24(20), 22454–22460 (2016).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref]

R. M. Carter, F. Yu, W. J. Wadsworth, J. D. Shephard, T. Birks, J. C. Knight, and D. P. Hand, “Measurement of resonant bend loss in anti-resonant hollow core optical fiber,” Opt. Express 25(17), 20612–20621 (2017).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (1)

M. S. Islam, J. Sultana, M. Faisal, M. R. Islam, A. Dinovitser, B. W. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
[Crossref]

Opt. Quantum Electron. (1)

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Photonics Res. (1)

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

Results Phys. (1)

M. A. Mollah, S. Rana, and H. Subbaraman, “Polarization filter realization using low-loss hollow-core anti-resonant fiber in THz regime,” Results Phys. 17, 103092 (2020).
[Crossref]

Other (1)

A. Ventura, J. G. Hayashi, J. Cimek, F. B. Slimen, N. White, H. Sakr, N. V. Wheeler, and F. Poletti, “Tellurite antiresonant hollow core microstructured fiber for mid-ir power delivery,” in Laser Science (Optical Society of America, 2019), pp. JTu4A–17

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Geometrical structure of the proposed HC-ACTAR fiber having core diameter $R$ = 3 mm., cladding tube length $D$ = 3 mm ( half circle radius $r$ = 1 mm, half elliptical major and minor axis are $r_e$ = 2 mm and $r$ = 1 mm, respectively), and tube thickness g = 0.09 mm.
Fig. 2.
Fig. 2. (a) Confinement loss, CL, (b) Effective material loss, EML, and (c) Total loss of the proposed HC-ACTAR fiber with different tube thickness. The doted lines indicate the resonance frequency for corresponding tube thickness.
Fig. 3.
Fig. 3. Group velocity dispersion as a function of frequency of the proposed HC-ACTAR fiber.
Fig. 4.
Fig. 4. (a) Bending loss as a function of bending radius. The inset shows field distribution for bending radius 15 cm, 30 cm, 45 cm and 60 cm, and corresponding losses are indicated by black, red, green and yellow dots, respectively, (b) HOMER as a function of frequency for $TM_{01}$, $TE_{01}$, and $HE_{21}$ modes. Field distributions are shown in the inset by same frame colour.
Fig. 5.
Fig. 5. Total loss with the variation of (a) $R$, (b) $D$, and (c) $r$/$r_e$
Fig. 6.
Fig. 6. Loss comparison of the proposed fiber with two existing structure having same core and cladding diameter. Field distributions are shown in the inset by same frame colour.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f = c m 2 g n z e o n e x 2 n a i r 2 ,
C L = 8.686 × k 0 × I m ( n e f f ) ,
E M L = 4.34 ϵ 0 μ 0 A m η α m | E | 2 d A 2 a l l S z d A ,
β 2 = d n e f f d ω 2 c + ω c d 2 n e f f d 2 ω ,
n = n ( x , y ) ( 1 + S R ) ,

Metrics