Abstract

Fabricating silicon photonics devices by CMOS-compatible processes is important for applications. Here, we demonstrate a Raman silicon laser based on a heterostructure nanocavity that was fabricated by immersion photolithography using an argon fluoride excimer laser. The Raman laser confines the pump light and the Stokes Raman scattered light in two resonant modes of the nanocavity. By using the presented CMOS-compatible approach, sufficiently high quality-factors can be obtained for both modes. The sample whose frequency spacing of the two resonant modes closely matches the Raman shift of silicon, achieves continuous-wave oscillation with a lasing threshold of 1.8 µW at room temperature.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies

Kohei Ashida, Makoto Okano, Minoru Ohtsuka, Miyoshi Seki, Nobuyuki Yokoyama, Keiji Koshino, Masahiko Mori, Takashi Asano, Susumu Noda, and Yasushi Takahashi
Opt. Express 25(15) 18165-18174 (2017)

Implementing a Raman silicon nanocavity laser for integrated optical circuits by using a (100) SOI wafer with a 45-degree-rotated top silicon layer

Yukiko Yamauchi, Makoto Okano, Hiroaki Shishido, Susumu Noda, and Yasushi Takahashi
OSA Continuum 2(7) 2098-2112 (2019)

Strongly asymmetric wavelength dependence of optical gain in nanocavity-based Raman silicon lasers

Daiki Yamashita, Takashi Asano, Susumu noda, and Yasushi Takahashi
Optica 5(10) 1256-1263 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. K. Doylend and A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photonics Rev. 6(4), 504–525 (2012).
    [Crossref]
  2. K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, “High-Q CMOS-integrated photonic crystal microcavity devices,” Sci. Rep. 4(1), 4077 (2015).
    [Crossref]
  3. T. Horikawa, D. Shimura, H. Okayama, S. H. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
    [Crossref]
  4. Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell,” Phys. Rev. B 48(7), 4883–4886 (1993).
    [Crossref]
  5. D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
    [Crossref]
  6. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
    [Crossref]
  7. S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
    [Crossref]
  8. M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97(12), 121111 (2010).
    [Crossref]
  9. T. Ihara, Y. Takahashi, S. Noda, and Y. Kanemitsu, “Enhanced radiative recombination rate for electron-hole droplets in a silicon photonic crystal nanocavity,” Phys. Rev. B 96(3), 035303 (2017).
    [Crossref]
  10. J. M. Shainline, “Silicon as an emissive optical medium,” Laser Photonics Rev. 1(4), 334–348 (2007).
    [Crossref]
  11. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11(15), 1731–1739 (2003).
    [Crossref]
  12. M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12(23), 5703–5710 (2004).
    [Crossref]
  13. R Jones, H Rong, A. Liu, A Fang, D. Paniccia, D Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13(2), 519–525 (2005).
    [Crossref]
  14. X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B 82(4), 041308 (2010).
    [Crossref]
  15. T. Datta and M. Sen, “LED pumped micron-scale all-silicon Raman amplifier,” Superlattices Microstruct. 110, 273–280 (2017).
    [Crossref]
  16. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
    [Crossref]
  17. H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
    [Crossref]
  18. X. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers,” Opt. Express 15(8), 4763–4780 (2007).
    [Crossref]
  19. Y. Takahashi, R. Terawaki, M. Chihara, T. Asano, and S. Noda, “First observation of Raman scattering emission from silicon high-Q photonic crystal nanocavities,” Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2011), paper QWC3.
  20. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
    [Crossref]
  21. Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
    [Crossref]
  22. K. Maeno, Y. Takahashi, T. Nakamura, T. Asano, and S. Noda, “Analysis of high-Q photonic crystal L3 nanocavities designed by visualization of the leaky components,” Opt. Express 25(1), 367–376 (2017).
    [Crossref]
  23. T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with a Q factor exceeding eleven million,” Opt. Express 25(3), 1769–1777 (2017).
    [Crossref]
  24. M. Nakadai, K. Tanaka, T. Asano, Y. Takahashi, and S. Noda, “Statistical evaluation of Q factors of fabricated photonic crystal nanocavities designed by using a deep neural network,” Appl. Phys. Express 13(1), 012002 (2020).
    [Crossref]
  25. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
    [Crossref]
  26. D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “A sub-microwatt threshold Raman silicon laser using a high-Q nanocavity,” Proceedings of Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (2015), paper 28J2_3.
  27. D. Yamashita, Y. Takahashi, J. Kurihara, T. Asano, and S. Noda, “Lasing dynamics of optically-pumped ultralow-threshold Raman silicon nanocavity lasers,” Phys. Rev. Appl. 10(2), 024039 (2018).
    [Crossref]
  28. D. Yamashita, T. Asano, S. Noda, and Y. Takahashi, “Strongly asymmetric wavelength dependence of optical gain in nanocavity-based Raman silicon lasers,” Optica 5(10), 1256–1263 (2018).
    [Crossref]
  29. M. Kuwabara, S. Noda, and Y. Takahashi, “Ultrahigh-Q photonic nanocavity devices on a dual thickness SOI substrate operating at both 1.31- and 1.55-µm telecommunication wavelength bands,” Laser Photonics Rev. 13(2), 1800258 (2019).
    [Crossref]
  30. H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 µm photonic crystal Si optical modulators: spectral, athermal, and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127–137 (2013).
    [Crossref]
  31. Y. Ooka, T. Tetsumoto, N. A. B. Daud, and T. Tanabe, “Ultrasmall in-plane photonic crystal demultiplexers fabricated with photolithography,” Opt. Express 25(2), 1521–1528 (2017).
    [Crossref]
  32. K. Ashida, , M Okano, , M. Ohtsuka, , M Seki, N. Yokoyama, K Koshino, M Mori, K Koshino, T Asano, S. Noda, T Asano, and Y. Takahashi, “Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies,” Opt. Express 25(15), 18165–18174 (2017).
    [Crossref]
  33. G. Takeuchi, Y. Terada, M. Takeuchi, H. Abe, H. Ito, and T. Baba, “Thermally controlled Si photonic crystal slow light waveguide beam steering device,” Opt. Express 26(9), 11529–11537 (2018).
    [Crossref]
  34. K. Ashida, M. Okano, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, K. Yamada, and Y. Takahashi, “Photonic crystal nanocavities with an average Q factor of 1.9 million fabricated on a 300-mm-wide SOI wafer using a CMOS-compatible process,” J. Lightwave Technol. 36(20), 4774–4782 (2018).
    [Crossref]
  35. D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “Raman shift and strain effect in high-Q photonic crystal silicon nanocavity,” Opt. Express 23(4), 3951–3959 (2015).
    [Crossref]
  36. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
    [Crossref]
  37. B.S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [Crossref]
  38. J. Kurihara, D. Yamashita, N. Tanaka, T. Asano, S. Noda, and Y. Takahashi, “Detrimental fluctuation of frequency spacing between the two high-quality resonant modes in a Raman silicon nanocavity laser,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–12 (2020).
    [Crossref]
  39. Y. Yamauchi, M. Okano, H. Shishido, S. Noda, and Y. Takahashi, “Implementing a Raman silicon nanocavity laser for integrated optical circuits by using a (100) SOI wafer with a 45-degree-rotated top silicon layer,” OSA Continuum 2(7), 2098–2112 (2019).
    [Crossref]
  40. H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ∼9 million,” Opt. Express 22(1), 916–924 (2014).
    [Crossref]
  41. A. Sagara, A. Uedono, and S. Shibata, “Thermal behavior of residual defects in low-dose arsenic- and boron-implanted silicon after high-temperature rapid thermal annealing,” IEEE Trans. Semicond. Manufact. 28(1), 92–95 (2015).
    [Crossref]
  42. Y. Sato, S. Shibata, A. Uedono, K. Urabe, and K. Eriguchi, “Characterization of the distribution of defects introduced by plasma exposure in Si substrate,” J. Vac. Sci. Technol., A 37(1), 011304 (2019).
    [Crossref]
  43. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
    [Crossref]
  44. The repeated thermal process was not necessary in the previous studies [34,39]. We consider that improvements of the fabrication process to increase the Qexp of both cavity modes without the thermal process should be possible.
  45. T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (∼1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
    [Crossref]
  46. T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1149–1153 (2004).
    [Crossref]
  47. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
    [Crossref]
  48. T. Nakamura, Y. Takahashi, T. Asano, and S. Noda, “Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components,” Opt. Express 24(9), 9541–9549 (2016).
    [Crossref]
  49. T. Asano and S. Noda, “Optimization of photonic crystal nanocavities based on deep learning,” Opt. Express 26(25), 32704–32716 (2018).
    [Crossref]
  50. T. Kawakatsu, T. Asano, S. Noda, and Y. Takahashi, “Experimental evaluation of Raman silicon nanocavity laser designed by machine learning ,” in Spring Meeting Japan Society of Applied Physics, Abstract (The Japan Society of Applied Physics, 2020), 14a-B415-1.
  51. T. Terasawa, N. Hasegawa, H. Fukuda, and S. Katagiri, “Imaging characteristics of multi-phase-shifting and halftone phase-shifting masks,” Jpn. J. Appl. Phys. 30(Part 1, No. 11B), 2991–2997 (1991).
    [Crossref]
  52. M. Yoshida, M. D. Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18(2), 121–128 (2019).
    [Crossref]
  53. K. Kitamura, M. Kitazawa, and S. Noda, “Generation of optical vortex beam by surface-processed photonic-crystal surface-emitting lasers,” Opt. Express 27(2), 1045–1050 (2019).
    [Crossref]
  54. Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Topological photonic crystal nanocavity laser,” Commun. Phys. 1(1), 86 (2018).
    [Crossref]
  55. A. K. Pradhan and M. Sen, ““An integrable all-silicon slotted photonic crystal Raman laser” J,” Appl. Phys. 126(23), 233103 (2019).
    [Crossref]
  56. R. Shiozaki, T. Ito, and Y. Takahashi, “Utilizing broadband light from a superluminescent diode for excitation of photonic crystal highQ nanocavities,” J. Lightwave Technol. 37(10), 2458–2466 (2019).
    [Crossref]

2020 (2)

M. Nakadai, K. Tanaka, T. Asano, Y. Takahashi, and S. Noda, “Statistical evaluation of Q factors of fabricated photonic crystal nanocavities designed by using a deep neural network,” Appl. Phys. Express 13(1), 012002 (2020).
[Crossref]

J. Kurihara, D. Yamashita, N. Tanaka, T. Asano, S. Noda, and Y. Takahashi, “Detrimental fluctuation of frequency spacing between the two high-quality resonant modes in a Raman silicon nanocavity laser,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–12 (2020).
[Crossref]

2019 (7)

Y. Yamauchi, M. Okano, H. Shishido, S. Noda, and Y. Takahashi, “Implementing a Raman silicon nanocavity laser for integrated optical circuits by using a (100) SOI wafer with a 45-degree-rotated top silicon layer,” OSA Continuum 2(7), 2098–2112 (2019).
[Crossref]

Y. Sato, S. Shibata, A. Uedono, K. Urabe, and K. Eriguchi, “Characterization of the distribution of defects introduced by plasma exposure in Si substrate,” J. Vac. Sci. Technol., A 37(1), 011304 (2019).
[Crossref]

M. Yoshida, M. D. Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18(2), 121–128 (2019).
[Crossref]

K. Kitamura, M. Kitazawa, and S. Noda, “Generation of optical vortex beam by surface-processed photonic-crystal surface-emitting lasers,” Opt. Express 27(2), 1045–1050 (2019).
[Crossref]

A. K. Pradhan and M. Sen, ““An integrable all-silicon slotted photonic crystal Raman laser” J,” Appl. Phys. 126(23), 233103 (2019).
[Crossref]

R. Shiozaki, T. Ito, and Y. Takahashi, “Utilizing broadband light from a superluminescent diode for excitation of photonic crystal highQ nanocavities,” J. Lightwave Technol. 37(10), 2458–2466 (2019).
[Crossref]

M. Kuwabara, S. Noda, and Y. Takahashi, “Ultrahigh-Q photonic nanocavity devices on a dual thickness SOI substrate operating at both 1.31- and 1.55-µm telecommunication wavelength bands,” Laser Photonics Rev. 13(2), 1800258 (2019).
[Crossref]

2018 (7)

G. Takeuchi, Y. Terada, M. Takeuchi, H. Abe, H. Ito, and T. Baba, “Thermally controlled Si photonic crystal slow light waveguide beam steering device,” Opt. Express 26(9), 11529–11537 (2018).
[Crossref]

K. Ashida, M. Okano, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, K. Yamada, and Y. Takahashi, “Photonic crystal nanocavities with an average Q factor of 1.9 million fabricated on a 300-mm-wide SOI wafer using a CMOS-compatible process,” J. Lightwave Technol. 36(20), 4774–4782 (2018).
[Crossref]

D. Yamashita, Y. Takahashi, J. Kurihara, T. Asano, and S. Noda, “Lasing dynamics of optically-pumped ultralow-threshold Raman silicon nanocavity lasers,” Phys. Rev. Appl. 10(2), 024039 (2018).
[Crossref]

D. Yamashita, T. Asano, S. Noda, and Y. Takahashi, “Strongly asymmetric wavelength dependence of optical gain in nanocavity-based Raman silicon lasers,” Optica 5(10), 1256–1263 (2018).
[Crossref]

T. Horikawa, D. Shimura, H. Okayama, S. H. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Topological photonic crystal nanocavity laser,” Commun. Phys. 1(1), 86 (2018).
[Crossref]

T. Asano and S. Noda, “Optimization of photonic crystal nanocavities based on deep learning,” Opt. Express 26(25), 32704–32716 (2018).
[Crossref]

2017 (6)

2016 (1)

2015 (3)

A. Sagara, A. Uedono, and S. Shibata, “Thermal behavior of residual defects in low-dose arsenic- and boron-implanted silicon after high-temperature rapid thermal annealing,” IEEE Trans. Semicond. Manufact. 28(1), 92–95 (2015).
[Crossref]

D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “Raman shift and strain effect in high-Q photonic crystal silicon nanocavity,” Opt. Express 23(4), 3951–3959 (2015).
[Crossref]

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, “High-Q CMOS-integrated photonic crystal microcavity devices,” Sci. Rep. 4(1), 4077 (2015).
[Crossref]

2014 (1)

2013 (3)

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 µm photonic crystal Si optical modulators: spectral, athermal, and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127–137 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref]

2012 (1)

J. K. Doylend and A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photonics Rev. 6(4), 504–525 (2012).
[Crossref]

2011 (1)

2010 (2)

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97(12), 121111 (2010).
[Crossref]

X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B 82(4), 041308 (2010).
[Crossref]

2009 (2)

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

2007 (4)

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[Crossref]

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

X. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers,” Opt. Express 15(8), 4763–4780 (2007).
[Crossref]

J. M. Shainline, “Silicon as an emissive optical medium,” Laser Photonics Rev. 1(4), 334–348 (2007).
[Crossref]

2006 (1)

2005 (3)

R Jones, H Rong, A. Liu, A Fang, D. Paniccia, D Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13(2), 519–525 (2005).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

B.S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

2004 (3)

M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12(23), 5703–5710 (2004).
[Crossref]

T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1149–1153 (2004).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

2003 (1)

1996 (1)

D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[Crossref]

1993 (1)

Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell,” Phys. Rev. B 48(7), 4883–4886 (1993).
[Crossref]

1991 (1)

T. Terasawa, N. Hasegawa, H. Fukuda, and S. Katagiri, “Imaging characteristics of multi-phase-shifting and halftone phase-shifting masks,” Jpn. J. Appl. Phys. 30(Part 1, No. 11B), 2991–2997 (1991).
[Crossref]

1990 (1)

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[Crossref]

Abe, H.

Akahane, Y.

B.S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Arakawa, Y.

Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Topological photonic crystal nanocavity laser,” Commun. Phys. 1(1), 86 (2018).
[Crossref]

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[Crossref]

Asano, T

Asano, T.

J. Kurihara, D. Yamashita, N. Tanaka, T. Asano, S. Noda, and Y. Takahashi, “Detrimental fluctuation of frequency spacing between the two high-quality resonant modes in a Raman silicon nanocavity laser,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–12 (2020).
[Crossref]

M. Nakadai, K. Tanaka, T. Asano, Y. Takahashi, and S. Noda, “Statistical evaluation of Q factors of fabricated photonic crystal nanocavities designed by using a deep neural network,” Appl. Phys. Express 13(1), 012002 (2020).
[Crossref]

D. Yamashita, Y. Takahashi, J. Kurihara, T. Asano, and S. Noda, “Lasing dynamics of optically-pumped ultralow-threshold Raman silicon nanocavity lasers,” Phys. Rev. Appl. 10(2), 024039 (2018).
[Crossref]

D. Yamashita, T. Asano, S. Noda, and Y. Takahashi, “Strongly asymmetric wavelength dependence of optical gain in nanocavity-based Raman silicon lasers,” Optica 5(10), 1256–1263 (2018).
[Crossref]

T. Asano and S. Noda, “Optimization of photonic crystal nanocavities based on deep learning,” Opt. Express 26(25), 32704–32716 (2018).
[Crossref]

K. Maeno, Y. Takahashi, T. Nakamura, T. Asano, and S. Noda, “Analysis of high-Q photonic crystal L3 nanocavities designed by visualization of the leaky components,” Opt. Express 25(1), 367–376 (2017).
[Crossref]

T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with a Q factor exceeding eleven million,” Opt. Express 25(3), 1769–1777 (2017).
[Crossref]

T. Nakamura, Y. Takahashi, T. Asano, and S. Noda, “Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components,” Opt. Express 24(9), 9541–9549 (2016).
[Crossref]

D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “Raman shift and strain effect in high-Q photonic crystal silicon nanocavity,” Opt. Express 23(4), 3951–3959 (2015).
[Crossref]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ∼9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
[Crossref]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (∼1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[Crossref]

B.S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

T. Kawakatsu, T. Asano, S. Noda, and Y. Takahashi, “Experimental evaluation of Raman silicon nanocavity laser designed by machine learning ,” in Spring Meeting Japan Society of Applied Physics, Abstract (The Japan Society of Applied Physics, 2020), 14a-B415-1.

Y. Takahashi, R. Terawaki, M. Chihara, T. Asano, and S. Noda, “First observation of Raman scattering emission from silicon high-Q photonic crystal nanocavities,” Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2011), paper QWC3.

D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “A sub-microwatt threshold Raman silicon laser using a high-Q nanocavity,” Proceedings of Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (2015), paper 28J2_3.

Ashida, K.

Baba, T.

G. Takeuchi, Y. Terada, M. Takeuchi, H. Abe, H. Ito, and T. Baba, “Thermally controlled Si photonic crystal slow light waveguide beam steering device,” Opt. Express 26(9), 11529–11537 (2018).
[Crossref]

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 µm photonic crystal Si optical modulators: spectral, athermal, and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127–137 (2013).
[Crossref]

Bafrali, R.

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, “High-Q CMOS-integrated photonic crystal microcavity devices,” Sci. Rep. 4(1), 4077 (2015).
[Crossref]

Baribeau, J. M.

D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[Crossref]

Boucaud, P.

X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B 82(4), 041308 (2010).
[Crossref]

Brinkmeyer, E.

Canham, L. T.

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[Crossref]

Checoury, X.

X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B 82(4), 041308 (2010).
[Crossref]

Chihara, M.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

Y. Takahashi, R. Terawaki, M. Chihara, T. Asano, and S. Noda, “First observation of Raman scattering emission from silicon high-Q photonic crystal nanocavities,” Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2011), paper QWC3.

Claps, R.

Cohen, O.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

R Jones, H Rong, A. Liu, A Fang, D. Paniccia, D Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13(2), 519–525 (2005).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Datta, T.

T. Datta and M. Sen, “LED pumped micron-scale all-silicon Raman amplifier,” Superlattices Microstruct. 110, 273–280 (2017).
[Crossref]

Daud, N. A. B.

Dimitropoulos, D.

Doylend, J. K.

J. K. Doylend and A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photonics Rev. 6(4), 504–525 (2012).
[Crossref]

Eriguchi, K.

Y. Sato, S. Shibata, A. Uedono, K. Urabe, and K. Eriguchi, “Characterization of the distribution of defects introduced by plasma exposure in Si substrate,” J. Vac. Sci. Technol., A 37(1), 011304 (2019).
[Crossref]

Fang, A

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

Fujita, M.

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97(12), 121111 (2010).
[Crossref]

Fukuda, H.

T. Terasawa, N. Hasegawa, H. Fukuda, and S. Katagiri, “Imaging characteristics of multi-phase-shifting and halftone phase-shifting masks,” Jpn. J. Appl. Phys. 30(Part 1, No. 11B), 2991–2997 (1991).
[Crossref]

Gelleta, J.

M. Yoshida, M. D. Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18(2), 121–128 (2019).
[Crossref]

Gelloz, B.

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97(12), 121111 (2010).
[Crossref]

Gomyo, A.

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[Crossref]

Hagino, H.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

Hak, D

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Han, Y.

Han, Z.

X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B 82(4), 041308 (2010).
[Crossref]

Hasegawa, N.

T. Terasawa, N. Hasegawa, H. Fukuda, and S. Katagiri, “Imaging characteristics of multi-phase-shifting and halftone phase-shifting masks,” Jpn. J. Appl. Phys. 30(Part 1, No. 11B), 2991–2997 (1991).
[Crossref]

Hashimoto, S.

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 µm photonic crystal Si optical modulators: spectral, athermal, and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127–137 (2013).
[Crossref]

Hatsuda, R.

M. Yoshida, M. D. Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18(2), 121–128 (2019).
[Crossref]

Horikawa, T.

T. Horikawa, D. Shimura, H. Okayama, S. H. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Ihara, T.

T. Ihara, Y. Takahashi, S. Noda, and Y. Kanemitsu, “Enhanced radiative recombination rate for electron-hole droplets in a silicon photonic crystal nanocavity,” Phys. Rev. B 96(3), 035303 (2017).
[Crossref]

Inui, Y.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

Ishizaki, K.

M. Yoshida, M. D. Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18(2), 121–128 (2019).
[Crossref]

Ito, H.

Ito, T.

Iwamoto, S.

Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Topological photonic crystal nanocavity laser,” Commun. Phys. 1(1), 86 (2018).
[Crossref]

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[Crossref]

Jalali, B.

Jeong, S. H.

T. Horikawa, D. Shimura, H. Okayama, S. H. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Jones, R

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

Kanemitsu, Y.

T. Ihara, Y. Takahashi, S. Noda, and Y. Kanemitsu, “Enhanced radiative recombination rate for electron-hole droplets in a silicon photonic crystal nanocavity,” Phys. Rev. B 96(3), 035303 (2017).
[Crossref]

Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell,” Phys. Rev. B 48(7), 4883–4886 (1993).
[Crossref]

Katagiri, S.

T. Terasawa, N. Hasegawa, H. Fukuda, and S. Katagiri, “Imaging characteristics of multi-phase-shifting and halftone phase-shifting masks,” Jpn. J. Appl. Phys. 30(Part 1, No. 11B), 2991–2997 (1991).
[Crossref]

Katsumi, R.

Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Topological photonic crystal nanocavity laser,” Commun. Phys. 1(1), 86 (2018).
[Crossref]

Kawakatsu, T.

T. Kawakatsu, T. Asano, S. Noda, and Y. Takahashi, “Experimental evaluation of Raman silicon nanocavity laser designed by machine learning ,” in Spring Meeting Japan Society of Applied Physics, Abstract (The Japan Society of Applied Physics, 2020), 14a-B415-1.

Kawasaki, M.

M. Yoshida, M. D. Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18(2), 121–128 (2019).
[Crossref]

Kinoshita, K.

T. Horikawa, D. Shimura, H. Okayama, S. H. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Kishimoto, K.

Kitamura, K.

Kitazawa, M.

Knights, A. P.

J. K. Doylend and A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photonics Rev. 6(4), 504–525 (2012).
[Crossref]

Koshida, N.

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97(12), 121111 (2010).
[Crossref]

Koshino, K

Koshino, K.

Krause, M.

Kuo, Y.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Kurihara, J.

J. Kurihara, D. Yamashita, N. Tanaka, T. Asano, S. Noda, and Y. Takahashi, “Detrimental fluctuation of frequency spacing between the two high-quality resonant modes in a Raman silicon nanocavity laser,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–12 (2020).
[Crossref]

D. Yamashita, Y. Takahashi, J. Kurihara, T. Asano, and S. Noda, “Lasing dynamics of optically-pumped ultralow-threshold Raman silicon nanocavity lasers,” Phys. Rev. Appl. 10(2), 024039 (2018).
[Crossref]

Kuwabara, M.

M. Kuwabara, S. Noda, and Y. Takahashi, “Ultrahigh-Q photonic nanocavity devices on a dual thickness SOI substrate operating at both 1.31- and 1.55-µm telecommunication wavelength bands,” Laser Photonics Rev. 13(2), 1800258 (2019).
[Crossref]

Liang, T.

T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1149–1153 (2004).
[Crossref]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

R Jones, H Rong, A. Liu, A Fang, D. Paniccia, D Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13(2), 519–525 (2005).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Lockwood, D. J.

D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[Crossref]

Lu, Z. H.

D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[Crossref]

Maeno, K.

Meade, R.

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, “High-Q CMOS-integrated photonic crystal microcavity devices,” Sci. Rep. 4(1), 4077 (2015).
[Crossref]

Mehta, K. K.

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, “High-Q CMOS-integrated photonic crystal microcavity devices,” Sci. Rep. 4(1), 4077 (2015).
[Crossref]

Mogami, T.

T. Horikawa, D. Shimura, H. Okayama, S. H. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Mori, M

Nakadai, M.

M. Nakadai, K. Tanaka, T. Asano, Y. Takahashi, and S. Noda, “Statistical evaluation of Q factors of fabricated photonic crystal nanocavities designed by using a deep neural network,” Appl. Phys. Express 13(1), 012002 (2020).
[Crossref]

Nakamura, T.

Nguyen, H. C.

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 µm photonic crystal Si optical modulators: spectral, athermal, and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127–137 (2013).
[Crossref]

Nicolaescu, R.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Noda, S.

J. Kurihara, D. Yamashita, N. Tanaka, T. Asano, S. Noda, and Y. Takahashi, “Detrimental fluctuation of frequency spacing between the two high-quality resonant modes in a Raman silicon nanocavity laser,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–12 (2020).
[Crossref]

M. Nakadai, K. Tanaka, T. Asano, Y. Takahashi, and S. Noda, “Statistical evaluation of Q factors of fabricated photonic crystal nanocavities designed by using a deep neural network,” Appl. Phys. Express 13(1), 012002 (2020).
[Crossref]

M. Kuwabara, S. Noda, and Y. Takahashi, “Ultrahigh-Q photonic nanocavity devices on a dual thickness SOI substrate operating at both 1.31- and 1.55-µm telecommunication wavelength bands,” Laser Photonics Rev. 13(2), 1800258 (2019).
[Crossref]

Y. Yamauchi, M. Okano, H. Shishido, S. Noda, and Y. Takahashi, “Implementing a Raman silicon nanocavity laser for integrated optical circuits by using a (100) SOI wafer with a 45-degree-rotated top silicon layer,” OSA Continuum 2(7), 2098–2112 (2019).
[Crossref]

K. Kitamura, M. Kitazawa, and S. Noda, “Generation of optical vortex beam by surface-processed photonic-crystal surface-emitting lasers,” Opt. Express 27(2), 1045–1050 (2019).
[Crossref]

M. Yoshida, M. D. Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18(2), 121–128 (2019).
[Crossref]

T. Asano and S. Noda, “Optimization of photonic crystal nanocavities based on deep learning,” Opt. Express 26(25), 32704–32716 (2018).
[Crossref]

D. Yamashita, T. Asano, S. Noda, and Y. Takahashi, “Strongly asymmetric wavelength dependence of optical gain in nanocavity-based Raman silicon lasers,” Optica 5(10), 1256–1263 (2018).
[Crossref]

D. Yamashita, Y. Takahashi, J. Kurihara, T. Asano, and S. Noda, “Lasing dynamics of optically-pumped ultralow-threshold Raman silicon nanocavity lasers,” Phys. Rev. Appl. 10(2), 024039 (2018).
[Crossref]

T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with a Q factor exceeding eleven million,” Opt. Express 25(3), 1769–1777 (2017).
[Crossref]

K. Maeno, Y. Takahashi, T. Nakamura, T. Asano, and S. Noda, “Analysis of high-Q photonic crystal L3 nanocavities designed by visualization of the leaky components,” Opt. Express 25(1), 367–376 (2017).
[Crossref]

T. Ihara, Y. Takahashi, S. Noda, and Y. Kanemitsu, “Enhanced radiative recombination rate for electron-hole droplets in a silicon photonic crystal nanocavity,” Phys. Rev. B 96(3), 035303 (2017).
[Crossref]

K. Ashida, , M Okano, , M. Ohtsuka, , M Seki, N. Yokoyama, K Koshino, M Mori, K Koshino, T Asano, S. Noda, T Asano, and Y. Takahashi, “Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies,” Opt. Express 25(15), 18165–18174 (2017).
[Crossref]

T. Nakamura, Y. Takahashi, T. Asano, and S. Noda, “Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components,” Opt. Express 24(9), 9541–9549 (2016).
[Crossref]

D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “Raman shift and strain effect in high-Q photonic crystal silicon nanocavity,” Opt. Express 23(4), 3951–3959 (2015).
[Crossref]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ∼9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
[Crossref]

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97(12), 121111 (2010).
[Crossref]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (∼1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[Crossref]

B.S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

T. Kawakatsu, T. Asano, S. Noda, and Y. Takahashi, “Experimental evaluation of Raman silicon nanocavity laser designed by machine learning ,” in Spring Meeting Japan Society of Applied Physics, Abstract (The Japan Society of Applied Physics, 2020), 14a-B415-1.

Y. Takahashi, R. Terawaki, M. Chihara, T. Asano, and S. Noda, “First observation of Raman scattering emission from silicon high-Q photonic crystal nanocavities,” Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2011), paper QWC3.

D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “A sub-microwatt threshold Raman silicon laser using a high-Q nanocavity,” Proceedings of Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (2015), paper 28J2_3.

Ochi, Y.

Ogawa, T.

Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell,” Phys. Rev. B 48(7), 4883–4886 (1993).
[Crossref]

Ohtsuka, M.

Okano, M

Okano, M.

Okayama, H.

T. Horikawa, D. Shimura, H. Okayama, S. H. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Ooka, Y.

Orcutt, J. S.

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, “High-Q CMOS-integrated photonic crystal microcavity devices,” Sci. Rep. 4(1), 4077 (2015).
[Crossref]

Ota, Y.

Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Topological photonic crystal nanocavity laser,” Commun. Phys. 1(1), 86 (2018).
[Crossref]

Otsuka, S.

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 µm photonic crystal Si optical modulators: spectral, athermal, and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127–137 (2013).
[Crossref]

Paniccia, D.

Paniccia, M.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Pradhan, A. K.

A. K. Pradhan and M. Sen, ““An integrable all-silicon slotted photonic crystal Raman laser” J,” Appl. Phys. 126(23), 233103 (2019).
[Crossref]

Raday, O.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Raghunathan, V.

Ram, R. J.

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, “High-Q CMOS-integrated photonic crystal microcavity devices,” Sci. Rep. 4(1), 4077 (2015).
[Crossref]

Renner, H.

Rong, H

Rong, H.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Sagara, A.

A. Sagara, A. Uedono, and S. Shibata, “Thermal behavior of residual defects in low-dose arsenic- and boron-implanted silicon after high-temperature rapid thermal annealing,” IEEE Trans. Semicond. Manufact. 28(1), 92–95 (2015).
[Crossref]

Sato, Y.

Seki, M

Seki, M.

Sekoguchi, H.

Sen, M.

A. K. Pradhan and M. Sen, ““An integrable all-silicon slotted photonic crystal Raman laser” J,” Appl. Phys. 126(23), 233103 (2019).
[Crossref]

T. Datta and M. Sen, “LED pumped micron-scale all-silicon Raman amplifier,” Superlattices Microstruct. 110, 273–280 (2017).
[Crossref]

Shainline, J. M.

J. M. Shainline, “Silicon as an emissive optical medium,” Laser Photonics Rev. 1(4), 334–348 (2007).
[Crossref]

Shibata, S.

Y. Sato, S. Shibata, A. Uedono, K. Urabe, and K. Eriguchi, “Characterization of the distribution of defects introduced by plasma exposure in Si substrate,” J. Vac. Sci. Technol., A 37(1), 011304 (2019).
[Crossref]

A. Sagara, A. Uedono, and S. Shibata, “Thermal behavior of residual defects in low-dose arsenic- and boron-implanted silicon after high-temperature rapid thermal annealing,” IEEE Trans. Semicond. Manufact. 28(1), 92–95 (2015).
[Crossref]

Shiina, A.

T. Horikawa, D. Shimura, H. Okayama, S. H. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Shimura, D.

T. Horikawa, D. Shimura, H. Okayama, S. H. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Shiozaki, R.

Shiraishi, K.

Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell,” Phys. Rev. B 48(7), 4883–4886 (1993).
[Crossref]

Shishido, H.

Sih, V.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Sobu, Y.

T. Horikawa, D. Shimura, H. Okayama, S. H. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Song, B

M. Yoshida, M. D. Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18(2), 121–128 (2019).
[Crossref]

Song, B.S.

B.S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Song, B.-S.

Sternberg, Z.

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, “High-Q CMOS-integrated photonic crystal microcavity devices,” Sci. Rep. 4(1), 4077 (2015).
[Crossref]

Sugiya, T.

Taguchi, Y.

Takahashi, H.

T. Horikawa, D. Shimura, H. Okayama, S. H. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Takahashi, Y.

M. Nakadai, K. Tanaka, T. Asano, Y. Takahashi, and S. Noda, “Statistical evaluation of Q factors of fabricated photonic crystal nanocavities designed by using a deep neural network,” Appl. Phys. Express 13(1), 012002 (2020).
[Crossref]

J. Kurihara, D. Yamashita, N. Tanaka, T. Asano, S. Noda, and Y. Takahashi, “Detrimental fluctuation of frequency spacing between the two high-quality resonant modes in a Raman silicon nanocavity laser,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–12 (2020).
[Crossref]

Y. Yamauchi, M. Okano, H. Shishido, S. Noda, and Y. Takahashi, “Implementing a Raman silicon nanocavity laser for integrated optical circuits by using a (100) SOI wafer with a 45-degree-rotated top silicon layer,” OSA Continuum 2(7), 2098–2112 (2019).
[Crossref]

R. Shiozaki, T. Ito, and Y. Takahashi, “Utilizing broadband light from a superluminescent diode for excitation of photonic crystal highQ nanocavities,” J. Lightwave Technol. 37(10), 2458–2466 (2019).
[Crossref]

M. Kuwabara, S. Noda, and Y. Takahashi, “Ultrahigh-Q photonic nanocavity devices on a dual thickness SOI substrate operating at both 1.31- and 1.55-µm telecommunication wavelength bands,” Laser Photonics Rev. 13(2), 1800258 (2019).
[Crossref]

D. Yamashita, T. Asano, S. Noda, and Y. Takahashi, “Strongly asymmetric wavelength dependence of optical gain in nanocavity-based Raman silicon lasers,” Optica 5(10), 1256–1263 (2018).
[Crossref]

D. Yamashita, Y. Takahashi, J. Kurihara, T. Asano, and S. Noda, “Lasing dynamics of optically-pumped ultralow-threshold Raman silicon nanocavity lasers,” Phys. Rev. Appl. 10(2), 024039 (2018).
[Crossref]

K. Ashida, M. Okano, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, K. Yamada, and Y. Takahashi, “Photonic crystal nanocavities with an average Q factor of 1.9 million fabricated on a 300-mm-wide SOI wafer using a CMOS-compatible process,” J. Lightwave Technol. 36(20), 4774–4782 (2018).
[Crossref]

K. Ashida, , M Okano, , M. Ohtsuka, , M Seki, N. Yokoyama, K Koshino, M Mori, K Koshino, T Asano, S. Noda, T Asano, and Y. Takahashi, “Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies,” Opt. Express 25(15), 18165–18174 (2017).
[Crossref]

K. Maeno, Y. Takahashi, T. Nakamura, T. Asano, and S. Noda, “Analysis of high-Q photonic crystal L3 nanocavities designed by visualization of the leaky components,” Opt. Express 25(1), 367–376 (2017).
[Crossref]

T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with a Q factor exceeding eleven million,” Opt. Express 25(3), 1769–1777 (2017).
[Crossref]

T. Ihara, Y. Takahashi, S. Noda, and Y. Kanemitsu, “Enhanced radiative recombination rate for electron-hole droplets in a silicon photonic crystal nanocavity,” Phys. Rev. B 96(3), 035303 (2017).
[Crossref]

T. Nakamura, Y. Takahashi, T. Asano, and S. Noda, “Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components,” Opt. Express 24(9), 9541–9549 (2016).
[Crossref]

D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “Raman shift and strain effect in high-Q photonic crystal silicon nanocavity,” Opt. Express 23(4), 3951–3959 (2015).
[Crossref]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ∼9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
[Crossref]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

T. Kawakatsu, T. Asano, S. Noda, and Y. Takahashi, “Experimental evaluation of Raman silicon nanocavity laser designed by machine learning ,” in Spring Meeting Japan Society of Applied Physics, Abstract (The Japan Society of Applied Physics, 2020), 14a-B415-1.

Y. Takahashi, R. Terawaki, M. Chihara, T. Asano, and S. Noda, “First observation of Raman scattering emission from silicon high-Q photonic crystal nanocavities,” Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2011), paper QWC3.

D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “A sub-microwatt threshold Raman silicon laser using a high-Q nanocavity,” Proceedings of Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (2015), paper 28J2_3.

Takeda, K.

Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell,” Phys. Rev. B 48(7), 4883–4886 (1993).
[Crossref]

Takeuchi, G.

Takeuchi, M.

Tanabe, T.

Tanaka, K.

M. Nakadai, K. Tanaka, T. Asano, Y. Takahashi, and S. Noda, “Statistical evaluation of Q factors of fabricated photonic crystal nanocavities designed by using a deep neural network,” Appl. Phys. Express 13(1), 012002 (2020).
[Crossref]

Tanaka, N.

J. Kurihara, D. Yamashita, N. Tanaka, T. Asano, S. Noda, and Y. Takahashi, “Detrimental fluctuation of frequency spacing between the two high-quality resonant modes in a Raman silicon nanocavity laser,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–12 (2020).
[Crossref]

Tanaka, Y.

M. Yoshida, M. D. Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18(2), 121–128 (2019).
[Crossref]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref]

Tehar-Zahav, O.

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, “High-Q CMOS-integrated photonic crystal microcavity devices,” Sci. Rep. 4(1), 4077 (2015).
[Crossref]

Terada, Y.

Terasawa, T.

T. Terasawa, N. Hasegawa, H. Fukuda, and S. Katagiri, “Imaging characteristics of multi-phase-shifting and halftone phase-shifting masks,” Jpn. J. Appl. Phys. 30(Part 1, No. 11B), 2991–2997 (1991).
[Crossref]

Terawaki, R.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref]

Y. Takahashi, R. Terawaki, M. Chihara, T. Asano, and S. Noda, “First observation of Raman scattering emission from silicon high-Q photonic crystal nanocavities,” Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2011), paper QWC3.

Tetsumoto, T.

Tokushima, M.

T. Horikawa, D. Shimura, H. Okayama, S. H. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Tsang, H.

T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1149–1153 (2004).
[Crossref]

Uedono, A.

Y. Sato, S. Shibata, A. Uedono, K. Urabe, and K. Eriguchi, “Characterization of the distribution of defects introduced by plasma exposure in Si substrate,” J. Vac. Sci. Technol., A 37(1), 011304 (2019).
[Crossref]

A. Sagara, A. Uedono, and S. Shibata, “Thermal behavior of residual defects in low-dose arsenic- and boron-implanted silicon after high-temperature rapid thermal annealing,” IEEE Trans. Semicond. Manufact. 28(1), 92–95 (2015).
[Crossref]

Urabe, K.

Y. Sato, S. Shibata, A. Uedono, K. Urabe, and K. Eriguchi, “Characterization of the distribution of defects introduced by plasma exposure in Si substrate,” J. Vac. Sci. Technol., A 37(1), 011304 (2019).
[Crossref]

Ushida, J.

T. Horikawa, D. Shimura, H. Okayama, S. H. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Watanabe, K.

Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Topological photonic crystal nanocavity laser,” Commun. Phys. 1(1), 86 (2018).
[Crossref]

Wong, C. W.

Xu, S.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Yamada, K.

Yamashita, D.

J. Kurihara, D. Yamashita, N. Tanaka, T. Asano, S. Noda, and Y. Takahashi, “Detrimental fluctuation of frequency spacing between the two high-quality resonant modes in a Raman silicon nanocavity laser,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–12 (2020).
[Crossref]

D. Yamashita, T. Asano, S. Noda, and Y. Takahashi, “Strongly asymmetric wavelength dependence of optical gain in nanocavity-based Raman silicon lasers,” Optica 5(10), 1256–1263 (2018).
[Crossref]

D. Yamashita, Y. Takahashi, J. Kurihara, T. Asano, and S. Noda, “Lasing dynamics of optically-pumped ultralow-threshold Raman silicon nanocavity lasers,” Phys. Rev. Appl. 10(2), 024039 (2018).
[Crossref]

D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “Raman shift and strain effect in high-Q photonic crystal silicon nanocavity,” Opt. Express 23(4), 3951–3959 (2015).
[Crossref]

D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “A sub-microwatt threshold Raman silicon laser using a high-Q nanocavity,” Proceedings of Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (2015), paper 28J2_3.

Yamauchi, Y.

Yang, X.

Yazawa, N.

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 µm photonic crystal Si optical modulators: spectral, athermal, and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127–137 (2013).
[Crossref]

Yokoyama, N.

Yoshida, M.

M. Yoshida, M. D. Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18(2), 121–128 (2019).
[Crossref]

Zoysa, M. D.

M. Yoshida, M. D. Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18(2), 121–128 (2019).
[Crossref]

Appl. Phys. (1)

A. K. Pradhan and M. Sen, ““An integrable all-silicon slotted photonic crystal Raman laser” J,” Appl. Phys. 126(23), 233103 (2019).
[Crossref]

Appl. Phys. Express (1)

M. Nakadai, K. Tanaka, T. Asano, Y. Takahashi, and S. Noda, “Statistical evaluation of Q factors of fabricated photonic crystal nanocavities designed by using a deep neural network,” Appl. Phys. Express 13(1), 012002 (2020).
[Crossref]

Appl. Phys. Lett. (4)

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[Crossref]

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[Crossref]

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97(12), 121111 (2010).
[Crossref]

Commun. Phys. (1)

Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Topological photonic crystal nanocavity laser,” Commun. Phys. 1(1), 86 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

T. Horikawa, D. Shimura, H. Okayama, S. H. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 µm photonic crystal Si optical modulators: spectral, athermal, and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127–137 (2013).
[Crossref]

T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1149–1153 (2004).
[Crossref]

J. Kurihara, D. Yamashita, N. Tanaka, T. Asano, S. Noda, and Y. Takahashi, “Detrimental fluctuation of frequency spacing between the two high-quality resonant modes in a Raman silicon nanocavity laser,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–12 (2020).
[Crossref]

IEEE Trans. Semicond. Manufact. (1)

A. Sagara, A. Uedono, and S. Shibata, “Thermal behavior of residual defects in low-dose arsenic- and boron-implanted silicon after high-temperature rapid thermal annealing,” IEEE Trans. Semicond. Manufact. 28(1), 92–95 (2015).
[Crossref]

J. Lightwave Technol. (2)

J. Vac. Sci. Technol., A (1)

Y. Sato, S. Shibata, A. Uedono, K. Urabe, and K. Eriguchi, “Characterization of the distribution of defects introduced by plasma exposure in Si substrate,” J. Vac. Sci. Technol., A 37(1), 011304 (2019).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Terasawa, N. Hasegawa, H. Fukuda, and S. Katagiri, “Imaging characteristics of multi-phase-shifting and halftone phase-shifting masks,” Jpn. J. Appl. Phys. 30(Part 1, No. 11B), 2991–2997 (1991).
[Crossref]

Laser Photonics Rev. (3)

M. Kuwabara, S. Noda, and Y. Takahashi, “Ultrahigh-Q photonic nanocavity devices on a dual thickness SOI substrate operating at both 1.31- and 1.55-µm telecommunication wavelength bands,” Laser Photonics Rev. 13(2), 1800258 (2019).
[Crossref]

J. K. Doylend and A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photonics Rev. 6(4), 504–525 (2012).
[Crossref]

J. M. Shainline, “Silicon as an emissive optical medium,” Laser Photonics Rev. 1(4), 334–348 (2007).
[Crossref]

Nat. Mater. (2)

M. Yoshida, M. D. Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18(2), 121–128 (2019).
[Crossref]

B.S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Nat. Photonics (1)

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Nature (2)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref]

Opt. Express (17)

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11(15), 1731–1739 (2003).
[Crossref]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
[Crossref]

M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12(23), 5703–5710 (2004).
[Crossref]

T. Nakamura, Y. Takahashi, T. Asano, and S. Noda, “Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components,” Opt. Express 24(9), 9541–9549 (2016).
[Crossref]

K. Ashida, , M Okano, , M. Ohtsuka, , M Seki, N. Yokoyama, K Koshino, M Mori, K Koshino, T Asano, S. Noda, T Asano, and Y. Takahashi, “Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies,” Opt. Express 25(15), 18165–18174 (2017).
[Crossref]

X. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers,” Opt. Express 15(8), 4763–4780 (2007).
[Crossref]

D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “Raman shift and strain effect in high-Q photonic crystal silicon nanocavity,” Opt. Express 23(4), 3951–3959 (2015).
[Crossref]

K. Maeno, Y. Takahashi, T. Nakamura, T. Asano, and S. Noda, “Analysis of high-Q photonic crystal L3 nanocavities designed by visualization of the leaky components,” Opt. Express 25(1), 367–376 (2017).
[Crossref]

T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with a Q factor exceeding eleven million,” Opt. Express 25(3), 1769–1777 (2017).
[Crossref]

G. Takeuchi, Y. Terada, M. Takeuchi, H. Abe, H. Ito, and T. Baba, “Thermally controlled Si photonic crystal slow light waveguide beam steering device,” Opt. Express 26(9), 11529–11537 (2018).
[Crossref]

T. Asano and S. Noda, “Optimization of photonic crystal nanocavities based on deep learning,” Opt. Express 26(25), 32704–32716 (2018).
[Crossref]

K. Kitamura, M. Kitazawa, and S. Noda, “Generation of optical vortex beam by surface-processed photonic-crystal surface-emitting lasers,” Opt. Express 27(2), 1045–1050 (2019).
[Crossref]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ∼9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref]

R Jones, H Rong, A. Liu, A Fang, D. Paniccia, D Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13(2), 519–525 (2005).
[Crossref]

T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (∼1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[Crossref]

Y. Ooka, T. Tetsumoto, N. A. B. Daud, and T. Tanabe, “Ultrasmall in-plane photonic crystal demultiplexers fabricated with photolithography,” Opt. Express 25(2), 1521–1528 (2017).
[Crossref]

Optica (1)

OSA Continuum (1)

Phys. Rev. Appl. (1)

D. Yamashita, Y. Takahashi, J. Kurihara, T. Asano, and S. Noda, “Lasing dynamics of optically-pumped ultralow-threshold Raman silicon nanocavity lasers,” Phys. Rev. Appl. 10(2), 024039 (2018).
[Crossref]

Phys. Rev. B (5)

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B 82(4), 041308 (2010).
[Crossref]

Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell,” Phys. Rev. B 48(7), 4883–4886 (1993).
[Crossref]

T. Ihara, Y. Takahashi, S. Noda, and Y. Kanemitsu, “Enhanced radiative recombination rate for electron-hole droplets in a silicon photonic crystal nanocavity,” Phys. Rev. B 96(3), 035303 (2017).
[Crossref]

Phys. Rev. Lett. (1)

D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[Crossref]

Sci. Rep. (1)

K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali, R. Meade, and R. J. Ram, “High-Q CMOS-integrated photonic crystal microcavity devices,” Sci. Rep. 4(1), 4077 (2015).
[Crossref]

Superlattices Microstruct. (1)

T. Datta and M. Sen, “LED pumped micron-scale all-silicon Raman amplifier,” Superlattices Microstruct. 110, 273–280 (2017).
[Crossref]

Other (4)

Y. Takahashi, R. Terawaki, M. Chihara, T. Asano, and S. Noda, “First observation of Raman scattering emission from silicon high-Q photonic crystal nanocavities,” Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2011), paper QWC3.

T. Kawakatsu, T. Asano, S. Noda, and Y. Takahashi, “Experimental evaluation of Raman silicon nanocavity laser designed by machine learning ,” in Spring Meeting Japan Society of Applied Physics, Abstract (The Japan Society of Applied Physics, 2020), 14a-B415-1.

The repeated thermal process was not necessary in the previous studies [34,39]. We consider that improvements of the fabrication process to increase the Qexp of both cavity modes without the thermal process should be possible.

D. Yamashita, Y. Takahashi, T. Asano, and S. Noda, “A sub-microwatt threshold Raman silicon laser using a high-Q nanocavity,” Proceedings of Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (2015), paper 28J2_3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the PC heterostructure nanocavity and the two excitation waveguides used for our Raman Si laser devices. (b) Band diagram of the nanocavity. The pump mode and Stokes mode arise from the two propagation bands of the nanocavity. The white area between the first and second propagation bands presents the mode gap region.
Fig. 2.
Fig. 2. Sample fabrication steps.
Fig. 3.
Fig. 3. (a) SEM image of one fabricated Raman Si laser before etching of the SiO2 layer. (b) SEM image of this sample after etching of the BOX layer. (c) Top view of the core region of this device. (d) Top view of the cleaved facet.
Fig. 4.
Fig. 4. (a) Resonance spectrum of the pump mode. (b) Resonance spectrum of the Stokes mode. (c) Laser output power as a function of the pump power coupled into the nanocavity. (d) Camera images of the nanocavity under three different excitation conditions. The pump laser light is cut off by inserting a long-pass filter.
Fig. 5.
Fig. 5. Frequency spacing Δf between the resonant frequencies of pump and Stokes modes for eleven nanocavities with the same dimensions as shown in Fig. 1(a). Dotted lines show the standard deviation of the distribution.
Fig. 6.
Fig. 6. Experimental setup to measure the resonance spectra of the two nanocavity modes and the laser characteristics. The colors of the incident light and the emitted light correspond to the measurement of the data shown in Figs. 4(c) and 4(d). The 1500-nm long-pass filter (LPF) is removed for the measurement of the resonance spectra in Figs. 4(a) and 4(b).