Abstract

A Ho-doped silica fiber with a high verdet constant is prepared by a modified chemical vapor deposition (MCVD) method. The phenomenon of the Faraday effect enhancement of a Ho-doped silica fiber is theoretically analyzed by the wave transition contribution analysis method based on the wave-particle duality of light. The Verdet constant of Ho-doped silica fiber is calculated with the wavelength range from 1310 nm to 1550 nm. Through experimental measurement, it is found that the Verdet constant of the Ho-doped silica fiber has a wavelength dependency. The experimental results show that the Verdet constant values of the Ho-doped silica fiber at 1310 nm and 1550 nm are 4.5 times and 1.6 times that of the conventional single-mode silica fiber, respectively.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante, “All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber,” Opt. Lett. 35(5), 706–708 (2010).
    [Crossref]
  2. L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
    [Crossref]
  3. A. H. Rose, S. M. Etzel, and C. M. Wang, “Verdet constant dispersion in annealed optical fiber current sensors,” J. Lightwave Technol. 15(5), 803–807 (1997).
    [Crossref]
  4. D. R. Macfarlane, C. R. Bradbury, P. J. Newman, and J. Javorniczky, “Faraday rotation in rare earth fluorozirconate glasses,” J. Non-Cryst. Solids 213-214, 199–204 (1997).
    [Crossref]
  5. P. Lv, X. Wang, F. Huang, and Z. Lin, “Large Verdet constant in the Tb implanted gamma-Fe2O3 films,” Thin Solid Films 571, 45–50 (2014).
    [Crossref]
  6. Y. L. Aung and A. Ikesue, “Development of optical grade (TbxY1−x)3Al5O12 ceramics as Faraday rotator material,” J. Am. Ceram. Soc. 100(9), 4081–4087 (2017).
    [Crossref]
  7. Z. Chen, L. Yang, X. Wang, J. Wang, and Y. Hang, “Fabrication and characterizations of a Erbium doped terbium gallium garnet crystal for Faraday rotators,” Mater. Lett. 161, 93–95 (2015).
    [Crossref]
  8. Z. Chen, Y. Hang, L. Yang, J. Wang, X. Wang, and P. Zhang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
    [Crossref]
  9. L. Sun, S. Jiang, and J. R. Marciante, “Compact all-fiber optical Faraday components using 65-wt%-terbium–doped fiber with a record Verdet constant of -32 rad/(Tm),” Opt. Express 18(12), 12191–12196 (2010).
    [Crossref]
  10. Y. Huang, H. Chen, W. Dong, F. Pang, J. Wen, Z. Chen, and T. Wang, “Fabrication of europium-doped silica optical fiber with high Verdet constant,” Opt. Express 24(16), 18709–18717 (2016).
    [Crossref]
  11. J. Jensen and A. R. Mackintosh, Rare earth magnetism: structures and excitations (Clarendon Press & Oxford, 1991), Chap. 1.
  12. Z. Chen, L. Yang, X. Wang, and H. Yin, “High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal,” Opt. Lett. 41(11), 2580–2583 (2016).
    [Crossref]
  13. H. Furuse and R. Yasuhara, “Magneto-optical characteristics of holmium oxide (Ho2O3) ceramics,” Opt. Mater. Express 7(3), 827–833 (2017).
    [Crossref]
  14. S. Sharif, G. Murtaza, T. Meydan, P. I. Williams, J. Cuenca, S. H. Hashimdeen, F. Shaheen, and R. Ahmad, “Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3, thin films prepared by pulsed laser deposition,” Thin Solid Films 662, 83–89 (2018).
    [Crossref]
  15. S. M. Abo-Naf, M. A. Marzouk, S. A. M. Abdel-Hameed, A. M. Fayad, and Y. M. Hamdy, “Variable photoluminescence and magnetic behaviors of Mn-Ho-codoped silicate glasses synthesized by sol-gel processing,” J. Lumin. 216, 116743 (2019).
    [Crossref]
  16. A. S. Al-Hiti, M. F. A. Rahman, S. W. Harun, P. Yupapin, and M. Yasin, “Holmium oxide thin film as a saturable absorber for generating Q-switched and mode-locked erbium-doped fiber lasers,” Opt. Fiber Technol. 52, 101996 (2019).
    [Crossref]
  17. S. M. Zanjani and M. C. Onbasli, “Predicting New Iron Garnet Thin Films with Perpendicular Magnetic Anisotropy.” arXiv preprint arXiv:1905,13042 (2019).
  18. D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6, e2 (2018).
    [Crossref]
  19. B. Lu, H. Cheng, X. Xu, and H. Chen, “Preparation and characterization of transparent magneto-optical Ho2O3 ceramics,” J. Am. Ceram. Soc. 102(1), jace.16096 (2018).
    [Crossref]
  20. S. Bornmann, E. Glauche, P. Gornert, R. Hergt, and C. Becker, “Preparation and Properties of YIG Single Crystals,” Cryst. Res. Technol. 9(8), 895–904 (1974).
    [Crossref]
  21. M. N. Deeter, A. H. Rose, and G. W. Day, “Fast, sensitive magnetic-field sensors based on the Faraday effect in YIG,” J. Lightwave Technol. 8(12), 1838–1842 (1990).
    [Crossref]
  22. O. Kamada, T. Nakaya, and S. Higuchi, “Magnetic field optical sensors using Ce: YIG single crystals as a Faraday element,” Sens. Actuators, A 119(2), 345–348 (2005).
    [Crossref]
  23. A. D. Block, P. Dulal, B. J. Stadler, and N. C. Seaton, “Growth parameters of fully crystallized YIG, Bi: YIG, and Ce: YIG films with high faraday rotations,” IEEE Photonics J. 6(1), 1–8 (2014).
    [Crossref]
  24. A. Downes and A. Elfick, “Raman spectroscopy and related techniques in biomedicine,” Sensors 10(3), 1871–1889 (2010).
    [Crossref]
  25. W. Cai, J. Xing, and Z. Yang, “Contribution to Verdet constant of magneto-optical materials,” Acta Phys. Sin. 66(18), 218–224 (2017).
    [Crossref]
  26. P. S. Pershan, “Magneto-optical effects,” J. Appl. Phys. 38(3), 1482–1490 (1967).
    [Crossref]
  27. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
    [Crossref]
  28. M. T. Rekveldt, “Transmission of polarised neutrons in magnetic materials,” Phys. B 267-268, 60–68 (1999).
    [Crossref]
  29. J. H. Van Vleck, “The dirac vector model in complex spectra,” Phys. Rev. 45(6), 405–419 (1934).
    [Crossref]
  30. O. Slezák, R. Yasuhara, A. Lucianetti, and T. Mocek, “Temperature-wavelength dependence of terbium gallium garnet ceramics Verdet constant,” Opt. Mater. Express 6(11), 3683–3691 (2016).
    [Crossref]
  31. Y. Huang, L Chen, Q. Guo, F Pang, J. Wen, Y Shang, and T. Wang, “The Measurement System of Birefringence and Verdet Constant of Optical Fiber,” Proc. SPIE 9046, 904615 (2013).
    [Crossref]
  32. H. Wen, M. A. Terrel, H. K. Kim, M. J. Digonnet, and S. Fan, “Measurements of the Birefringence and Verdet Constant in an Air-Core Fiber,” J. Lightwave Technol. 27(15), 3194 (2009).
    [Crossref]
  33. S. Gupta, K. G. Suresh, A. V. Lukoyanov, Y. V. Knyazev, and Y. I. Kuz’min, “Understanding the magnetic, electronic and optical properties of ternary rare earth intermetallic compound HoNiSi,” J. Alloys Compd. 650, 542–546 (2015).
    [Crossref]
  34. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
    [Crossref]
  35. S. Zhao and F. Wu, “The Study on Dispersive Equation and Thermal Refractive Index Coefficient of Quartz Crystal,” Acta Photonica Sin. 35(8), 1183–1186 (2006).
  36. A. V. Kir’yanov, V. P. Minkovich, Y. O. Barmenkov, M. A. M. Gamez, and A. Martinez-Rios, “Multi-wavelength visible up-converted luminescence in novel heavily doped ytterbium–holmium silica fiber under low-power ir diode pumping,” J. Lumin. 111(1-2), 1–8 (2005).
    [Crossref]

2019 (2)

S. M. Abo-Naf, M. A. Marzouk, S. A. M. Abdel-Hameed, A. M. Fayad, and Y. M. Hamdy, “Variable photoluminescence and magnetic behaviors of Mn-Ho-codoped silicate glasses synthesized by sol-gel processing,” J. Lumin. 216, 116743 (2019).
[Crossref]

A. S. Al-Hiti, M. F. A. Rahman, S. W. Harun, P. Yupapin, and M. Yasin, “Holmium oxide thin film as a saturable absorber for generating Q-switched and mode-locked erbium-doped fiber lasers,” Opt. Fiber Technol. 52, 101996 (2019).
[Crossref]

2018 (3)

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6, e2 (2018).
[Crossref]

B. Lu, H. Cheng, X. Xu, and H. Chen, “Preparation and characterization of transparent magneto-optical Ho2O3 ceramics,” J. Am. Ceram. Soc. 102(1), jace.16096 (2018).
[Crossref]

S. Sharif, G. Murtaza, T. Meydan, P. I. Williams, J. Cuenca, S. H. Hashimdeen, F. Shaheen, and R. Ahmad, “Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3, thin films prepared by pulsed laser deposition,” Thin Solid Films 662, 83–89 (2018).
[Crossref]

2017 (3)

W. Cai, J. Xing, and Z. Yang, “Contribution to Verdet constant of magneto-optical materials,” Acta Phys. Sin. 66(18), 218–224 (2017).
[Crossref]

H. Furuse and R. Yasuhara, “Magneto-optical characteristics of holmium oxide (Ho2O3) ceramics,” Opt. Mater. Express 7(3), 827–833 (2017).
[Crossref]

Y. L. Aung and A. Ikesue, “Development of optical grade (TbxY1−x)3Al5O12 ceramics as Faraday rotator material,” J. Am. Ceram. Soc. 100(9), 4081–4087 (2017).
[Crossref]

2016 (3)

2015 (3)

S. Gupta, K. G. Suresh, A. V. Lukoyanov, Y. V. Knyazev, and Y. I. Kuz’min, “Understanding the magnetic, electronic and optical properties of ternary rare earth intermetallic compound HoNiSi,” J. Alloys Compd. 650, 542–546 (2015).
[Crossref]

Z. Chen, L. Yang, X. Wang, J. Wang, and Y. Hang, “Fabrication and characterizations of a Erbium doped terbium gallium garnet crystal for Faraday rotators,” Mater. Lett. 161, 93–95 (2015).
[Crossref]

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Wang, and P. Zhang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

2014 (2)

P. Lv, X. Wang, F. Huang, and Z. Lin, “Large Verdet constant in the Tb implanted gamma-Fe2O3 films,” Thin Solid Films 571, 45–50 (2014).
[Crossref]

A. D. Block, P. Dulal, B. J. Stadler, and N. C. Seaton, “Growth parameters of fully crystallized YIG, Bi: YIG, and Ce: YIG films with high faraday rotations,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

2013 (1)

Y. Huang, L Chen, Q. Guo, F Pang, J. Wen, Y Shang, and T. Wang, “The Measurement System of Birefringence and Verdet Constant of Optical Fiber,” Proc. SPIE 9046, 904615 (2013).
[Crossref]

2010 (4)

2009 (1)

2006 (1)

S. Zhao and F. Wu, “The Study on Dispersive Equation and Thermal Refractive Index Coefficient of Quartz Crystal,” Acta Photonica Sin. 35(8), 1183–1186 (2006).

2005 (2)

A. V. Kir’yanov, V. P. Minkovich, Y. O. Barmenkov, M. A. M. Gamez, and A. Martinez-Rios, “Multi-wavelength visible up-converted luminescence in novel heavily doped ytterbium–holmium silica fiber under low-power ir diode pumping,” J. Lumin. 111(1-2), 1–8 (2005).
[Crossref]

O. Kamada, T. Nakaya, and S. Higuchi, “Magnetic field optical sensors using Ce: YIG single crystals as a Faraday element,” Sens. Actuators, A 119(2), 345–348 (2005).
[Crossref]

2002 (1)

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
[Crossref]

1999 (2)

M. T. Rekveldt, “Transmission of polarised neutrons in magnetic materials,” Phys. B 267-268, 60–68 (1999).
[Crossref]

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

1997 (2)

A. H. Rose, S. M. Etzel, and C. M. Wang, “Verdet constant dispersion in annealed optical fiber current sensors,” J. Lightwave Technol. 15(5), 803–807 (1997).
[Crossref]

D. R. Macfarlane, C. R. Bradbury, P. J. Newman, and J. Javorniczky, “Faraday rotation in rare earth fluorozirconate glasses,” J. Non-Cryst. Solids 213-214, 199–204 (1997).
[Crossref]

1990 (1)

M. N. Deeter, A. H. Rose, and G. W. Day, “Fast, sensitive magnetic-field sensors based on the Faraday effect in YIG,” J. Lightwave Technol. 8(12), 1838–1842 (1990).
[Crossref]

1974 (1)

S. Bornmann, E. Glauche, P. Gornert, R. Hergt, and C. Becker, “Preparation and Properties of YIG Single Crystals,” Cryst. Res. Technol. 9(8), 895–904 (1974).
[Crossref]

1967 (1)

P. S. Pershan, “Magneto-optical effects,” J. Appl. Phys. 38(3), 1482–1490 (1967).
[Crossref]

1934 (1)

J. H. Van Vleck, “The dirac vector model in complex spectra,” Phys. Rev. 45(6), 405–419 (1934).
[Crossref]

Abdel-Hameed, S. A. M.

S. M. Abo-Naf, M. A. Marzouk, S. A. M. Abdel-Hameed, A. M. Fayad, and Y. M. Hamdy, “Variable photoluminescence and magnetic behaviors of Mn-Ho-codoped silicate glasses synthesized by sol-gel processing,” J. Lumin. 216, 116743 (2019).
[Crossref]

Abo-Naf, S. M.

S. M. Abo-Naf, M. A. Marzouk, S. A. M. Abdel-Hameed, A. M. Fayad, and Y. M. Hamdy, “Variable photoluminescence and magnetic behaviors of Mn-Ho-codoped silicate glasses synthesized by sol-gel processing,” J. Lumin. 216, 116743 (2019).
[Crossref]

Ahmad, R.

S. Sharif, G. Murtaza, T. Meydan, P. I. Williams, J. Cuenca, S. H. Hashimdeen, F. Shaheen, and R. Ahmad, “Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3, thin films prepared by pulsed laser deposition,” Thin Solid Films 662, 83–89 (2018).
[Crossref]

Al-Hiti, A. S.

A. S. Al-Hiti, M. F. A. Rahman, S. W. Harun, P. Yupapin, and M. Yasin, “Holmium oxide thin film as a saturable absorber for generating Q-switched and mode-locked erbium-doped fiber lasers,” Opt. Fiber Technol. 52, 101996 (2019).
[Crossref]

Aung, Y. L.

Y. L. Aung and A. Ikesue, “Development of optical grade (TbxY1−x)3Al5O12 ceramics as Faraday rotator material,” J. Am. Ceram. Soc. 100(9), 4081–4087 (2017).
[Crossref]

Barmenkov, Y. O.

A. V. Kir’yanov, V. P. Minkovich, Y. O. Barmenkov, M. A. M. Gamez, and A. Martinez-Rios, “Multi-wavelength visible up-converted luminescence in novel heavily doped ytterbium–holmium silica fiber under low-power ir diode pumping,” J. Lumin. 111(1-2), 1–8 (2005).
[Crossref]

Becker, C.

S. Bornmann, E. Glauche, P. Gornert, R. Hergt, and C. Becker, “Preparation and Properties of YIG Single Crystals,” Cryst. Res. Technol. 9(8), 895–904 (1974).
[Crossref]

Block, A. D.

A. D. Block, P. Dulal, B. J. Stadler, and N. C. Seaton, “Growth parameters of fully crystallized YIG, Bi: YIG, and Ce: YIG films with high faraday rotations,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

Bornmann, S.

S. Bornmann, E. Glauche, P. Gornert, R. Hergt, and C. Becker, “Preparation and Properties of YIG Single Crystals,” Cryst. Res. Technol. 9(8), 895–904 (1974).
[Crossref]

Bradbury, C. R.

D. R. Macfarlane, C. R. Bradbury, P. J. Newman, and J. Javorniczky, “Faraday rotation in rare earth fluorozirconate glasses,” J. Non-Cryst. Solids 213-214, 199–204 (1997).
[Crossref]

Budker, D.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
[Crossref]

Cai, W.

W. Cai, J. Xing, and Z. Yang, “Contribution to Verdet constant of magneto-optical materials,” Acta Phys. Sin. 66(18), 218–224 (2017).
[Crossref]

Cech, M.

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6, e2 (2018).
[Crossref]

Chen, H.

B. Lu, H. Cheng, X. Xu, and H. Chen, “Preparation and characterization of transparent magneto-optical Ho2O3 ceramics,” J. Am. Ceram. Soc. 102(1), jace.16096 (2018).
[Crossref]

Y. Huang, H. Chen, W. Dong, F. Pang, J. Wen, Z. Chen, and T. Wang, “Fabrication of europium-doped silica optical fiber with high Verdet constant,” Opt. Express 24(16), 18709–18717 (2016).
[Crossref]

Chen, L

Y. Huang, L Chen, Q. Guo, F Pang, J. Wen, Y Shang, and T. Wang, “The Measurement System of Birefringence and Verdet Constant of Optical Fiber,” Proc. SPIE 9046, 904615 (2013).
[Crossref]

Chen, Z.

Y. Huang, H. Chen, W. Dong, F. Pang, J. Wen, Z. Chen, and T. Wang, “Fabrication of europium-doped silica optical fiber with high Verdet constant,” Opt. Express 24(16), 18709–18717 (2016).
[Crossref]

Z. Chen, L. Yang, X. Wang, and H. Yin, “High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal,” Opt. Lett. 41(11), 2580–2583 (2016).
[Crossref]

Z. Chen, L. Yang, X. Wang, J. Wang, and Y. Hang, “Fabrication and characterizations of a Erbium doped terbium gallium garnet crystal for Faraday rotators,” Mater. Lett. 161, 93–95 (2015).
[Crossref]

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Wang, and P. Zhang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

Cheng, H.

B. Lu, H. Cheng, X. Xu, and H. Chen, “Preparation and characterization of transparent magneto-optical Ho2O3 ceramics,” J. Am. Ceram. Soc. 102(1), jace.16096 (2018).
[Crossref]

Cuenca, J.

S. Sharif, G. Murtaza, T. Meydan, P. I. Williams, J. Cuenca, S. H. Hashimdeen, F. Shaheen, and R. Ahmad, “Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3, thin films prepared by pulsed laser deposition,” Thin Solid Films 662, 83–89 (2018).
[Crossref]

Day, G. W.

M. N. Deeter, A. H. Rose, and G. W. Day, “Fast, sensitive magnetic-field sensors based on the Faraday effect in YIG,” J. Lightwave Technol. 8(12), 1838–1842 (1990).
[Crossref]

Deeter, M. N.

M. N. Deeter, A. H. Rose, and G. W. Day, “Fast, sensitive magnetic-field sensors based on the Faraday effect in YIG,” J. Lightwave Technol. 8(12), 1838–1842 (1990).
[Crossref]

Digonnet, M. J.

Dong, W.

Downes, A.

A. Downes and A. Elfick, “Raman spectroscopy and related techniques in biomedicine,” Sensors 10(3), 1871–1889 (2010).
[Crossref]

Dulal, P.

A. D. Block, P. Dulal, B. J. Stadler, and N. C. Seaton, “Growth parameters of fully crystallized YIG, Bi: YIG, and Ce: YIG films with high faraday rotations,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

Elfick, A.

A. Downes and A. Elfick, “Raman spectroscopy and related techniques in biomedicine,” Sensors 10(3), 1871–1889 (2010).
[Crossref]

Etzel, S. M.

A. H. Rose, S. M. Etzel, and C. M. Wang, “Verdet constant dispersion in annealed optical fiber current sensors,” J. Lightwave Technol. 15(5), 803–807 (1997).
[Crossref]

Fan, S.

Fayad, A. M.

S. M. Abo-Naf, M. A. Marzouk, S. A. M. Abdel-Hameed, A. M. Fayad, and Y. M. Hamdy, “Variable photoluminescence and magnetic behaviors of Mn-Ho-codoped silicate glasses synthesized by sol-gel processing,” J. Lumin. 216, 116743 (2019).
[Crossref]

Furuse, H.

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6, e2 (2018).
[Crossref]

H. Furuse and R. Yasuhara, “Magneto-optical characteristics of holmium oxide (Ho2O3) ceramics,” Opt. Mater. Express 7(3), 827–833 (2017).
[Crossref]

Gamez, M. A. M.

A. V. Kir’yanov, V. P. Minkovich, Y. O. Barmenkov, M. A. M. Gamez, and A. Martinez-Rios, “Multi-wavelength visible up-converted luminescence in novel heavily doped ytterbium–holmium silica fiber under low-power ir diode pumping,” J. Lumin. 111(1-2), 1–8 (2005).
[Crossref]

Gawlik, W.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
[Crossref]

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

Glauche, E.

S. Bornmann, E. Glauche, P. Gornert, R. Hergt, and C. Becker, “Preparation and Properties of YIG Single Crystals,” Cryst. Res. Technol. 9(8), 895–904 (1974).
[Crossref]

Gornert, P.

S. Bornmann, E. Glauche, P. Gornert, R. Hergt, and C. Becker, “Preparation and Properties of YIG Single Crystals,” Cryst. Res. Technol. 9(8), 895–904 (1974).
[Crossref]

Guo, Q.

Y. Huang, L Chen, Q. Guo, F Pang, J. Wen, Y Shang, and T. Wang, “The Measurement System of Birefringence and Verdet Constant of Optical Fiber,” Proc. SPIE 9046, 904615 (2013).
[Crossref]

Gupta, S.

S. Gupta, K. G. Suresh, A. V. Lukoyanov, Y. V. Knyazev, and Y. I. Kuz’min, “Understanding the magnetic, electronic and optical properties of ternary rare earth intermetallic compound HoNiSi,” J. Alloys Compd. 650, 542–546 (2015).
[Crossref]

Hamdy, Y. M.

S. M. Abo-Naf, M. A. Marzouk, S. A. M. Abdel-Hameed, A. M. Fayad, and Y. M. Hamdy, “Variable photoluminescence and magnetic behaviors of Mn-Ho-codoped silicate glasses synthesized by sol-gel processing,” J. Lumin. 216, 116743 (2019).
[Crossref]

Hang, Y.

Z. Chen, L. Yang, X. Wang, J. Wang, and Y. Hang, “Fabrication and characterizations of a Erbium doped terbium gallium garnet crystal for Faraday rotators,” Mater. Lett. 161, 93–95 (2015).
[Crossref]

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Wang, and P. Zhang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

Harun, S. W.

A. S. Al-Hiti, M. F. A. Rahman, S. W. Harun, P. Yupapin, and M. Yasin, “Holmium oxide thin film as a saturable absorber for generating Q-switched and mode-locked erbium-doped fiber lasers,” Opt. Fiber Technol. 52, 101996 (2019).
[Crossref]

Hashimdeen, S. H.

S. Sharif, G. Murtaza, T. Meydan, P. I. Williams, J. Cuenca, S. H. Hashimdeen, F. Shaheen, and R. Ahmad, “Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3, thin films prepared by pulsed laser deposition,” Thin Solid Films 662, 83–89 (2018).
[Crossref]

Hergt, R.

S. Bornmann, E. Glauche, P. Gornert, R. Hergt, and C. Becker, “Preparation and Properties of YIG Single Crystals,” Cryst. Res. Technol. 9(8), 895–904 (1974).
[Crossref]

Higuchi, S.

O. Kamada, T. Nakaya, and S. Higuchi, “Magnetic field optical sensors using Ce: YIG single crystals as a Faraday element,” Sens. Actuators, A 119(2), 345–348 (2005).
[Crossref]

Huang, F.

P. Lv, X. Wang, F. Huang, and Z. Lin, “Large Verdet constant in the Tb implanted gamma-Fe2O3 films,” Thin Solid Films 571, 45–50 (2014).
[Crossref]

Huang, Y.

Y. Huang, H. Chen, W. Dong, F. Pang, J. Wen, Z. Chen, and T. Wang, “Fabrication of europium-doped silica optical fiber with high Verdet constant,” Opt. Express 24(16), 18709–18717 (2016).
[Crossref]

Y. Huang, L Chen, Q. Guo, F Pang, J. Wen, Y Shang, and T. Wang, “The Measurement System of Birefringence and Verdet Constant of Optical Fiber,” Proc. SPIE 9046, 904615 (2013).
[Crossref]

Hutchinson, S.

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6, e2 (2018).
[Crossref]

Ikesue, A.

Y. L. Aung and A. Ikesue, “Development of optical grade (TbxY1−x)3Al5O12 ceramics as Faraday rotator material,” J. Am. Ceram. Soc. 100(9), 4081–4087 (2017).
[Crossref]

Javorniczky, J.

D. R. Macfarlane, C. R. Bradbury, P. J. Newman, and J. Javorniczky, “Faraday rotation in rare earth fluorozirconate glasses,” J. Non-Cryst. Solids 213-214, 199–204 (1997).
[Crossref]

Jensen, J.

J. Jensen and A. R. Mackintosh, Rare earth magnetism: structures and excitations (Clarendon Press & Oxford, 1991), Chap. 1.

Jiang, S.

Kamada, O.

O. Kamada, T. Nakaya, and S. Higuchi, “Magnetic field optical sensors using Ce: YIG single crystals as a Faraday element,” Sens. Actuators, A 119(2), 345–348 (2005).
[Crossref]

Kim, H. K.

Kimball, D. F.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
[Crossref]

Kir’yanov, A. V.

A. V. Kir’yanov, V. P. Minkovich, Y. O. Barmenkov, M. A. M. Gamez, and A. Martinez-Rios, “Multi-wavelength visible up-converted luminescence in novel heavily doped ytterbium–holmium silica fiber under low-power ir diode pumping,” J. Lumin. 111(1-2), 1–8 (2005).
[Crossref]

Knyazev, Y. V.

S. Gupta, K. G. Suresh, A. V. Lukoyanov, Y. V. Knyazev, and Y. I. Kuz’min, “Understanding the magnetic, electronic and optical properties of ternary rare earth intermetallic compound HoNiSi,” J. Alloys Compd. 650, 542–546 (2015).
[Crossref]

Kuz’min, Y. I.

S. Gupta, K. G. Suresh, A. V. Lukoyanov, Y. V. Knyazev, and Y. I. Kuz’min, “Understanding the magnetic, electronic and optical properties of ternary rare earth intermetallic compound HoNiSi,” J. Alloys Compd. 650, 542–546 (2015).
[Crossref]

Lin, Z.

P. Lv, X. Wang, F. Huang, and Z. Lin, “Large Verdet constant in the Tb implanted gamma-Fe2O3 films,” Thin Solid Films 571, 45–50 (2014).
[Crossref]

Lu, B.

B. Lu, H. Cheng, X. Xu, and H. Chen, “Preparation and characterization of transparent magneto-optical Ho2O3 ceramics,” J. Am. Ceram. Soc. 102(1), jace.16096 (2018).
[Crossref]

Lucianetti, A.

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6, e2 (2018).
[Crossref]

O. Slezák, R. Yasuhara, A. Lucianetti, and T. Mocek, “Temperature-wavelength dependence of terbium gallium garnet ceramics Verdet constant,” Opt. Mater. Express 6(11), 3683–3691 (2016).
[Crossref]

Lukoyanov, A. V.

S. Gupta, K. G. Suresh, A. V. Lukoyanov, Y. V. Knyazev, and Y. I. Kuz’min, “Understanding the magnetic, electronic and optical properties of ternary rare earth intermetallic compound HoNiSi,” J. Alloys Compd. 650, 542–546 (2015).
[Crossref]

Lv, P.

P. Lv, X. Wang, F. Huang, and Z. Lin, “Large Verdet constant in the Tb implanted gamma-Fe2O3 films,” Thin Solid Films 571, 45–50 (2014).
[Crossref]

Macfarlane, D. R.

D. R. Macfarlane, C. R. Bradbury, P. J. Newman, and J. Javorniczky, “Faraday rotation in rare earth fluorozirconate glasses,” J. Non-Cryst. Solids 213-214, 199–204 (1997).
[Crossref]

Mackintosh, A. R.

J. Jensen and A. R. Mackintosh, Rare earth magnetism: structures and excitations (Clarendon Press & Oxford, 1991), Chap. 1.

Marciante, J. R.

Martinez-Rios, A.

A. V. Kir’yanov, V. P. Minkovich, Y. O. Barmenkov, M. A. M. Gamez, and A. Martinez-Rios, “Multi-wavelength visible up-converted luminescence in novel heavily doped ytterbium–holmium silica fiber under low-power ir diode pumping,” J. Lumin. 111(1-2), 1–8 (2005).
[Crossref]

Marzouk, M. A.

S. M. Abo-Naf, M. A. Marzouk, S. A. M. Abdel-Hameed, A. M. Fayad, and Y. M. Hamdy, “Variable photoluminescence and magnetic behaviors of Mn-Ho-codoped silicate glasses synthesized by sol-gel processing,” J. Lumin. 216, 116743 (2019).
[Crossref]

Meydan, T.

S. Sharif, G. Murtaza, T. Meydan, P. I. Williams, J. Cuenca, S. H. Hashimdeen, F. Shaheen, and R. Ahmad, “Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3, thin films prepared by pulsed laser deposition,” Thin Solid Films 662, 83–89 (2018).
[Crossref]

Minkovich, V. P.

A. V. Kir’yanov, V. P. Minkovich, Y. O. Barmenkov, M. A. M. Gamez, and A. Martinez-Rios, “Multi-wavelength visible up-converted luminescence in novel heavily doped ytterbium–holmium silica fiber under low-power ir diode pumping,” J. Lumin. 111(1-2), 1–8 (2005).
[Crossref]

Mocek, T.

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6, e2 (2018).
[Crossref]

O. Slezák, R. Yasuhara, A. Lucianetti, and T. Mocek, “Temperature-wavelength dependence of terbium gallium garnet ceramics Verdet constant,” Opt. Mater. Express 6(11), 3683–3691 (2016).
[Crossref]

Murtaza, G.

S. Sharif, G. Murtaza, T. Meydan, P. I. Williams, J. Cuenca, S. H. Hashimdeen, F. Shaheen, and R. Ahmad, “Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3, thin films prepared by pulsed laser deposition,” Thin Solid Films 662, 83–89 (2018).
[Crossref]

Nakaya, T.

O. Kamada, T. Nakaya, and S. Higuchi, “Magnetic field optical sensors using Ce: YIG single crystals as a Faraday element,” Sens. Actuators, A 119(2), 345–348 (2005).
[Crossref]

Newman, P. J.

D. R. Macfarlane, C. R. Bradbury, P. J. Newman, and J. Javorniczky, “Faraday rotation in rare earth fluorozirconate glasses,” J. Non-Cryst. Solids 213-214, 199–204 (1997).
[Crossref]

Onbasli, M. C.

S. M. Zanjani and M. C. Onbasli, “Predicting New Iron Garnet Thin Films with Perpendicular Magnetic Anisotropy.” arXiv preprint arXiv:1905,13042 (2019).

Pang, F

Y. Huang, L Chen, Q. Guo, F Pang, J. Wen, Y Shang, and T. Wang, “The Measurement System of Birefringence and Verdet Constant of Optical Fiber,” Proc. SPIE 9046, 904615 (2013).
[Crossref]

Pang, F.

Pershan, P. S.

P. S. Pershan, “Magneto-optical effects,” J. Appl. Phys. 38(3), 1482–1490 (1967).
[Crossref]

Rahman, M. F. A.

A. S. Al-Hiti, M. F. A. Rahman, S. W. Harun, P. Yupapin, and M. Yasin, “Holmium oxide thin film as a saturable absorber for generating Q-switched and mode-locked erbium-doped fiber lasers,” Opt. Fiber Technol. 52, 101996 (2019).
[Crossref]

Rekveldt, M. T.

M. T. Rekveldt, “Transmission of polarised neutrons in magnetic materials,” Phys. B 267-268, 60–68 (1999).
[Crossref]

Rochester, S. M.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
[Crossref]

Rose, A. H.

A. H. Rose, S. M. Etzel, and C. M. Wang, “Verdet constant dispersion in annealed optical fiber current sensors,” J. Lightwave Technol. 15(5), 803–807 (1997).
[Crossref]

M. N. Deeter, A. H. Rose, and G. W. Day, “Fast, sensitive magnetic-field sensors based on the Faraday effect in YIG,” J. Lightwave Technol. 8(12), 1838–1842 (1990).
[Crossref]

Seaton, N. C.

A. D. Block, P. Dulal, B. J. Stadler, and N. C. Seaton, “Growth parameters of fully crystallized YIG, Bi: YIG, and Ce: YIG films with high faraday rotations,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

Shaheen, F.

S. Sharif, G. Murtaza, T. Meydan, P. I. Williams, J. Cuenca, S. H. Hashimdeen, F. Shaheen, and R. Ahmad, “Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3, thin films prepared by pulsed laser deposition,” Thin Solid Films 662, 83–89 (2018).
[Crossref]

Shang, Y

Y. Huang, L Chen, Q. Guo, F Pang, J. Wen, Y Shang, and T. Wang, “The Measurement System of Birefringence and Verdet Constant of Optical Fiber,” Proc. SPIE 9046, 904615 (2013).
[Crossref]

Sharif, S.

S. Sharif, G. Murtaza, T. Meydan, P. I. Williams, J. Cuenca, S. H. Hashimdeen, F. Shaheen, and R. Ahmad, “Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3, thin films prepared by pulsed laser deposition,” Thin Solid Films 662, 83–89 (2018).
[Crossref]

Slezak, O.

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6, e2 (2018).
[Crossref]

Slezák, O.

Stadler, B. J.

A. D. Block, P. Dulal, B. J. Stadler, and N. C. Seaton, “Growth parameters of fully crystallized YIG, Bi: YIG, and Ce: YIG films with high faraday rotations,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

Sun, L.

Suresh, K. G.

S. Gupta, K. G. Suresh, A. V. Lukoyanov, Y. V. Knyazev, and Y. I. Kuz’min, “Understanding the magnetic, electronic and optical properties of ternary rare earth intermetallic compound HoNiSi,” J. Alloys Compd. 650, 542–546 (2015).
[Crossref]

Terrel, M. A.

Van Vleck, J. H.

J. H. Van Vleck, “The dirac vector model in complex spectra,” Phys. Rev. 45(6), 405–419 (1934).
[Crossref]

Vojna, D.

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6, e2 (2018).
[Crossref]

Wang, C. M.

A. H. Rose, S. M. Etzel, and C. M. Wang, “Verdet constant dispersion in annealed optical fiber current sensors,” J. Lightwave Technol. 15(5), 803–807 (1997).
[Crossref]

Wang, J.

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Wang, and P. Zhang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

Z. Chen, L. Yang, X. Wang, J. Wang, and Y. Hang, “Fabrication and characterizations of a Erbium doped terbium gallium garnet crystal for Faraday rotators,” Mater. Lett. 161, 93–95 (2015).
[Crossref]

Wang, T.

Y. Huang, H. Chen, W. Dong, F. Pang, J. Wen, Z. Chen, and T. Wang, “Fabrication of europium-doped silica optical fiber with high Verdet constant,” Opt. Express 24(16), 18709–18717 (2016).
[Crossref]

Y. Huang, L Chen, Q. Guo, F Pang, J. Wen, Y Shang, and T. Wang, “The Measurement System of Birefringence and Verdet Constant of Optical Fiber,” Proc. SPIE 9046, 904615 (2013).
[Crossref]

Wang, X.

Z. Chen, L. Yang, X. Wang, and H. Yin, “High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal,” Opt. Lett. 41(11), 2580–2583 (2016).
[Crossref]

Z. Chen, L. Yang, X. Wang, J. Wang, and Y. Hang, “Fabrication and characterizations of a Erbium doped terbium gallium garnet crystal for Faraday rotators,” Mater. Lett. 161, 93–95 (2015).
[Crossref]

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Wang, and P. Zhang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

P. Lv, X. Wang, F. Huang, and Z. Lin, “Large Verdet constant in the Tb implanted gamma-Fe2O3 films,” Thin Solid Films 571, 45–50 (2014).
[Crossref]

Weis, A.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
[Crossref]

Wen, H.

Wen, J.

Y. Huang, H. Chen, W. Dong, F. Pang, J. Wen, Z. Chen, and T. Wang, “Fabrication of europium-doped silica optical fiber with high Verdet constant,” Opt. Express 24(16), 18709–18717 (2016).
[Crossref]

Y. Huang, L Chen, Q. Guo, F Pang, J. Wen, Y Shang, and T. Wang, “The Measurement System of Birefringence and Verdet Constant of Optical Fiber,” Proc. SPIE 9046, 904615 (2013).
[Crossref]

Williams, P. I.

S. Sharif, G. Murtaza, T. Meydan, P. I. Williams, J. Cuenca, S. H. Hashimdeen, F. Shaheen, and R. Ahmad, “Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3, thin films prepared by pulsed laser deposition,” Thin Solid Films 662, 83–89 (2018).
[Crossref]

Wu, F.

S. Zhao and F. Wu, “The Study on Dispersive Equation and Thermal Refractive Index Coefficient of Quartz Crystal,” Acta Photonica Sin. 35(8), 1183–1186 (2006).

Xing, J.

W. Cai, J. Xing, and Z. Yang, “Contribution to Verdet constant of magneto-optical materials,” Acta Phys. Sin. 66(18), 218–224 (2017).
[Crossref]

Xu, X.

B. Lu, H. Cheng, X. Xu, and H. Chen, “Preparation and characterization of transparent magneto-optical Ho2O3 ceramics,” J. Am. Ceram. Soc. 102(1), jace.16096 (2018).
[Crossref]

Yang, L.

Z. Chen, L. Yang, X. Wang, and H. Yin, “High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal,” Opt. Lett. 41(11), 2580–2583 (2016).
[Crossref]

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Wang, and P. Zhang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

Z. Chen, L. Yang, X. Wang, J. Wang, and Y. Hang, “Fabrication and characterizations of a Erbium doped terbium gallium garnet crystal for Faraday rotators,” Mater. Lett. 161, 93–95 (2015).
[Crossref]

Yang, Z.

W. Cai, J. Xing, and Z. Yang, “Contribution to Verdet constant of magneto-optical materials,” Acta Phys. Sin. 66(18), 218–224 (2017).
[Crossref]

Yashchuk, V. V.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
[Crossref]

Yasin, M.

A. S. Al-Hiti, M. F. A. Rahman, S. W. Harun, P. Yupapin, and M. Yasin, “Holmium oxide thin film as a saturable absorber for generating Q-switched and mode-locked erbium-doped fiber lasers,” Opt. Fiber Technol. 52, 101996 (2019).
[Crossref]

Yasuhara, R.

Yin, H.

Yupapin, P.

A. S. Al-Hiti, M. F. A. Rahman, S. W. Harun, P. Yupapin, and M. Yasin, “Holmium oxide thin film as a saturable absorber for generating Q-switched and mode-locked erbium-doped fiber lasers,” Opt. Fiber Technol. 52, 101996 (2019).
[Crossref]

Zanjani, S. M.

S. M. Zanjani and M. C. Onbasli, “Predicting New Iron Garnet Thin Films with Perpendicular Magnetic Anisotropy.” arXiv preprint arXiv:1905,13042 (2019).

Zhang, P.

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Wang, and P. Zhang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

Zhao, S.

S. Zhao and F. Wu, “The Study on Dispersive Equation and Thermal Refractive Index Coefficient of Quartz Crystal,” Acta Photonica Sin. 35(8), 1183–1186 (2006).

Zuegel, J. D.

Acta Photonica Sin. (1)

S. Zhao and F. Wu, “The Study on Dispersive Equation and Thermal Refractive Index Coefficient of Quartz Crystal,” Acta Photonica Sin. 35(8), 1183–1186 (2006).

Acta Phys. Sin. (1)

W. Cai, J. Xing, and Z. Yang, “Contribution to Verdet constant of magneto-optical materials,” Acta Phys. Sin. 66(18), 218–224 (2017).
[Crossref]

Cryst. Res. Technol. (1)

S. Bornmann, E. Glauche, P. Gornert, R. Hergt, and C. Becker, “Preparation and Properties of YIG Single Crystals,” Cryst. Res. Technol. 9(8), 895–904 (1974).
[Crossref]

High Power Laser Sci. Eng. (1)

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6, e2 (2018).
[Crossref]

IEEE Photonics J. (1)

A. D. Block, P. Dulal, B. J. Stadler, and N. C. Seaton, “Growth parameters of fully crystallized YIG, Bi: YIG, and Ce: YIG films with high faraday rotations,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

J. Alloys Compd. (1)

S. Gupta, K. G. Suresh, A. V. Lukoyanov, Y. V. Knyazev, and Y. I. Kuz’min, “Understanding the magnetic, electronic and optical properties of ternary rare earth intermetallic compound HoNiSi,” J. Alloys Compd. 650, 542–546 (2015).
[Crossref]

J. Am. Ceram. Soc. (2)

B. Lu, H. Cheng, X. Xu, and H. Chen, “Preparation and characterization of transparent magneto-optical Ho2O3 ceramics,” J. Am. Ceram. Soc. 102(1), jace.16096 (2018).
[Crossref]

Y. L. Aung and A. Ikesue, “Development of optical grade (TbxY1−x)3Al5O12 ceramics as Faraday rotator material,” J. Am. Ceram. Soc. 100(9), 4081–4087 (2017).
[Crossref]

J. Appl. Phys. (1)

P. S. Pershan, “Magneto-optical effects,” J. Appl. Phys. 38(3), 1482–1490 (1967).
[Crossref]

J. Lightwave Technol. (3)

H. Wen, M. A. Terrel, H. K. Kim, M. J. Digonnet, and S. Fan, “Measurements of the Birefringence and Verdet Constant in an Air-Core Fiber,” J. Lightwave Technol. 27(15), 3194 (2009).
[Crossref]

A. H. Rose, S. M. Etzel, and C. M. Wang, “Verdet constant dispersion in annealed optical fiber current sensors,” J. Lightwave Technol. 15(5), 803–807 (1997).
[Crossref]

M. N. Deeter, A. H. Rose, and G. W. Day, “Fast, sensitive magnetic-field sensors based on the Faraday effect in YIG,” J. Lightwave Technol. 8(12), 1838–1842 (1990).
[Crossref]

J. Lumin. (2)

S. M. Abo-Naf, M. A. Marzouk, S. A. M. Abdel-Hameed, A. M. Fayad, and Y. M. Hamdy, “Variable photoluminescence and magnetic behaviors of Mn-Ho-codoped silicate glasses synthesized by sol-gel processing,” J. Lumin. 216, 116743 (2019).
[Crossref]

A. V. Kir’yanov, V. P. Minkovich, Y. O. Barmenkov, M. A. M. Gamez, and A. Martinez-Rios, “Multi-wavelength visible up-converted luminescence in novel heavily doped ytterbium–holmium silica fiber under low-power ir diode pumping,” J. Lumin. 111(1-2), 1–8 (2005).
[Crossref]

J. Non-Cryst. Solids (1)

D. R. Macfarlane, C. R. Bradbury, P. J. Newman, and J. Javorniczky, “Faraday rotation in rare earth fluorozirconate glasses,” J. Non-Cryst. Solids 213-214, 199–204 (1997).
[Crossref]

Mater. Lett. (2)

Z. Chen, L. Yang, X. Wang, J. Wang, and Y. Hang, “Fabrication and characterizations of a Erbium doped terbium gallium garnet crystal for Faraday rotators,” Mater. Lett. 161, 93–95 (2015).
[Crossref]

Z. Chen, Y. Hang, L. Yang, J. Wang, X. Wang, and P. Zhang, “Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator,” Mater. Lett. 145, 171–173 (2015).
[Crossref]

Opt. Commun. (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

A. S. Al-Hiti, M. F. A. Rahman, S. W. Harun, P. Yupapin, and M. Yasin, “Holmium oxide thin film as a saturable absorber for generating Q-switched and mode-locked erbium-doped fiber lasers,” Opt. Fiber Technol. 52, 101996 (2019).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (2)

Phys. B (1)

M. T. Rekveldt, “Transmission of polarised neutrons in magnetic materials,” Phys. B 267-268, 60–68 (1999).
[Crossref]

Phys. Rev. (1)

J. H. Van Vleck, “The dirac vector model in complex spectra,” Phys. Rev. 45(6), 405–419 (1934).
[Crossref]

Proc. SPIE (1)

Y. Huang, L Chen, Q. Guo, F Pang, J. Wen, Y Shang, and T. Wang, “The Measurement System of Birefringence and Verdet Constant of Optical Fiber,” Proc. SPIE 9046, 904615 (2013).
[Crossref]

Rev. Mod. Phys. (1)

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002).
[Crossref]

Sens. Actuators, A (1)

O. Kamada, T. Nakaya, and S. Higuchi, “Magnetic field optical sensors using Ce: YIG single crystals as a Faraday element,” Sens. Actuators, A 119(2), 345–348 (2005).
[Crossref]

Sensors (1)

A. Downes and A. Elfick, “Raman spectroscopy and related techniques in biomedicine,” Sensors 10(3), 1871–1889 (2010).
[Crossref]

Thin Solid Films (2)

S. Sharif, G. Murtaza, T. Meydan, P. I. Williams, J. Cuenca, S. H. Hashimdeen, F. Shaheen, and R. Ahmad, “Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3, thin films prepared by pulsed laser deposition,” Thin Solid Films 662, 83–89 (2018).
[Crossref]

P. Lv, X. Wang, F. Huang, and Z. Lin, “Large Verdet constant in the Tb implanted gamma-Fe2O3 films,” Thin Solid Films 571, 45–50 (2014).
[Crossref]

Other (2)

J. Jensen and A. R. Mackintosh, Rare earth magnetism: structures and excitations (Clarendon Press & Oxford, 1991), Chap. 1.

S. M. Zanjani and M. C. Onbasli, “Predicting New Iron Garnet Thin Films with Perpendicular Magnetic Anisotropy.” arXiv preprint arXiv:1905,13042 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Cross section and refractive index profile of Ho-doped silica fiber.
Fig. 2.
Fig. 2. Schematic diagram of Verdet constant measuring setup.
Fig. 3.
Fig. 3. Wavelength dependence of Verdet constant of Ho-doped silica fiber (T=293 K).

Tables (4)

Tables Icon

Table 1. Faraday rotation angle of Ho-doped silica fiber and SMF at different magnetic induction intensity.

Tables Icon

Table 2. The Verdet constant for Ho-doped silica fiber and SMF at different wavelengths.

Tables Icon

Table 3. Contribution analysis of the Verdet constant of Ho-doped silica fiber.

Tables Icon

Table 4. The symbol of each parameter and its corresponding value.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V w P a r = e μ 0 λ 2 m c d n d λ ( 1 + ν T c T T P ) .
V t P a r = 4 π 2 υ 2 g μ B c i j [ φ i j υ 2 υ i j 2 ] .
V t P a r = λ t 2 λ 2 λ t 2 E T T P .
V = V w P a r + V t P a r = e μ 0 λ 2 m c d n d λ ( 1 + ν T c T T P ) λ t 2 λ 2 λ t 2 E T T P .
n 2 ( λ ) = A + B λ 2 C D λ 2 .
V w = q e 2 m c × B λ 2 D λ 2 × ( λ 2 C ) 2 ( λ 2 C ) 2 × A + B λ 2 C D λ 2 × T T T P .
V = q e 2 m c × B λ 2 D λ 2 × ( λ 2 C ) 2 ( λ 2 C ) 2 × A + B λ 2 C D λ 2 × T T T C E × λ t 2 ( λ 2 λ t 2 ) ( T T P ) .

Metrics