Abstract

Stimulation of 700 and 900 nm optical emissions in a two junction monolithically integrated circuit silicon avalanche mode Si light emitting device have been achieved, based on some first iteration modelling and realization of first iteration experimental results. Previously only stimulation of 600 nm emission intensities had been realized. The current devices are of micron dimension and were realized using a standard Si integrated circuit design in a 0.35-micron RF design process. Evidence has been obtained that 700 nm and 900 nm in Si AM LEDs occur primarily through direct intra-band exited electron and exited hole relaxation phenomena and short-range phonon assisted inter-band transitions. Indications have been obtained that this occurs when energetic electrons relax in a high impurity density charge scattering environment. The devices operate at 8–10 V, 1 mA–10 mA regimes. Emission intensities of up to 1000 nW·µm−2 at the point of source have been derived. The developed technologies can find diverse new applications for on-chip electro-optic applications, particularly for coupling optical radiation laterally in silicon nitride-based waveguides in silicon integrated circuitry.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Micro optical sensors based on avalanching silicon light-emitting devices monolithically integrated on chips

Kaikai Xu, Yanxu Chen, Timothy A. Okhai, and Lukas W. Snyman
Opt. Mater. Express 9(10) 3985-3997 (2019)

Low-loss TeO2-coated Si3N4 waveguides for application in photonic integrated circuits

Henry C. Frankis, Khadijeh Miarabbas Kiani, Dawson B. Bonneville, Chenglin Zhang, Samuel Norris, Richard Mateman, Arne Leinse, Nabil D. Bassim, Andrew P. Knights, and Jonathan D. B. Bradley
Opt. Express 27(9) 12529-12540 (2019)

Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates

M. D. Birowosuto, G. Zhang, A. Yokoo, M. Takiguchi, and M. Notomi
Opt. Express 22(10) 11713-11726 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. A. Fitzgerald and L. C. Kimerling, “Silicon-based micro-photonics 627and integrated optoelectronics,” MRS Bull. 23(4), 39–47 (1998).
    [Crossref]
  2. K. Wada, “Electronics and photonics convergence on Si CMOS platform,” Proc. SPIE 5357, 16–24 (2004).
    [Crossref]
  3. R. R. Alfano, “The ultimate white light,” Sci. Am. 295(6), 86–93 (2006).
    [Crossref]
  4. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006)..
    [Crossref]
  5. R. Soref, “Silicon photonics technology: past, present and future,” Proc. SPIE 5730, 19 (2008).
    [Crossref]
  6. L. W. Snyman, K. D. Ogudo, and D. Foty, “Development of a 0.75 micron wavelength CMOS optical communication system,” Proc. SPIE 7943, 79430K (2011).
    [Crossref]
  7. L. W. Snyman, “Integrating Micro-Photonic Systems and MOEMS into Standard Silicon CMOS Integrated Circuitry, Optoelectronics - Devices and Applications”, Edited P. Predeep, ISBN: 978-953-307-576-1, InTech, DOI: 10.5772/1881. Available from: http://www.intechopen.com/books/optoelectronics-devices-and-applications/integrating-micro-photonic-systems-and-moems-into-standard-silicon-cmos-integrated-circuitry , (2011).
  8. K. Xu, L. W. Snyman, J.-L. Polleux, H. Chen, and G. Li, “Silicon Light-Emitting Device with Application in the Micro-opto-electro-mechanical Systems,” Int. J. Mater., Mech. Manuf. 3(4), 282–286 (2015).
    [Crossref]
  9. K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, Light-Emitting Devices in Si CMOS and RF Bipolar Integrated Circuits, vol. 2 (Leukos, 2016), pp. 1–10.
  10. R. Newman, “Visible light from a silicon p-n junction,” Phys. Rev. 100(2), 700–703 (1955).
    [Crossref]
  11. W. G. Ghynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
    [Crossref]
  12. J. Bude, N. Sano, and A. Yoshii, “Hot carrier luminescence in silicon,” Phys. Rev. 45(11), 5848–5856 (1992).
    [Crossref]
  13. N. Akil, V. E. Houstma, P. LeMinth, J. Holleman, V. Zieren, D. DeMooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
    [Crossref]
  14. J. L. Moll and R. Van Overstraeten, “Charge multiplication in silicon p-n junctions,” Solid-State Electron. 6(2), 147–157 (1963).
    [Crossref]
  15. J. Kramer, P. Seitz, E. F. Steigmeier, H. Auderset, and B. Delley, “Light-emitting devices in Industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
    [Crossref]
  16. L. W. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient, low voltage, high frequency silicon CMOS light emitting device and electro-optical interface,” IEEE Electron Device Lett. 20(12), 614–617 (1999).
    [Crossref]
  17. L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. Van Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconduc- tor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
    [Crossref]
  18. S. J. M. Matjila and L. W. Snyman, “Increased electroluminescence from a two-junction Si n + pn CMOS structure,” Proc. SPIE 4293, 140 (2001).
    [Crossref]
  19. L. W. Snyman, M. Du Plessis, and H. Aharoni, “Injection-based Si CMOS LED’s (450 nm - 750 nm) with two order increase in light emission intensity - Applications for next generation silicon-based optoelectronics,” Jpn. J. Appl. Phys. 46(4B), 2474–2480 (2007).
    [Crossref]
  20. M. du Plessis, H. Aharoni, and L. W. Snyman, “A silicon trans-conductance light emitting device (TRANSLED),” Sens. Actuators 80(3), 242–248 (2000).
    [Crossref]
  21. K. Xu and G. P. Li, “A three terminal silicon PMOSFET light emitting device (LED) for optical intensity modulation,” IEEE Photonics J. 4(6), 2159–2168 (2012).
    [Crossref]
  22. G. Piccolo, P. I. Kuindersma, L.-A. Ragnarsson, R. J. E. Hueting, N. Collaert, and J. Schmitz, “Silicon LEDs in FinFET technology,” Published in: 2014 44th European Solid State Device Research Conference (ESSDERC)22-26, 274–277 (2014).
  23. S. Dutta, R. J. Hueting, A.-J. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modeling of light emission from avalanche-mode silicon p + n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
    [Crossref]
  24. A. Chatterjee, B. Bhuva, and R. Schrimpf, “High-speed light modulation in avalanche breakdown mode for Si diodes,” IEEE Electron Device Lett. 25(9), 628–630 (2004).
    [Crossref]
  25. K. A. Ogudo, L. W. Snyman, J.-L. Poulleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10–40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
    [Crossref]
  26. K. Xu, H. Liu, and Z. Zhang, “Gate-controlled diode structure based electro-optical interfaces in standard silicon-CMOS integrated circuitry,” Appl. Opt. 54(21), 6420 (2015).
    [Crossref]
  27. L. W. Snyman, K. Xu, J-L Polleux, K. A. Ogudo, and C. Viana, “Higher Intensity SiAvLEDs in an RF Bipolar Process Through Carrier Energy and Carrier Momentum Engineering,” IEEE J. Quantum Electron. 51(7), 1–10 (2015).
    [Crossref]
  28. L. W. Snyman, E. Bellotti, and M. du Plessis, “Photonic transitions (1.4 eV- 2.8 eV) in Silicon p + np+ injection-avalanche CMOS LEDs as function of depletion layer profiling and defect engineering,” IEEE J. Quantum Electron. 46(6), 906–919 (2010).
    [Crossref]
  29. L. W. Snyman, JL Polleux, K. A. Ogudo, and M. Du Plessis, “Stimulating 600-650 nm Wavelength Optical Emission in Monolithically Integrated Silicon LEDs through controlled Injection-Avalanche and Carrier Density Balancing Technology,” IEEE J. Quantum Electron. 53(5), 1–9 (2017).
    [Crossref]
  30. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
    [Crossref]
  31. M. Beals, J. Micheal, F. J. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, and L. C. Kimerling, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 689804 (2008).
    [Crossref]
  32. S. M. Sze, “Carrier transport phenomenon: high field effects,” in Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981), chap. 2, p. 67.
  33. S. M. Sze, “Saturation current and voltage breakdown in bipolar devices,” in Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981), chap. 4, p. 103.
  34. “Opto-electronic device with separately controllable carrier injection means,” by L.W. Snyman. H. Aharoni, M. Du Plessis, USA Patent of 30 November 1999 (Priority date: 4 March 1996). by Republic of South African Patent No 96/2528 of 4 March 1996. Granted: SA (96/2528) (Assigned to University of Pretoria . Granted: USA Patent 6,111,27, (Assigned to University of Pretoria).
  35. L. W. Snyman, “Wavelength specific silicon light emitting structure,” WO Patent WO/2011/038422 of 31 March 2011, U.S. Patent Application 2010819669 of European Patent EPO Application . 1020127000895 of 25 April 2012 and of Korean Patent 1020127000895 of 27 December 2013 (assigned to the Tshwane University of Technology).
  36. L. W. Snyman, J.-L. Polleux, and K. Xu, “Optimised 650 nm Impurity assisted injection controlled Si Av LED,” Provisional submitted S.A Patent of September 2016 (assigned to the University of South Africa)

2017 (1)

L. W. Snyman, JL Polleux, K. A. Ogudo, and M. Du Plessis, “Stimulating 600-650 nm Wavelength Optical Emission in Monolithically Integrated Silicon LEDs through controlled Injection-Avalanche and Carrier Density Balancing Technology,” IEEE J. Quantum Electron. 53(5), 1–9 (2017).
[Crossref]

2015 (4)

S. Dutta, R. J. Hueting, A.-J. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modeling of light emission from avalanche-mode silicon p + n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
[Crossref]

K. Xu, H. Liu, and Z. Zhang, “Gate-controlled diode structure based electro-optical interfaces in standard silicon-CMOS integrated circuitry,” Appl. Opt. 54(21), 6420 (2015).
[Crossref]

L. W. Snyman, K. Xu, J-L Polleux, K. A. Ogudo, and C. Viana, “Higher Intensity SiAvLEDs in an RF Bipolar Process Through Carrier Energy and Carrier Momentum Engineering,” IEEE J. Quantum Electron. 51(7), 1–10 (2015).
[Crossref]

K. Xu, L. W. Snyman, J.-L. Polleux, H. Chen, and G. Li, “Silicon Light-Emitting Device with Application in the Micro-opto-electro-mechanical Systems,” Int. J. Mater., Mech. Manuf. 3(4), 282–286 (2015).
[Crossref]

2014 (1)

K. A. Ogudo, L. W. Snyman, J.-L. Poulleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10–40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
[Crossref]

2012 (1)

K. Xu and G. P. Li, “A three terminal silicon PMOSFET light emitting device (LED) for optical intensity modulation,” IEEE Photonics J. 4(6), 2159–2168 (2012).
[Crossref]

2011 (1)

L. W. Snyman, K. D. Ogudo, and D. Foty, “Development of a 0.75 micron wavelength CMOS optical communication system,” Proc. SPIE 7943, 79430K (2011).
[Crossref]

2010 (1)

L. W. Snyman, E. Bellotti, and M. du Plessis, “Photonic transitions (1.4 eV- 2.8 eV) in Silicon p + np+ injection-avalanche CMOS LEDs as function of depletion layer profiling and defect engineering,” IEEE J. Quantum Electron. 46(6), 906–919 (2010).
[Crossref]

2008 (3)

A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
[Crossref]

M. Beals, J. Micheal, F. J. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, and L. C. Kimerling, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 689804 (2008).
[Crossref]

R. Soref, “Silicon photonics technology: past, present and future,” Proc. SPIE 5730, 19 (2008).
[Crossref]

2007 (1)

L. W. Snyman, M. Du Plessis, and H. Aharoni, “Injection-based Si CMOS LED’s (450 nm - 750 nm) with two order increase in light emission intensity - Applications for next generation silicon-based optoelectronics,” Jpn. J. Appl. Phys. 46(4B), 2474–2480 (2007).
[Crossref]

2006 (2)

R. R. Alfano, “The ultimate white light,” Sci. Am. 295(6), 86–93 (2006).
[Crossref]

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006)..
[Crossref]

2004 (2)

K. Wada, “Electronics and photonics convergence on Si CMOS platform,” Proc. SPIE 5357, 16–24 (2004).
[Crossref]

A. Chatterjee, B. Bhuva, and R. Schrimpf, “High-speed light modulation in avalanche breakdown mode for Si diodes,” IEEE Electron Device Lett. 25(9), 628–630 (2004).
[Crossref]

2002 (1)

L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. Van Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconduc- tor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
[Crossref]

2001 (1)

S. J. M. Matjila and L. W. Snyman, “Increased electroluminescence from a two-junction Si n + pn CMOS structure,” Proc. SPIE 4293, 140 (2001).
[Crossref]

2000 (2)

N. Akil, V. E. Houstma, P. LeMinth, J. Holleman, V. Zieren, D. DeMooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

M. du Plessis, H. Aharoni, and L. W. Snyman, “A silicon trans-conductance light emitting device (TRANSLED),” Sens. Actuators 80(3), 242–248 (2000).
[Crossref]

1999 (1)

L. W. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient, low voltage, high frequency silicon CMOS light emitting device and electro-optical interface,” IEEE Electron Device Lett. 20(12), 614–617 (1999).
[Crossref]

1998 (1)

E. A. Fitzgerald and L. C. Kimerling, “Silicon-based micro-photonics 627and integrated optoelectronics,” MRS Bull. 23(4), 39–47 (1998).
[Crossref]

1993 (1)

J. Kramer, P. Seitz, E. F. Steigmeier, H. Auderset, and B. Delley, “Light-emitting devices in Industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
[Crossref]

1992 (1)

J. Bude, N. Sano, and A. Yoshii, “Hot carrier luminescence in silicon,” Phys. Rev. 45(11), 5848–5856 (1992).
[Crossref]

1963 (1)

J. L. Moll and R. Van Overstraeten, “Charge multiplication in silicon p-n junctions,” Solid-State Electron. 6(2), 147–157 (1963).
[Crossref]

1956 (1)

W. G. Ghynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]

1955 (1)

R. Newman, “Visible light from a silicon p-n junction,” Phys. Rev. 100(2), 700–703 (1955).
[Crossref]

Aharoni, H.

L. W. Snyman, M. Du Plessis, and H. Aharoni, “Injection-based Si CMOS LED’s (450 nm - 750 nm) with two order increase in light emission intensity - Applications for next generation silicon-based optoelectronics,” Jpn. J. Appl. Phys. 46(4B), 2474–2480 (2007).
[Crossref]

L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. Van Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconduc- tor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
[Crossref]

M. du Plessis, H. Aharoni, and L. W. Snyman, “A silicon trans-conductance light emitting device (TRANSLED),” Sens. Actuators 80(3), 242–248 (2000).
[Crossref]

L. W. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient, low voltage, high frequency silicon CMOS light emitting device and electro-optical interface,” IEEE Electron Device Lett. 20(12), 614–617 (1999).
[Crossref]

Ahn, D. H.

M. Beals, J. Micheal, F. J. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, and L. C. Kimerling, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 689804 (2008).
[Crossref]

Aimez, V.

Akil, N.

N. Akil, V. E. Houstma, P. LeMinth, J. Holleman, V. Zieren, D. DeMooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Alfano, R. R.

R. R. Alfano, “The ultimate white light,” Sci. Am. 295(6), 86–93 (2006).
[Crossref]

Annema, A.-J.

S. Dutta, R. J. Hueting, A.-J. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modeling of light emission from avalanche-mode silicon p + n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
[Crossref]

Auderset, H.

J. Kramer, P. Seitz, E. F. Steigmeier, H. Auderset, and B. Delley, “Light-emitting devices in Industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
[Crossref]

Beals, M.

M. Beals, J. Micheal, F. J. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, and L. C. Kimerling, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 689804 (2008).
[Crossref]

Bellotti, E.

L. W. Snyman, E. Bellotti, and M. du Plessis, “Photonic transitions (1.4 eV- 2.8 eV) in Silicon p + np+ injection-avalanche CMOS LEDs as function of depletion layer profiling and defect engineering,” IEEE J. Quantum Electron. 46(6), 906–919 (2010).
[Crossref]

Bhuva, B.

A. Chatterjee, B. Bhuva, and R. Schrimpf, “High-speed light modulation in avalanche breakdown mode for Si diodes,” IEEE Electron Device Lett. 25(9), 628–630 (2004).
[Crossref]

Biber, A.

L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. Van Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconduc- tor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
[Crossref]

Bude, J.

J. Bude, N. Sano, and A. Yoshii, “Hot carrier luminescence in silicon,” Phys. Rev. 45(11), 5848–5856 (1992).
[Crossref]

Charette, P.

Chatterjee, A.

A. Chatterjee, B. Bhuva, and R. Schrimpf, “High-speed light modulation in avalanche breakdown mode for Si diodes,” IEEE Electron Device Lett. 25(9), 628–630 (2004).
[Crossref]

Chen, H.

K. Xu, L. W. Snyman, J.-L. Polleux, H. Chen, and G. Li, “Silicon Light-Emitting Device with Application in the Micro-opto-electro-mechanical Systems,” Int. J. Mater., Mech. Manuf. 3(4), 282–286 (2015).
[Crossref]

Collaert, N.

G. Piccolo, P. I. Kuindersma, L.-A. Ragnarsson, R. J. E. Hueting, N. Collaert, and J. Schmitz, “Silicon LEDs in FinFET technology,” Published in: 2014 44th European Solid State Device Research Conference (ESSDERC)22-26, 274–277 (2014).

Delley, B.

J. Kramer, P. Seitz, E. F. Steigmeier, H. Auderset, and B. Delley, “Light-emitting devices in Industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
[Crossref]

DeMooij, D.

N. Akil, V. E. Houstma, P. LeMinth, J. Holleman, V. Zieren, D. DeMooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Du Plessis, M.

L. W. Snyman, JL Polleux, K. A. Ogudo, and M. Du Plessis, “Stimulating 600-650 nm Wavelength Optical Emission in Monolithically Integrated Silicon LEDs through controlled Injection-Avalanche and Carrier Density Balancing Technology,” IEEE J. Quantum Electron. 53(5), 1–9 (2017).
[Crossref]

L. W. Snyman, E. Bellotti, and M. du Plessis, “Photonic transitions (1.4 eV- 2.8 eV) in Silicon p + np+ injection-avalanche CMOS LEDs as function of depletion layer profiling and defect engineering,” IEEE J. Quantum Electron. 46(6), 906–919 (2010).
[Crossref]

L. W. Snyman, M. Du Plessis, and H. Aharoni, “Injection-based Si CMOS LED’s (450 nm - 750 nm) with two order increase in light emission intensity - Applications for next generation silicon-based optoelectronics,” Jpn. J. Appl. Phys. 46(4B), 2474–2480 (2007).
[Crossref]

L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. Van Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconduc- tor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
[Crossref]

M. du Plessis, H. Aharoni, and L. W. Snyman, “A silicon trans-conductance light emitting device (TRANSLED),” Sens. Actuators 80(3), 242–248 (2000).
[Crossref]

L. W. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient, low voltage, high frequency silicon CMOS light emitting device and electro-optical interface,” IEEE Electron Device Lett. 20(12), 614–617 (1999).
[Crossref]

Dutta, S.

S. Dutta, R. J. Hueting, A.-J. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modeling of light emission from avalanche-mode silicon p + n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
[Crossref]

Fitzgerald, E. A.

E. A. Fitzgerald and L. C. Kimerling, “Silicon-based micro-photonics 627and integrated optoelectronics,” MRS Bull. 23(4), 39–47 (1998).
[Crossref]

Foty, D.

L. W. Snyman, K. D. Ogudo, and D. Foty, “Development of a 0.75 micron wavelength CMOS optical communication system,” Proc. SPIE 7943, 79430K (2011).
[Crossref]

Ghynoweth, W. G.

W. G. Ghynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]

Gorin, A.

Grondin, E.

Holleman, J.

N. Akil, V. E. Houstma, P. LeMinth, J. Holleman, V. Zieren, D. DeMooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Hong, C. Y.

M. Beals, J. Micheal, F. J. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, and L. C. Kimerling, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 689804 (2008).
[Crossref]

Houstma, V. E.

N. Akil, V. E. Houstma, P. LeMinth, J. Holleman, V. Zieren, D. DeMooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Hueting, R. J.

S. Dutta, R. J. Hueting, A.-J. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modeling of light emission from avalanche-mode silicon p + n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
[Crossref]

Hueting, R. J. E.

G. Piccolo, P. I. Kuindersma, L.-A. Ragnarsson, R. J. E. Hueting, N. Collaert, and J. Schmitz, “Silicon LEDs in FinFET technology,” Published in: 2014 44th European Solid State Device Research Conference (ESSDERC)22-26, 274–277 (2014).

Jaouad, A.

Kimerling, L. C.

M. Beals, J. Micheal, F. J. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, and L. C. Kimerling, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 689804 (2008).
[Crossref]

E. A. Fitzgerald and L. C. Kimerling, “Silicon-based micro-photonics 627and integrated optoelectronics,” MRS Bull. 23(4), 39–47 (1998).
[Crossref]

Kramer, J.

J. Kramer, P. Seitz, E. F. Steigmeier, H. Auderset, and B. Delley, “Light-emitting devices in Industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
[Crossref]

Kuindersma, P. I.

G. Piccolo, P. I. Kuindersma, L.-A. Ragnarsson, R. J. E. Hueting, N. Collaert, and J. Schmitz, “Silicon LEDs in FinFET technology,” Published in: 2014 44th European Solid State Device Research Conference (ESSDERC)22-26, 274–277 (2014).

LeMinth, P.

N. Akil, V. E. Houstma, P. LeMinth, J. Holleman, V. Zieren, D. DeMooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Li, G.

K. Xu, L. W. Snyman, J.-L. Polleux, H. Chen, and G. Li, “Silicon Light-Emitting Device with Application in the Micro-opto-electro-mechanical Systems,” Int. J. Mater., Mech. Manuf. 3(4), 282–286 (2015).
[Crossref]

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, Light-Emitting Devices in Si CMOS and RF Bipolar Integrated Circuits, vol. 2 (Leukos, 2016), pp. 1–10.

Li, G. P.

K. Xu and G. P. Li, “A three terminal silicon PMOSFET light emitting device (LED) for optical intensity modulation,” IEEE Photonics J. 4(6), 2159–2168 (2012).
[Crossref]

Li, Z.

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, Light-Emitting Devices in Si CMOS and RF Bipolar Integrated Circuits, vol. 2 (Leukos, 2016), pp. 1–10.

Liu, F. J.

M. Beals, J. Micheal, F. J. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, and L. C. Kimerling, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 689804 (2008).
[Crossref]

Liu, H.

Ma, Z.

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, Light-Emitting Devices in Si CMOS and RF Bipolar Integrated Circuits, vol. 2 (Leukos, 2016), pp. 1–10.

Marais, J. F. K.

L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. Van Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconduc- tor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
[Crossref]

Matjila, S. J. M.

S. J. M. Matjila and L. W. Snyman, “Increased electroluminescence from a two-junction Si n + pn CMOS structure,” Proc. SPIE 4293, 140 (2001).
[Crossref]

McKay, K. G.

W. G. Ghynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]

Micheal, J.

M. Beals, J. Micheal, F. J. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, and L. C. Kimerling, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 689804 (2008).
[Crossref]

Moll, J. L.

J. L. Moll and R. Van Overstraeten, “Charge multiplication in silicon p-n junctions,” Solid-State Electron. 6(2), 147–157 (1963).
[Crossref]

Nanver, L. K.

S. Dutta, R. J. Hueting, A.-J. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modeling of light emission from avalanche-mode silicon p + n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
[Crossref]

Newman, R.

R. Newman, “Visible light from a silicon p-n junction,” Phys. Rev. 100(2), 700–703 (1955).
[Crossref]

Ogudo, K. A.

L. W. Snyman, JL Polleux, K. A. Ogudo, and M. Du Plessis, “Stimulating 600-650 nm Wavelength Optical Emission in Monolithically Integrated Silicon LEDs through controlled Injection-Avalanche and Carrier Density Balancing Technology,” IEEE J. Quantum Electron. 53(5), 1–9 (2017).
[Crossref]

L. W. Snyman, K. Xu, J-L Polleux, K. A. Ogudo, and C. Viana, “Higher Intensity SiAvLEDs in an RF Bipolar Process Through Carrier Energy and Carrier Momentum Engineering,” IEEE J. Quantum Electron. 51(7), 1–10 (2015).
[Crossref]

K. A. Ogudo, L. W. Snyman, J.-L. Poulleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10–40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
[Crossref]

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, Light-Emitting Devices in Si CMOS and RF Bipolar Integrated Circuits, vol. 2 (Leukos, 2016), pp. 1–10.

Ogudo, K. D.

L. W. Snyman, K. D. Ogudo, and D. Foty, “Development of a 0.75 micron wavelength CMOS optical communication system,” Proc. SPIE 7943, 79430K (2011).
[Crossref]

Piccolo, G.

G. Piccolo, P. I. Kuindersma, L.-A. Ragnarsson, R. J. E. Hueting, N. Collaert, and J. Schmitz, “Silicon LEDs in FinFET technology,” Published in: 2014 44th European Solid State Device Research Conference (ESSDERC)22-26, 274–277 (2014).

Polleux, J.-L.

K. Xu, L. W. Snyman, J.-L. Polleux, H. Chen, and G. Li, “Silicon Light-Emitting Device with Application in the Micro-opto-electro-mechanical Systems,” Int. J. Mater., Mech. Manuf. 3(4), 282–286 (2015).
[Crossref]

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, Light-Emitting Devices in Si CMOS and RF Bipolar Integrated Circuits, vol. 2 (Leukos, 2016), pp. 1–10.

L. W. Snyman, J.-L. Polleux, and K. Xu, “Optimised 650 nm Impurity assisted injection controlled Si Av LED,” Provisional submitted S.A Patent of September 2016 (assigned to the University of South Africa)

Polleux, JL

L. W. Snyman, JL Polleux, K. A. Ogudo, and M. Du Plessis, “Stimulating 600-650 nm Wavelength Optical Emission in Monolithically Integrated Silicon LEDs through controlled Injection-Avalanche and Carrier Density Balancing Technology,” IEEE J. Quantum Electron. 53(5), 1–9 (2017).
[Crossref]

Polleux, J-L

L. W. Snyman, K. Xu, J-L Polleux, K. A. Ogudo, and C. Viana, “Higher Intensity SiAvLEDs in an RF Bipolar Process Through Carrier Energy and Carrier Momentum Engineering,” IEEE J. Quantum Electron. 51(7), 1–10 (2015).
[Crossref]

Poulleux, J.-L.

K. A. Ogudo, L. W. Snyman, J.-L. Poulleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10–40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
[Crossref]

Qi, L.

S. Dutta, R. J. Hueting, A.-J. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modeling of light emission from avalanche-mode silicon p + n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
[Crossref]

Ragnarsson, L.-A.

G. Piccolo, P. I. Kuindersma, L.-A. Ragnarsson, R. J. E. Hueting, N. Collaert, and J. Schmitz, “Silicon LEDs in FinFET technology,” Published in: 2014 44th European Solid State Device Research Conference (ESSDERC)22-26, 274–277 (2014).

Sano, N.

J. Bude, N. Sano, and A. Yoshii, “Hot carrier luminescence in silicon,” Phys. Rev. 45(11), 5848–5856 (1992).
[Crossref]

Schmieder, D.

K. A. Ogudo, L. W. Snyman, J.-L. Poulleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10–40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
[Crossref]

Schmitz, J.

S. Dutta, R. J. Hueting, A.-J. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modeling of light emission from avalanche-mode silicon p + n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
[Crossref]

G. Piccolo, P. I. Kuindersma, L.-A. Ragnarsson, R. J. E. Hueting, N. Collaert, and J. Schmitz, “Silicon LEDs in FinFET technology,” Published in: 2014 44th European Solid State Device Research Conference (ESSDERC)22-26, 274–277 (2014).

Schrimpf, R.

A. Chatterjee, B. Bhuva, and R. Schrimpf, “High-speed light modulation in avalanche breakdown mode for Si diodes,” IEEE Electron Device Lett. 25(9), 628–630 (2004).
[Crossref]

Seevinck, E.

L. W. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient, low voltage, high frequency silicon CMOS light emitting device and electro-optical interface,” IEEE Electron Device Lett. 20(12), 614–617 (1999).
[Crossref]

Seitz, P.

J. Kramer, P. Seitz, E. F. Steigmeier, H. Auderset, and B. Delley, “Light-emitting devices in Industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
[Crossref]

Snyman, L. W.

L. W. Snyman, JL Polleux, K. A. Ogudo, and M. Du Plessis, “Stimulating 600-650 nm Wavelength Optical Emission in Monolithically Integrated Silicon LEDs through controlled Injection-Avalanche and Carrier Density Balancing Technology,” IEEE J. Quantum Electron. 53(5), 1–9 (2017).
[Crossref]

L. W. Snyman, K. Xu, J-L Polleux, K. A. Ogudo, and C. Viana, “Higher Intensity SiAvLEDs in an RF Bipolar Process Through Carrier Energy and Carrier Momentum Engineering,” IEEE J. Quantum Electron. 51(7), 1–10 (2015).
[Crossref]

K. Xu, L. W. Snyman, J.-L. Polleux, H. Chen, and G. Li, “Silicon Light-Emitting Device with Application in the Micro-opto-electro-mechanical Systems,” Int. J. Mater., Mech. Manuf. 3(4), 282–286 (2015).
[Crossref]

K. A. Ogudo, L. W. Snyman, J.-L. Poulleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10–40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
[Crossref]

L. W. Snyman, K. D. Ogudo, and D. Foty, “Development of a 0.75 micron wavelength CMOS optical communication system,” Proc. SPIE 7943, 79430K (2011).
[Crossref]

L. W. Snyman, E. Bellotti, and M. du Plessis, “Photonic transitions (1.4 eV- 2.8 eV) in Silicon p + np+ injection-avalanche CMOS LEDs as function of depletion layer profiling and defect engineering,” IEEE J. Quantum Electron. 46(6), 906–919 (2010).
[Crossref]

L. W. Snyman, M. Du Plessis, and H. Aharoni, “Injection-based Si CMOS LED’s (450 nm - 750 nm) with two order increase in light emission intensity - Applications for next generation silicon-based optoelectronics,” Jpn. J. Appl. Phys. 46(4B), 2474–2480 (2007).
[Crossref]

L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. Van Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconduc- tor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
[Crossref]

S. J. M. Matjila and L. W. Snyman, “Increased electroluminescence from a two-junction Si n + pn CMOS structure,” Proc. SPIE 4293, 140 (2001).
[Crossref]

M. du Plessis, H. Aharoni, and L. W. Snyman, “A silicon trans-conductance light emitting device (TRANSLED),” Sens. Actuators 80(3), 242–248 (2000).
[Crossref]

L. W. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient, low voltage, high frequency silicon CMOS light emitting device and electro-optical interface,” IEEE Electron Device Lett. 20(12), 614–617 (1999).
[Crossref]

L. W. Snyman, “Integrating Micro-Photonic Systems and MOEMS into Standard Silicon CMOS Integrated Circuitry, Optoelectronics - Devices and Applications”, Edited P. Predeep, ISBN: 978-953-307-576-1, InTech, DOI: 10.5772/1881. Available from: http://www.intechopen.com/books/optoelectronics-devices-and-applications/integrating-micro-photonic-systems-and-moems-into-standard-silicon-cmos-integrated-circuitry , (2011).

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, Light-Emitting Devices in Si CMOS and RF Bipolar Integrated Circuits, vol. 2 (Leukos, 2016), pp. 1–10.

L. W. Snyman, “Wavelength specific silicon light emitting structure,” WO Patent WO/2011/038422 of 31 March 2011, U.S. Patent Application 2010819669 of European Patent EPO Application . 1020127000895 of 25 April 2012 and of Korean Patent 1020127000895 of 27 December 2013 (assigned to the Tshwane University of Technology).

L. W. Snyman, J.-L. Polleux, and K. Xu, “Optimised 650 nm Impurity assisted injection controlled Si Av LED,” Provisional submitted S.A Patent of September 2016 (assigned to the University of South Africa)

Soref, R.

R. Soref, “Silicon photonics technology: past, present and future,” Proc. SPIE 5730, 19 (2008).
[Crossref]

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006)..
[Crossref]

Sparacin, D.

M. Beals, J. Micheal, F. J. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, and L. C. Kimerling, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 689804 (2008).
[Crossref]

Steigmeier, E. F.

J. Kramer, P. Seitz, E. F. Steigmeier, H. Auderset, and B. Delley, “Light-emitting devices in Industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
[Crossref]

Sun, R.

M. Beals, J. Micheal, F. J. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, and L. C. Kimerling, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 689804 (2008).
[Crossref]

Sze, S. M.

S. M. Sze, “Carrier transport phenomenon: high field effects,” in Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981), chap. 2, p. 67.

S. M. Sze, “Saturation current and voltage breakdown in bipolar devices,” in Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981), chap. 4, p. 103.

Tegegne, Z.

K. A. Ogudo, L. W. Snyman, J.-L. Poulleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10–40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
[Crossref]

van den Berg, A.

N. Akil, V. E. Houstma, P. LeMinth, J. Holleman, V. Zieren, D. DeMooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Van Niekerk, D.

L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. Van Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconduc- tor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
[Crossref]

Van Overstraeten, R.

J. L. Moll and R. Van Overstraeten, “Charge multiplication in silicon p-n junctions,” Solid-State Electron. 6(2), 147–157 (1963).
[Crossref]

Viana, C.

L. W. Snyman, K. Xu, J-L Polleux, K. A. Ogudo, and C. Viana, “Higher Intensity SiAvLEDs in an RF Bipolar Process Through Carrier Energy and Carrier Momentum Engineering,” IEEE J. Quantum Electron. 51(7), 1–10 (2015).
[Crossref]

K. A. Ogudo, L. W. Snyman, J.-L. Poulleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10–40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
[Crossref]

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, Light-Emitting Devices in Si CMOS and RF Bipolar Integrated Circuits, vol. 2 (Leukos, 2016), pp. 1–10.

Wada, K.

K. Wada, “Electronics and photonics convergence on Si CMOS platform,” Proc. SPIE 5357, 16–24 (2004).
[Crossref]

Wallinga, H.

N. Akil, V. E. Houstma, P. LeMinth, J. Holleman, V. Zieren, D. DeMooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Woerlee, P. H.

N. Akil, V. E. Houstma, P. LeMinth, J. Holleman, V. Zieren, D. DeMooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Xu, K.

K. Xu, L. W. Snyman, J.-L. Polleux, H. Chen, and G. Li, “Silicon Light-Emitting Device with Application in the Micro-opto-electro-mechanical Systems,” Int. J. Mater., Mech. Manuf. 3(4), 282–286 (2015).
[Crossref]

K. Xu, H. Liu, and Z. Zhang, “Gate-controlled diode structure based electro-optical interfaces in standard silicon-CMOS integrated circuitry,” Appl. Opt. 54(21), 6420 (2015).
[Crossref]

L. W. Snyman, K. Xu, J-L Polleux, K. A. Ogudo, and C. Viana, “Higher Intensity SiAvLEDs in an RF Bipolar Process Through Carrier Energy and Carrier Momentum Engineering,” IEEE J. Quantum Electron. 51(7), 1–10 (2015).
[Crossref]

K. Xu and G. P. Li, “A three terminal silicon PMOSFET light emitting device (LED) for optical intensity modulation,” IEEE Photonics J. 4(6), 2159–2168 (2012).
[Crossref]

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, Light-Emitting Devices in Si CMOS and RF Bipolar Integrated Circuits, vol. 2 (Leukos, 2016), pp. 1–10.

L. W. Snyman, J.-L. Polleux, and K. Xu, “Optimised 650 nm Impurity assisted injection controlled Si Av LED,” Provisional submitted S.A Patent of September 2016 (assigned to the University of South Africa)

Yoshii, A.

J. Bude, N. Sano, and A. Yoshii, “Hot carrier luminescence in silicon,” Phys. Rev. 45(11), 5848–5856 (1992).
[Crossref]

Yu, Q.

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, Light-Emitting Devices in Si CMOS and RF Bipolar Integrated Circuits, vol. 2 (Leukos, 2016), pp. 1–10.

Zhang, Z.

Zieren, V.

N. Akil, V. E. Houstma, P. LeMinth, J. Holleman, V. Zieren, D. DeMooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

Appl. Opt. (1)

IEEE Electron Device Lett. (2)

A. Chatterjee, B. Bhuva, and R. Schrimpf, “High-speed light modulation in avalanche breakdown mode for Si diodes,” IEEE Electron Device Lett. 25(9), 628–630 (2004).
[Crossref]

L. W. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient, low voltage, high frequency silicon CMOS light emitting device and electro-optical interface,” IEEE Electron Device Lett. 20(12), 614–617 (1999).
[Crossref]

IEEE J. Quantum Electron. (3)

L. W. Snyman, K. Xu, J-L Polleux, K. A. Ogudo, and C. Viana, “Higher Intensity SiAvLEDs in an RF Bipolar Process Through Carrier Energy and Carrier Momentum Engineering,” IEEE J. Quantum Electron. 51(7), 1–10 (2015).
[Crossref]

L. W. Snyman, E. Bellotti, and M. du Plessis, “Photonic transitions (1.4 eV- 2.8 eV) in Silicon p + np+ injection-avalanche CMOS LEDs as function of depletion layer profiling and defect engineering,” IEEE J. Quantum Electron. 46(6), 906–919 (2010).
[Crossref]

L. W. Snyman, JL Polleux, K. A. Ogudo, and M. Du Plessis, “Stimulating 600-650 nm Wavelength Optical Emission in Monolithically Integrated Silicon LEDs through controlled Injection-Avalanche and Carrier Density Balancing Technology,” IEEE J. Quantum Electron. 53(5), 1–9 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006)..
[Crossref]

IEEE Photonics J. (1)

K. Xu and G. P. Li, “A three terminal silicon PMOSFET light emitting device (LED) for optical intensity modulation,” IEEE Photonics J. 4(6), 2159–2168 (2012).
[Crossref]

Int. J. Mater., Mech. Manuf. (1)

K. Xu, L. W. Snyman, J.-L. Polleux, H. Chen, and G. Li, “Silicon Light-Emitting Device with Application in the Micro-opto-electro-mechanical Systems,” Int. J. Mater., Mech. Manuf. 3(4), 282–286 (2015).
[Crossref]

J. Appl. Phys. (2)

N. Akil, V. E. Houstma, P. LeMinth, J. Holleman, V. Zieren, D. DeMooij, P. H. Woerlee, A. van den Berg, and H. Wallinga, “Modelling of light-emission spectra measured on silicon nanometer-scale diode antifuses,” J. Appl. Phys. 88(4), 1916–1922 (2000).
[Crossref]

S. Dutta, R. J. Hueting, A.-J. Annema, L. Qi, L. K. Nanver, and J. Schmitz, “Opto-electronic modeling of light emission from avalanche-mode silicon p + n junctions,” J. Appl. Phys. 118(11), 114506 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

L. W. Snyman, M. Du Plessis, and H. Aharoni, “Injection-based Si CMOS LED’s (450 nm - 750 nm) with two order increase in light emission intensity - Applications for next generation silicon-based optoelectronics,” Jpn. J. Appl. Phys. 46(4B), 2474–2480 (2007).
[Crossref]

MRS Bull. (1)

E. A. Fitzgerald and L. C. Kimerling, “Silicon-based micro-photonics 627and integrated optoelectronics,” MRS Bull. 23(4), 39–47 (1998).
[Crossref]

Opt. Eng. (1)

L. W. Snyman, H. Aharoni, M. du Plessis, J. F. K. Marais, D. Van Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconduc- tor integrated circuitry,” Opt. Eng. 41(12), 3230–3240 (2002).
[Crossref]

Opt. Express (1)

Phys. Rev. (3)

R. Newman, “Visible light from a silicon p-n junction,” Phys. Rev. 100(2), 700–703 (1955).
[Crossref]

W. G. Ghynoweth and K. G. McKay, “Photon emission from avalanche breakdown in silicon,” Phys. Rev. 102(2), 369–376 (1956).
[Crossref]

J. Bude, N. Sano, and A. Yoshii, “Hot carrier luminescence in silicon,” Phys. Rev. 45(11), 5848–5856 (1992).
[Crossref]

Proc. SPIE (6)

S. J. M. Matjila and L. W. Snyman, “Increased electroluminescence from a two-junction Si n + pn CMOS structure,” Proc. SPIE 4293, 140 (2001).
[Crossref]

K. Wada, “Electronics and photonics convergence on Si CMOS platform,” Proc. SPIE 5357, 16–24 (2004).
[Crossref]

R. Soref, “Silicon photonics technology: past, present and future,” Proc. SPIE 5730, 19 (2008).
[Crossref]

L. W. Snyman, K. D. Ogudo, and D. Foty, “Development of a 0.75 micron wavelength CMOS optical communication system,” Proc. SPIE 7943, 79430K (2011).
[Crossref]

K. A. Ogudo, L. W. Snyman, J.-L. Poulleux, C. Viana, Z. Tegegne, and D. Schmieder, “Towards 10–40 GHz on-chip micro-optical links with all integrated Si Av LED optical sources, Si N based waveguides and Si-Ge detector technology,” Proc. SPIE 8991, 899108 (2014).
[Crossref]

M. Beals, J. Micheal, F. J. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, and L. C. Kimerling, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 689804 (2008).
[Crossref]

Sci. Am. (1)

R. R. Alfano, “The ultimate white light,” Sci. Am. 295(6), 86–93 (2006).
[Crossref]

Sens. Actuators (1)

M. du Plessis, H. Aharoni, and L. W. Snyman, “A silicon trans-conductance light emitting device (TRANSLED),” Sens. Actuators 80(3), 242–248 (2000).
[Crossref]

Sens. Actuators, A (1)

J. Kramer, P. Seitz, E. F. Steigmeier, H. Auderset, and B. Delley, “Light-emitting devices in Industrial CMOS technology,” Sens. Actuators, A 37-38, 527–533 (1993).
[Crossref]

Solid-State Electron. (1)

J. L. Moll and R. Van Overstraeten, “Charge multiplication in silicon p-n junctions,” Solid-State Electron. 6(2), 147–157 (1963).
[Crossref]

Other (8)

K. Xu, K. A. Ogudo, J.-L. Polleux, C. Viana, Z. Ma, Z. Li, Q. Yu, G. Li, and L. W. Snyman, Light-Emitting Devices in Si CMOS and RF Bipolar Integrated Circuits, vol. 2 (Leukos, 2016), pp. 1–10.

L. W. Snyman, “Integrating Micro-Photonic Systems and MOEMS into Standard Silicon CMOS Integrated Circuitry, Optoelectronics - Devices and Applications”, Edited P. Predeep, ISBN: 978-953-307-576-1, InTech, DOI: 10.5772/1881. Available from: http://www.intechopen.com/books/optoelectronics-devices-and-applications/integrating-micro-photonic-systems-and-moems-into-standard-silicon-cmos-integrated-circuitry , (2011).

G. Piccolo, P. I. Kuindersma, L.-A. Ragnarsson, R. J. E. Hueting, N. Collaert, and J. Schmitz, “Silicon LEDs in FinFET technology,” Published in: 2014 44th European Solid State Device Research Conference (ESSDERC)22-26, 274–277 (2014).

S. M. Sze, “Carrier transport phenomenon: high field effects,” in Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981), chap. 2, p. 67.

S. M. Sze, “Saturation current and voltage breakdown in bipolar devices,” in Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981), chap. 4, p. 103.

“Opto-electronic device with separately controllable carrier injection means,” by L.W. Snyman. H. Aharoni, M. Du Plessis, USA Patent of 30 November 1999 (Priority date: 4 March 1996). by Republic of South African Patent No 96/2528 of 4 March 1996. Granted: SA (96/2528) (Assigned to University of Pretoria . Granted: USA Patent 6,111,27, (Assigned to University of Pretoria).

L. W. Snyman, “Wavelength specific silicon light emitting structure,” WO Patent WO/2011/038422 of 31 March 2011, U.S. Patent Application 2010819669 of European Patent EPO Application . 1020127000895 of 25 April 2012 and of Korean Patent 1020127000895 of 27 December 2013 (assigned to the Tshwane University of Technology).

L. W. Snyman, J.-L. Polleux, and K. Xu, “Optimised 650 nm Impurity assisted injection controlled Si Av LED,” Provisional submitted S.A Patent of September 2016 (assigned to the University of South Africa)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Electron energy distributions of carriers in k-space and energy in Silicon for an applied field of 300 kV·cm−1 as obtained from a Monte Carlo simulation study. (b) and (c): Electron and hole momentum distributions in k-space in the first Brillouin Zone (After Ref. [28]).
Fig. 2.
Fig. 2. Energy distribution of populations of electrons and holes in the conduction band and valence band of silicon for various excitation conditions, momentum changes, and possible subsequent photonic transitions (after Ref. [28]).
Fig. 3.
Fig. 3. Device design: (a) Lateral cross-section of the p + nn + p+ Si Avalanche Si LED, (b) electric field distribution through the device during active bias conditions, and, (c), conduction cross-section of the device and coupling of optical radiation into an adjacently lying silicon nitride-based waveguide.
Fig. 4.
Fig. 4. Figure composition showing characteristics and optical emissions of the device as in Fig. 3. (a) and (b): (a) I-V curve of the device as measured (b) Low magnification images showing a bright field image of the device.
Fig. 5.
Fig. 5. (a): Monochrome CCD high resolution image of the p + nn+ device region. At 0.2 mA (b) Color CCD image of the similar area under lower magnification, and (c) monochrome CCD image of the same area as in (a) at 1 mA operating current.
Fig. 6.
Fig. 6. (a) Optical output measuring and optical power distribution in the device. (b) Optical output versus current (L-I curve) for the device as in Fig. 3.
Fig. 7.
Fig. 7. (a) Spectral characteristics as observed for the device as in Fig. 3 on the Optical Probe Spectrometer and derived peaks using an averaging algorithm at 8 V and 0.5 mA. (b) Derivation of detail power amplitude and position of the peaks after an averaging algorithm was applied to the spectrum data.
Fig. 8.
Fig. 8. (a) Spectral characteristics as observed for the device as in Fig. 3 on the Optical Probe Spectrometer and derived peaks using an averaging algorithm at 8 V and 2 mA. (b) Derivation of detail power amplitudes and position of the peaks after an averaging algorithm was applied to the spectrum data.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R = C n Δ p / ( n + Δ p )
f α t + v f + q m ( E + v × B ) v f α = ( f α t ) c o l l
+ d ν α m ν α ( f α t ) c o l l = β m α n α ν α β ( μ α μ β )
ν α β = ( m α + m e ) 3 π 3 / 3 2 2 m α 2 m β q α 2 q β 2 ε s i 2 n β ( 2 κ T α m α + 2 κ T β m β ) 3 / 3 2 2 ln ( 12 π ε s i κ T q α q β ε s i κ T e 2 n )
v q β = 8 π 1 / 1 2 2 3 m β m α + m β n β σ 2 ( 2 κ T α m α + 2 κ T β m β ) 1 / 1 2 2