Abstract

Laser speckle contrast imaging (LSCI) can be used to observe dynamic changes in the tissue microcirculation in vivo according to the dynamic interaction between red blood cells and coherent light. In this study, a dual-wavelength LSCI system based on a microscope was developed for in vivo observation of the microvascular pattern and measurement of the blood flow change in the animal model. Additionally, based on the dual-wavelength setup, including 635 and 855 nm wavelengths, the oxygenation of biological tissue was evaluated. Finally, the developed LSCI microscope was implemented for the studies of tissue microcirculation. The results indicate that the developed LSCI microscope could be a potential tool for in vivo observation of the tissue microcirculation and quantitative evaluation of hemodynamics in animal experiments.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy

Annemarie Nadort, Rutger G. Woolthuis, Ton G. van Leeuwen, and Dirk J. Faber
Biomed. Opt. Express 4(11) 2347-2361 (2013)

Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing

Rui Shi, Min Chen, Valery V. Tuchin, and Dan Zhu
Biomed. Opt. Express 6(6) 1977-1989 (2015)

Multifunctional laser speckle imaging

E. Du, Shuhao Shen, Shau Poh Chong, and Nanguang Chen
Biomed. Opt. Express 11(4) 2007-2016 (2020)

References

  • View by:
  • |
  • |
  • |

  1. A. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
    [Crossref]
  2. A. B. Parthasarathy, S. S. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express 1(1), 246–259 (2010).
    [Crossref]
  3. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
    [Crossref]
  4. P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824–1826 (2006).
    [Crossref]
  5. R. Shi, M. Chen, V. V. Tuchin, and D. Zhu, “Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing,” Biomed. Opt. Express 6(6), 1977–1989 (2015).
    [Crossref]
  6. L. Zhang, L. Ding, M. Li, X. Zhang, D. Su, J. Jia, and P. Miao, “Dual-wavelength laser speckle contrast imaging (dwLSCI) improves chronic measurement of superficial blood flow in hands,” Sensors 17(12), 2811 (2017).
    [Crossref]
  7. A. S. d, M. Matheus, E. L. S. Clemente, M. d, L. G. Rodrigues, D. C. T. Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
    [Crossref]
  8. O. A. Mennes, J. J. van Netten, J. G. van Baal, and W. Steenbergen, “Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging,” Physiol. Meas. 40(6), 065002 (2019).
    [Crossref]
  9. F. Lindahl, E. Tesselaar, and F. Sjöberg, “Assessing paediatric scald injuries using laser speckle contrast imaging,” Burns 39(4), 662–666 (2013).
    [Crossref]
  10. R. Mirdell, S. Farnebo, F. Sjöberg, and E. Tesselaar, “Accuracy of laser speckle contrast imaging in the assessment of pediatric scald wounds,” Burns 44(1), 90–98 (2018).
    [Crossref]
  11. W. Heeman, W. Steenbergen, G. M. van Dam, and E. C. Boerma, “Clinical applications of laser speckle contrast imaging: a review,” J. Biomed. Opt. 24(08), 1 (2019).
    [Crossref]
  12. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [Crossref]
  13. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–180 (1996).
    [Crossref]
  14. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
    [Crossref]
  15. J. Wang, Y. Wang, B. Li, D. Feng, J. Lu, Q. Luo, and P. Li, “Dual-wavelength laser speckle imaging to simultaneously access blood flow, blood volume, and oxygenation using a color CCD camera,” Opt. Lett. 38(18), 3690–3692 (2013).
    [Crossref]
  16. W. Chen, K. Park, N. D. Volkow, Y. Pan, and C. Du, “Cocaine-induced abnormal cerebral hemodynamic responses to forepaw stimulation assessed by integrated multi-wavelength spectroimaging and laser speckle contrast imaging,” IEEE J. Sel. Top. Quantum Electron. 22(4), 146–153 (2016).
    [Crossref]
  17. P. G. Vaz, A. Humeau-Heurtier, E. Figueiras, C. Correia, and J. Cardoso, “Laser speckle imaging to monitor microvascular blood flow: a review,” IEEE Rev. Biomed. Eng. 9, 106–120 (2016).
    [Crossref]
  18. C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24(7), 744–755 (2004).
    [Crossref]

2019 (2)

O. A. Mennes, J. J. van Netten, J. G. van Baal, and W. Steenbergen, “Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging,” Physiol. Meas. 40(6), 065002 (2019).
[Crossref]

W. Heeman, W. Steenbergen, G. M. van Dam, and E. C. Boerma, “Clinical applications of laser speckle contrast imaging: a review,” J. Biomed. Opt. 24(08), 1 (2019).
[Crossref]

2018 (1)

R. Mirdell, S. Farnebo, F. Sjöberg, and E. Tesselaar, “Accuracy of laser speckle contrast imaging in the assessment of pediatric scald wounds,” Burns 44(1), 90–98 (2018).
[Crossref]

2017 (2)

L. Zhang, L. Ding, M. Li, X. Zhang, D. Su, J. Jia, and P. Miao, “Dual-wavelength laser speckle contrast imaging (dwLSCI) improves chronic measurement of superficial blood flow in hands,” Sensors 17(12), 2811 (2017).
[Crossref]

A. S. d, M. Matheus, E. L. S. Clemente, M. d, L. G. Rodrigues, D. C. T. Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
[Crossref]

2016 (2)

W. Chen, K. Park, N. D. Volkow, Y. Pan, and C. Du, “Cocaine-induced abnormal cerebral hemodynamic responses to forepaw stimulation assessed by integrated multi-wavelength spectroimaging and laser speckle contrast imaging,” IEEE J. Sel. Top. Quantum Electron. 22(4), 146–153 (2016).
[Crossref]

P. G. Vaz, A. Humeau-Heurtier, E. Figueiras, C. Correia, and J. Cardoso, “Laser speckle imaging to monitor microvascular blood flow: a review,” IEEE Rev. Biomed. Eng. 9, 106–120 (2016).
[Crossref]

2015 (1)

2013 (2)

2010 (2)

2006 (1)

2004 (1)

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24(7), 744–755 (2004).
[Crossref]

2003 (1)

2001 (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref]

1996 (1)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–180 (1996).
[Crossref]

1981 (1)

A. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Andermann, M. L.

Ayata, C.

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24(7), 744–755 (2004).
[Crossref]

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref]

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24(7), 744–755 (2004).
[Crossref]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[Crossref]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref]

Boerma, E. C.

W. Heeman, W. Steenbergen, G. M. van Dam, and E. C. Boerma, “Clinical applications of laser speckle contrast imaging: a review,” J. Biomed. Opt. 24(08), 1 (2019).
[Crossref]

Bolay, H.

Briers, J. D.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–180 (1996).
[Crossref]

A. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Cardoso, J.

P. G. Vaz, A. Humeau-Heurtier, E. Figueiras, C. Correia, and J. Cardoso, “Laser speckle imaging to monitor microvascular blood flow: a review,” IEEE Rev. Biomed. Eng. 9, 106–120 (2016).
[Crossref]

Chen, M.

Chen, W.

W. Chen, K. Park, N. D. Volkow, Y. Pan, and C. Du, “Cocaine-induced abnormal cerebral hemodynamic responses to forepaw stimulation assessed by integrated multi-wavelength spectroimaging and laser speckle contrast imaging,” IEEE J. Sel. Top. Quantum Electron. 22(4), 146–153 (2016).
[Crossref]

Clemente, E. L. S.

A. S. d, M. Matheus, E. L. S. Clemente, M. d, L. G. Rodrigues, D. C. T. Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
[Crossref]

Correia, C.

P. G. Vaz, A. Humeau-Heurtier, E. Figueiras, C. Correia, and J. Cardoso, “Laser speckle imaging to monitor microvascular blood flow: a review,” IEEE Rev. Biomed. Eng. 9, 106–120 (2016).
[Crossref]

d, A. S.

A. S. d, M. Matheus, E. L. S. Clemente, M. d, L. G. Rodrigues, D. C. T. Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
[Crossref]

d, M.

A. S. d, M. Matheus, E. L. S. Clemente, M. d, L. G. Rodrigues, D. C. T. Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
[Crossref]

Dale, A. M.

Devor, A.

Ding, L.

L. Zhang, L. Ding, M. Li, X. Zhang, D. Su, J. Jia, and P. Miao, “Dual-wavelength laser speckle contrast imaging (dwLSCI) improves chronic measurement of superficial blood flow in hands,” Sensors 17(12), 2811 (2017).
[Crossref]

Du, C.

W. Chen, K. Park, N. D. Volkow, Y. Pan, and C. Du, “Cocaine-induced abnormal cerebral hemodynamic responses to forepaw stimulation assessed by integrated multi-wavelength spectroimaging and laser speckle contrast imaging,” IEEE J. Sel. Top. Quantum Electron. 22(4), 146–153 (2016).
[Crossref]

Dunn, A. K.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref]

A. B. Parthasarathy, S. S. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express 1(1), 246–259 (2010).
[Crossref]

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24(7), 744–755 (2004).
[Crossref]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[Crossref]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref]

Farnebo, S.

R. Mirdell, S. Farnebo, F. Sjöberg, and E. Tesselaar, “Accuracy of laser speckle contrast imaging in the assessment of pediatric scald wounds,” Burns 44(1), 90–98 (2018).
[Crossref]

Feng, D.

Fercher, A.

A. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Figueiras, E.

P. G. Vaz, A. Humeau-Heurtier, E. Figueiras, C. Correia, and J. Cardoso, “Laser speckle imaging to monitor microvascular blood flow: a review,” IEEE Rev. Biomed. Eng. 9, 106–120 (2016).
[Crossref]

Gomes, M. B.

A. S. d, M. Matheus, E. L. S. Clemente, M. d, L. G. Rodrigues, D. C. T. Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
[Crossref]

Gursoy-Özdemir, Y.

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24(7), 744–755 (2004).
[Crossref]

Heeman, W.

W. Heeman, W. Steenbergen, G. M. van Dam, and E. C. Boerma, “Clinical applications of laser speckle contrast imaging: a review,” J. Biomed. Opt. 24(08), 1 (2019).
[Crossref]

Huang, Z.

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24(7), 744–755 (2004).
[Crossref]

Humeau-Heurtier, A.

P. G. Vaz, A. Humeau-Heurtier, E. Figueiras, C. Correia, and J. Cardoso, “Laser speckle imaging to monitor microvascular blood flow: a review,” IEEE Rev. Biomed. Eng. 9, 106–120 (2016).
[Crossref]

Jia, J.

L. Zhang, L. Ding, M. Li, X. Zhang, D. Su, J. Jia, and P. Miao, “Dual-wavelength laser speckle contrast imaging (dwLSCI) improves chronic measurement of superficial blood flow in hands,” Sensors 17(12), 2811 (2017).
[Crossref]

Kazmi, S. S.

Li, B.

Li, M.

L. Zhang, L. Ding, M. Li, X. Zhang, D. Su, J. Jia, and P. Miao, “Dual-wavelength laser speckle contrast imaging (dwLSCI) improves chronic measurement of superficial blood flow in hands,” Sensors 17(12), 2811 (2017).
[Crossref]

Li, P.

Lindahl, F.

F. Lindahl, E. Tesselaar, and F. Sjöberg, “Assessing paediatric scald injuries using laser speckle contrast imaging,” Burns 39(4), 662–666 (2013).
[Crossref]

Lu, J.

Luo, Q.

Matheus, M.

A. S. d, M. Matheus, E. L. S. Clemente, M. d, L. G. Rodrigues, D. C. T. Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
[Crossref]

Mennes, O. A.

O. A. Mennes, J. J. van Netten, J. G. van Baal, and W. Steenbergen, “Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging,” Physiol. Meas. 40(6), 065002 (2019).
[Crossref]

Miao, P.

L. Zhang, L. Ding, M. Li, X. Zhang, D. Su, J. Jia, and P. Miao, “Dual-wavelength laser speckle contrast imaging (dwLSCI) improves chronic measurement of superficial blood flow in hands,” Sensors 17(12), 2811 (2017).
[Crossref]

Mirdell, R.

R. Mirdell, S. Farnebo, F. Sjöberg, and E. Tesselaar, “Accuracy of laser speckle contrast imaging in the assessment of pediatric scald wounds,” Burns 44(1), 90–98 (2018).
[Crossref]

Moskowitz, M. A.

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24(7), 744–755 (2004).
[Crossref]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[Crossref]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref]

Ni, S.

Pan, Y.

W. Chen, K. Park, N. D. Volkow, Y. Pan, and C. Du, “Cocaine-induced abnormal cerebral hemodynamic responses to forepaw stimulation assessed by integrated multi-wavelength spectroimaging and laser speckle contrast imaging,” IEEE J. Sel. Top. Quantum Electron. 22(4), 146–153 (2016).
[Crossref]

Park, K.

W. Chen, K. Park, N. D. Volkow, Y. Pan, and C. Du, “Cocaine-induced abnormal cerebral hemodynamic responses to forepaw stimulation assessed by integrated multi-wavelength spectroimaging and laser speckle contrast imaging,” IEEE J. Sel. Top. Quantum Electron. 22(4), 146–153 (2016).
[Crossref]

Parthasarathy, A. B.

Rodrigues, L. G.

A. S. d, M. Matheus, E. L. S. Clemente, M. d, L. G. Rodrigues, D. C. T. Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
[Crossref]

Shi, R.

Sjöberg, F.

R. Mirdell, S. Farnebo, F. Sjöberg, and E. Tesselaar, “Accuracy of laser speckle contrast imaging in the assessment of pediatric scald wounds,” Burns 44(1), 90–98 (2018).
[Crossref]

F. Lindahl, E. Tesselaar, and F. Sjöberg, “Assessing paediatric scald injuries using laser speckle contrast imaging,” Burns 39(4), 662–666 (2013).
[Crossref]

Steenbergen, W.

O. A. Mennes, J. J. van Netten, J. G. van Baal, and W. Steenbergen, “Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging,” Physiol. Meas. 40(6), 065002 (2019).
[Crossref]

W. Heeman, W. Steenbergen, G. M. van Dam, and E. C. Boerma, “Clinical applications of laser speckle contrast imaging: a review,” J. Biomed. Opt. 24(08), 1 (2019).
[Crossref]

Su, D.

L. Zhang, L. Ding, M. Li, X. Zhang, D. Su, J. Jia, and P. Miao, “Dual-wavelength laser speckle contrast imaging (dwLSCI) improves chronic measurement of superficial blood flow in hands,” Sensors 17(12), 2811 (2017).
[Crossref]

Tesselaar, E.

R. Mirdell, S. Farnebo, F. Sjöberg, and E. Tesselaar, “Accuracy of laser speckle contrast imaging in the assessment of pediatric scald wounds,” Burns 44(1), 90–98 (2018).
[Crossref]

F. Lindahl, E. Tesselaar, and F. Sjöberg, “Assessing paediatric scald injuries using laser speckle contrast imaging,” Burns 39(4), 662–666 (2013).
[Crossref]

Tuchin, V. V.

Valença, D. C. T.

A. S. d, M. Matheus, E. L. S. Clemente, M. d, L. G. Rodrigues, D. C. T. Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
[Crossref]

van Baal, J. G.

O. A. Mennes, J. J. van Netten, J. G. van Baal, and W. Steenbergen, “Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging,” Physiol. Meas. 40(6), 065002 (2019).
[Crossref]

van Dam, G. M.

W. Heeman, W. Steenbergen, G. M. van Dam, and E. C. Boerma, “Clinical applications of laser speckle contrast imaging: a review,” J. Biomed. Opt. 24(08), 1 (2019).
[Crossref]

van Netten, J. J.

O. A. Mennes, J. J. van Netten, J. G. van Baal, and W. Steenbergen, “Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging,” Physiol. Meas. 40(6), 065002 (2019).
[Crossref]

Vaz, P. G.

P. G. Vaz, A. Humeau-Heurtier, E. Figueiras, C. Correia, and J. Cardoso, “Laser speckle imaging to monitor microvascular blood flow: a review,” IEEE Rev. Biomed. Eng. 9, 106–120 (2016).
[Crossref]

Volkow, N. D.

W. Chen, K. Park, N. D. Volkow, Y. Pan, and C. Du, “Cocaine-induced abnormal cerebral hemodynamic responses to forepaw stimulation assessed by integrated multi-wavelength spectroimaging and laser speckle contrast imaging,” IEEE J. Sel. Top. Quantum Electron. 22(4), 146–153 (2016).
[Crossref]

Wang, J.

Wang, Y.

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–180 (1996).
[Crossref]

Zeng, S.

Zhang, L.

L. Zhang, L. Ding, M. Li, X. Zhang, D. Su, J. Jia, and P. Miao, “Dual-wavelength laser speckle contrast imaging (dwLSCI) improves chronic measurement of superficial blood flow in hands,” Sensors 17(12), 2811 (2017).
[Crossref]

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824–1826 (2006).
[Crossref]

Zhang, X.

L. Zhang, L. Ding, M. Li, X. Zhang, D. Su, J. Jia, and P. Miao, “Dual-wavelength laser speckle contrast imaging (dwLSCI) improves chronic measurement of superficial blood flow in hands,” Sensors 17(12), 2811 (2017).
[Crossref]

Zhu, D.

Biomed. Opt. Express (2)

Burns (2)

F. Lindahl, E. Tesselaar, and F. Sjöberg, “Assessing paediatric scald injuries using laser speckle contrast imaging,” Burns 39(4), 662–666 (2013).
[Crossref]

R. Mirdell, S. Farnebo, F. Sjöberg, and E. Tesselaar, “Accuracy of laser speckle contrast imaging in the assessment of pediatric scald wounds,” Burns 44(1), 90–98 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Chen, K. Park, N. D. Volkow, Y. Pan, and C. Du, “Cocaine-induced abnormal cerebral hemodynamic responses to forepaw stimulation assessed by integrated multi-wavelength spectroimaging and laser speckle contrast imaging,” IEEE J. Sel. Top. Quantum Electron. 22(4), 146–153 (2016).
[Crossref]

IEEE Rev. Biomed. Eng. (1)

P. G. Vaz, A. Humeau-Heurtier, E. Figueiras, C. Correia, and J. Cardoso, “Laser speckle imaging to monitor microvascular blood flow: a review,” IEEE Rev. Biomed. Eng. 9, 106–120 (2016).
[Crossref]

J. Biomed. Opt. (3)

W. Heeman, W. Steenbergen, G. M. van Dam, and E. C. Boerma, “Clinical applications of laser speckle contrast imaging: a review,” J. Biomed. Opt. 24(08), 1 (2019).
[Crossref]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–180 (1996).
[Crossref]

J. Cereb. Blood Flow Metab. (2)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref]

C. Ayata, A. K. Dunn, Y. Gursoy-Özdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24(7), 744–755 (2004).
[Crossref]

J. Diabetes Complications (1)

A. S. d, M. Matheus, E. L. S. Clemente, M. d, L. G. Rodrigues, D. C. T. Valença, and M. B. Gomes, “Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging,” J. Diabetes Complications 31(4), 753–757 (2017).
[Crossref]

Opt. Commun. (1)

A. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Opt. Lett. (3)

Physiol. Meas. (1)

O. A. Mennes, J. J. van Netten, J. G. van Baal, and W. Steenbergen, “Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging,” Physiol. Meas. 40(6), 065002 (2019).
[Crossref]

Sensors (1)

L. Zhang, L. Ding, M. Li, X. Zhang, D. Su, J. Jia, and P. Miao, “Dual-wavelength laser speckle contrast imaging (dwLSCI) improves chronic measurement of superficial blood flow in hands,” Sensors 17(12), 2811 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of the LSCI system setup based on a commercial microscope. (a) Scheme of the microscope-based LSCI system; (b) setup of optical components for dual-wavelength detection; (c) 3D-printed detection end for dual-wavelength detection. DM: dichroic mirror and LM: lens mount
Fig. 2.
Fig. 2. Flowchart of the processing algorithm.
Fig. 3.
Fig. 3. Laser speckle contrast images of mouse ear skin obtained after releasing the compression for (a)(e) 0 s, (b)(f) 5 s, (c)(g) 10 s, and (d)(h) 15 s. (a)–(d) and (e)–(h) are the laser speckle contrast images obtained from the 635-nm and 855-nm laser beams, respectively. Each image area covers 4 mm × 4 mm.
Fig. 4.
Fig. 4. Distribution of the corresponding blood flow velocity change of Fig. 3 obtained after removing the external force for (a), (e) 0 s, (b), (f) 5 s, (c), (g) 10 s, and (d), (h) 15 s. (a)–(d) and (e)–(h) are the results obtained from the 635-nm and 855-nm laser beams, respectively. Each image area covers 4 mm × 4 mm.
Fig. 5.
Fig. 5. Laser speckle contrast images of mouse ear skin obtained after applying the external force for (a)(e) 0 s, (b)(f) 10 s, (c)(g) 20 s, and (d)(h) 30 s. (a)–(d) and (e)–(h) are the laser speckle contrast images obtained from the 635-nm and 855-nm laser beams, respectively. Each image area covers 4 mm × 4 mm.
Fig. 6.
Fig. 6. Distribution of the corresponding blood flow velocity change of Fig. 5 obtained after applying the external force for (a), (e) 0 s, (b), (f) 10 s, (c), (g) 20 s, and (d), (h) 30 s. (a)–(d) and (e)–(h) are the results obtained from the 635-nm and 855-nm laser beams, respectively. Each image area covers 4 mm × 4 mm.
Fig. 7.
Fig. 7. Time-dependent velocity changes of (a) the release experiment and (b) the compression experiment. Regions A, B, and C in (a) are indicated by the black rectangles in Fig. 4(h). Regions A and B are indicated by the black rectangles in Fig. 6(e).
Fig. 8.
Fig. 8. (a), (b) ΔHBO and ΔHB of the release experiment at 15 s after the metal rod was removed. (c), (d) ΔHBO and ΔHB of the compression experiment at 30 s after placing the metal rod on the skin. (e), (f) Time-dependent ΔHBO and ΔHB values for the release and compression experiments, respectively. The imaging areas of (a)-(d) are 4 mm × 4 mm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

κ = σ t I
κ = β 1 / 2 { τ c T + τ c 2 2 T 2 [ exp ( 2 T τ c ) 1 ] } 1 / 2
κ 2 = τ c 2 T .
V α 1 κ 2 .
[ Δ H B O ( t ) Δ H B ( t ) ] = [ ε H B O λ 1 ε H B λ 1 ε H B O λ 2 ε H B λ 2 ] [ ln ( R λ 1 ( 0 ) / R λ 1 ( t ) ) L λ 1 ln ( R λ 2 ( 0 ) / R λ 2 ( t ) ) L λ 2 ]

Metrics