Abstract

We demonstrate the far field detection of low-contrast nanoparticles on surfaces using a technique that is based on evanescent-wave amplification due to a thin dielectric layer that is deposited on the substrate. This research builds upon earlier results where scattering enhancement of 200 nm polystyrene (PSL) particles on top of a glass substrate covered with a ≈ 20 nm InSb layer has been observed by Roy et al. [Phys. Rev. A 96, 013814 (2017) [CrossRef]  ]. In this paper, the enhancement effect is analyzed using other dielectric materials with lower absorption than the previous one, resulting in a higher signal-to-noise ratio (SNR) for particle detection. We also consider several polarizations of the incoming field, such as linear, circular, azimuthal, and radial. In our experiments, we observe that the optimum enhancement occurs when linear polarization is used. With this new scheme, PSL nanoparticles of 40 nm in diameter have been detected at a wavelength of 405 nm.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles

Lingbo Kong, Changwon Lee, Christopher M. Earhart, Bernardo Cordovez, and James W. Chan
Opt. Express 23(5) 6793-6802 (2015)

Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the vicinity of a glass surface

Jan Renger, Stefan Grafström, Lukas M. Eng, and Volker Deckert
J. Opt. Soc. Am. A 21(7) 1362-1367 (2004)

Holographic evanescent-wave focusing with nanoparticle arrays

Andrey B. Evlyukhin and Sergey I. Bozhevolnyi
Opt. Express 16(22) 17429-17440 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. Su, A. F. G. Goldberg, and B. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light: Sci. Appl. 5(1), e16001 (2016).
    [Crossref]
  2. A. Salehi-Reyhani, “Evaluating single molecule detection methods for microarrays with high dynamic range for quantitative single cell analysis,” Sci. Rep. 7(1), 17957 (2017).
    [Crossref]
  3. F. Ekiz-Kanik, D. D. Sevenler, N. L. Ünlü, M. Chiari, and M. S. Ünlü, “Surface chemistry and morphology in single particle optical imaging,” Nanophotonics 6(4), 713–730 (2017).
    [Crossref]
  4. D. Sevenler, O. Avci, and M. S. Ünlü, “Quantitative interferometric reflectance imaging for the detection and measurement of biological nanoparticles,” Biomed. Opt. Express 8(6), 2976–2989 (2017).
    [Crossref]
  5. S. Nie and R. N. Zare, “Optical detection of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 567–596 (1997).
    [Crossref]
  6. O. Avci, C. Yurdakul, and M. S. Ünlü, “Nanoparticle classification in wide-field interferometric microscopy by supervised learning from model,” Appl. Opt. 56(15), 4238–4242 (2017).
    [Crossref]
  7. O. Avci, M. I. Campana, C. Yurdakul, and M. S. Ünlü, “Pupil function engineering for enhanced nanoparticle visibility in wide-field interferometric microscopy,” Optica 4(2), 247–254 (2017).
    [Crossref]
  8. S. Roy, S. F. Pereira, H. P. Urbach, X. Wei, and O. El Gawhary, “Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection,” Phys. Rev. A 96(1), 013814 (2017).
    [Crossref]
  9. O. E. Gawhary, N. J. Schilder, A. da Costa Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescent waves and subwavelength imaging by a single dielectric slab,” New J. Phys. 14(5), 053025 (2012).
    [Crossref]
  10. P. Bussink, J.-B. Volatier, P. van der Walle, E. Fritz, and J. van der Donck, “Sub 20nm particle inspection on euv mask blanks,” Proc. SPIE 9778, 977835 (2016).
    [Crossref]
  11. Y. Lu and S. C. Chen, “Nanopatterning of a silicon surface by near-field enhanced laser irradiation,” Nanotechnology 14(5), 505–508 (2003).
    [Crossref]
  12. D. G. S. Zhiyong Ma, Metrology and Diagnostic Techniques for Nanoelectronics (Pan Stanford, 2016).
  13. O. E. Gawhary, M. C. Dheur, S. F. Pereira, and J. J. M. Braat, “Extension of the classical fabry–perot formula to 1d multilayered structures,” Appl. Phys. B 111(4), 637–645 (2013).
    [Crossref]
  14. X. Wei, A. J. Wachters, and H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems,” J. Opt. Soc. Am. A 24(3), 866–881 (2007).
    [Crossref]
  15. S. Larouche and L. Martinu, “Openfilters: open-source software for the design, optimization, and synthesis of optical filters,” Appl. Opt. 47(13), C219–C230 (2008).
    [Crossref]
  16. M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999), 7th ed.
  17. W. Sellmeier, “Ueber die durch die aetherschwingungen erregten mitschwingungen der körpertheilchen und deren rückwirkung auf die ersteren, besonders zur erklärung der dispersion und ihrer anomalien,” Ann. Phys. 223(11), 386–403 (1872).
    [Crossref]
  18. J. W. Gooch, Cauchy’s Dispersion Formula (Springer, 2011), pp. 125.
  19. S. Roy, A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Coherent fourier scatterometry for detection of nanometer-sized particles on a planar substrate surface,” Opt. Express 22(11), 13250–13262 (2014).
    [Crossref]
  20. D. Kolenov, R. C. Horsten, and S. F. Pereira, “Heterodyne detection system for nanoparticle detection using coherent Fourier scatterometry,” in Optical Measurement Systems for Industrial Inspection XI, vol. 11056P. Lehmann, W. Osten, and A. A. G., eds., International Society for Optics and Photonics (SPIE, 2019), pp.336–342.
  21. D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
    [Crossref]
  22. K. Kim, K. Kim, Y. Ji, J. Park, J. Shin, A. Ellingboe, and G. Yeom, “Silicon nitride deposition for flexible organic electronic devices by vhf (162 mhz)-pecvd using a multi-tile push-pull plasma source,” Sci. Rep. 7(1), 13585 (2017).
    [Crossref]
  23. D. D. Nolte, “Invited review article: Review of centrifugal microfluidic and bio-optical disks,” Rev. Sci. Instrum. 80(10), 101101 (2009).
    [Crossref]

2017 (7)

A. Salehi-Reyhani, “Evaluating single molecule detection methods for microarrays with high dynamic range for quantitative single cell analysis,” Sci. Rep. 7(1), 17957 (2017).
[Crossref]

F. Ekiz-Kanik, D. D. Sevenler, N. L. Ünlü, M. Chiari, and M. S. Ünlü, “Surface chemistry and morphology in single particle optical imaging,” Nanophotonics 6(4), 713–730 (2017).
[Crossref]

D. Sevenler, O. Avci, and M. S. Ünlü, “Quantitative interferometric reflectance imaging for the detection and measurement of biological nanoparticles,” Biomed. Opt. Express 8(6), 2976–2989 (2017).
[Crossref]

O. Avci, C. Yurdakul, and M. S. Ünlü, “Nanoparticle classification in wide-field interferometric microscopy by supervised learning from model,” Appl. Opt. 56(15), 4238–4242 (2017).
[Crossref]

O. Avci, M. I. Campana, C. Yurdakul, and M. S. Ünlü, “Pupil function engineering for enhanced nanoparticle visibility in wide-field interferometric microscopy,” Optica 4(2), 247–254 (2017).
[Crossref]

S. Roy, S. F. Pereira, H. P. Urbach, X. Wei, and O. El Gawhary, “Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection,” Phys. Rev. A 96(1), 013814 (2017).
[Crossref]

K. Kim, K. Kim, Y. Ji, J. Park, J. Shin, A. Ellingboe, and G. Yeom, “Silicon nitride deposition for flexible organic electronic devices by vhf (162 mhz)-pecvd using a multi-tile push-pull plasma source,” Sci. Rep. 7(1), 13585 (2017).
[Crossref]

2016 (3)

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

P. Bussink, J.-B. Volatier, P. van der Walle, E. Fritz, and J. van der Donck, “Sub 20nm particle inspection on euv mask blanks,” Proc. SPIE 9778, 977835 (2016).
[Crossref]

J. Su, A. F. G. Goldberg, and B. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light: Sci. Appl. 5(1), e16001 (2016).
[Crossref]

2014 (1)

2013 (1)

O. E. Gawhary, M. C. Dheur, S. F. Pereira, and J. J. M. Braat, “Extension of the classical fabry–perot formula to 1d multilayered structures,” Appl. Phys. B 111(4), 637–645 (2013).
[Crossref]

2012 (1)

O. E. Gawhary, N. J. Schilder, A. da Costa Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescent waves and subwavelength imaging by a single dielectric slab,” New J. Phys. 14(5), 053025 (2012).
[Crossref]

2009 (1)

D. D. Nolte, “Invited review article: Review of centrifugal microfluidic and bio-optical disks,” Rev. Sci. Instrum. 80(10), 101101 (2009).
[Crossref]

2008 (1)

2007 (1)

2003 (1)

Y. Lu and S. C. Chen, “Nanopatterning of a silicon surface by near-field enhanced laser irradiation,” Nanotechnology 14(5), 505–508 (2003).
[Crossref]

1997 (1)

S. Nie and R. N. Zare, “Optical detection of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 567–596 (1997).
[Crossref]

1872 (1)

W. Sellmeier, “Ueber die durch die aetherschwingungen erregten mitschwingungen der körpertheilchen und deren rückwirkung auf die ersteren, besonders zur erklärung der dispersion und ihrer anomalien,” Ann. Phys. 223(11), 386–403 (1872).
[Crossref]

Assafrao, A. C.

Avci, O.

Bendiksen, A.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

Bhatia, A. B.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999), 7th ed.

Born, M.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999), 7th ed.

Braat, J. J. M.

O. E. Gawhary, M. C. Dheur, S. F. Pereira, and J. J. M. Braat, “Extension of the classical fabry–perot formula to 1d multilayered structures,” Appl. Phys. B 111(4), 637–645 (2013).
[Crossref]

Broman, P.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

Brouns, D.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

Bussink, P.

P. Bussink, J.-B. Volatier, P. van der Walle, E. Fritz, and J. van der Donck, “Sub 20nm particle inspection on euv mask blanks,” Proc. SPIE 9778, 977835 (2016).
[Crossref]

Campana, M. I.

Casimiri, E.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

Chen, S. C.

Y. Lu and S. C. Chen, “Nanopatterning of a silicon surface by near-field enhanced laser irradiation,” Nanotechnology 14(5), 505–508 (2003).
[Crossref]

Chiari, M.

F. Ekiz-Kanik, D. D. Sevenler, N. L. Ünlü, M. Chiari, and M. S. Ünlü, “Surface chemistry and morphology in single particle optical imaging,” Nanophotonics 6(4), 713–730 (2017).
[Crossref]

Clemmow, P. C.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999), 7th ed.

Colsters, P.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

da Costa Assafrao, A.

O. E. Gawhary, N. J. Schilder, A. da Costa Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescent waves and subwavelength imaging by a single dielectric slab,” New J. Phys. 14(5), 053025 (2012).
[Crossref]

De Graaf, D.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

Delmastro, P.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

Dheur, M. C.

O. E. Gawhary, M. C. Dheur, S. F. Pereira, and J. J. M. Braat, “Extension of the classical fabry–perot formula to 1d multilayered structures,” Appl. Phys. B 111(4), 637–645 (2013).
[Crossref]

Ekiz-Kanik, F.

F. Ekiz-Kanik, D. D. Sevenler, N. L. Ünlü, M. Chiari, and M. S. Ünlü, “Surface chemistry and morphology in single particle optical imaging,” Nanophotonics 6(4), 713–730 (2017).
[Crossref]

El Gawhary, O.

S. Roy, S. F. Pereira, H. P. Urbach, X. Wei, and O. El Gawhary, “Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection,” Phys. Rev. A 96(1), 013814 (2017).
[Crossref]

Ellingboe, A.

K. Kim, K. Kim, Y. Ji, J. Park, J. Shin, A. Ellingboe, and G. Yeom, “Silicon nitride deposition for flexible organic electronic devices by vhf (162 mhz)-pecvd using a multi-tile push-pull plasma source,” Sci. Rep. 7(1), 13585 (2017).
[Crossref]

Fritz, E.

P. Bussink, J.-B. Volatier, P. van der Walle, E. Fritz, and J. van der Donck, “Sub 20nm particle inspection on euv mask blanks,” Proc. SPIE 9778, 977835 (2016).
[Crossref]

Gabor, D.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999), 7th ed.

Gawhary, O. E.

O. E. Gawhary, M. C. Dheur, S. F. Pereira, and J. J. M. Braat, “Extension of the classical fabry–perot formula to 1d multilayered structures,” Appl. Phys. B 111(4), 637–645 (2013).
[Crossref]

O. E. Gawhary, N. J. Schilder, A. da Costa Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescent waves and subwavelength imaging by a single dielectric slab,” New J. Phys. 14(5), 053025 (2012).
[Crossref]

Goldberg, A. F. G.

J. Su, A. F. G. Goldberg, and B. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light: Sci. Appl. 5(1), e16001 (2016).
[Crossref]

Gooch, J. W.

J. W. Gooch, Cauchy’s Dispersion Formula (Springer, 2011), pp. 125.

Horsten, R. C.

D. Kolenov, R. C. Horsten, and S. F. Pereira, “Heterodyne detection system for nanoparticle detection using coherent Fourier scatterometry,” in Optical Measurement Systems for Industrial Inspection XI, vol. 11056P. Lehmann, W. Osten, and A. A. G., eds., International Society for Optics and Photonics (SPIE, 2019), pp.336–342.

Janssen, P.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

Ji, Y.

K. Kim, K. Kim, Y. Ji, J. Park, J. Shin, A. Ellingboe, and G. Yeom, “Silicon nitride deposition for flexible organic electronic devices by vhf (162 mhz)-pecvd using a multi-tile push-pull plasma source,” Sci. Rep. 7(1), 13585 (2017).
[Crossref]

Kim, K.

K. Kim, K. Kim, Y. Ji, J. Park, J. Shin, A. Ellingboe, and G. Yeom, “Silicon nitride deposition for flexible organic electronic devices by vhf (162 mhz)-pecvd using a multi-tile push-pull plasma source,” Sci. Rep. 7(1), 13585 (2017).
[Crossref]

K. Kim, K. Kim, Y. Ji, J. Park, J. Shin, A. Ellingboe, and G. Yeom, “Silicon nitride deposition for flexible organic electronic devices by vhf (162 mhz)-pecvd using a multi-tile push-pull plasma source,” Sci. Rep. 7(1), 13585 (2017).
[Crossref]

Kolenov, D.

D. Kolenov, R. C. Horsten, and S. F. Pereira, “Heterodyne detection system for nanoparticle detection using coherent Fourier scatterometry,” in Optical Measurement Systems for Industrial Inspection XI, vol. 11056P. Lehmann, W. Osten, and A. A. G., eds., International Society for Optics and Photonics (SPIE, 2019), pp.336–342.

Kramer, R.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

Kruizinga, M.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

Kuntzel, H.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

Larouche, S.

Lu, Y.

Y. Lu and S. C. Chen, “Nanopatterning of a silicon surface by near-field enhanced laser irradiation,” Nanotechnology 14(5), 505–508 (2003).
[Crossref]

Martinu, L.

Nie, S.

S. Nie and R. N. Zare, “Optical detection of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 567–596 (1997).
[Crossref]

Nolte, D. D.

D. D. Nolte, “Invited review article: Review of centrifugal microfluidic and bio-optical disks,” Rev. Sci. Instrum. 80(10), 101101 (2009).
[Crossref]

Ockwell, D.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

Park, J.

K. Kim, K. Kim, Y. Ji, J. Park, J. Shin, A. Ellingboe, and G. Yeom, “Silicon nitride deposition for flexible organic electronic devices by vhf (162 mhz)-pecvd using a multi-tile push-pull plasma source,” Sci. Rep. 7(1), 13585 (2017).
[Crossref]

Pereira, S. F.

S. Roy, S. F. Pereira, H. P. Urbach, X. Wei, and O. El Gawhary, “Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection,” Phys. Rev. A 96(1), 013814 (2017).
[Crossref]

S. Roy, A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Coherent fourier scatterometry for detection of nanometer-sized particles on a planar substrate surface,” Opt. Express 22(11), 13250–13262 (2014).
[Crossref]

O. E. Gawhary, M. C. Dheur, S. F. Pereira, and J. J. M. Braat, “Extension of the classical fabry–perot formula to 1d multilayered structures,” Appl. Phys. B 111(4), 637–645 (2013).
[Crossref]

O. E. Gawhary, N. J. Schilder, A. da Costa Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescent waves and subwavelength imaging by a single dielectric slab,” New J. Phys. 14(5), 053025 (2012).
[Crossref]

D. Kolenov, R. C. Horsten, and S. F. Pereira, “Heterodyne detection system for nanoparticle detection using coherent Fourier scatterometry,” in Optical Measurement Systems for Industrial Inspection XI, vol. 11056P. Lehmann, W. Osten, and A. A. G., eds., International Society for Optics and Photonics (SPIE, 2019), pp.336–342.

Peter, M.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

Roy, S.

S. Roy, S. F. Pereira, H. P. Urbach, X. Wei, and O. El Gawhary, “Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection,” Phys. Rev. A 96(1), 013814 (2017).
[Crossref]

S. Roy, A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Coherent fourier scatterometry for detection of nanometer-sized particles on a planar substrate surface,” Opt. Express 22(11), 13250–13262 (2014).
[Crossref]

Salehi-Reyhani, A.

A. Salehi-Reyhani, “Evaluating single molecule detection methods for microarrays with high dynamic range for quantitative single cell analysis,” Sci. Rep. 7(1), 17957 (2017).
[Crossref]

Schilder, N. J.

O. E. Gawhary, N. J. Schilder, A. da Costa Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescent waves and subwavelength imaging by a single dielectric slab,” New J. Phys. 14(5), 053025 (2012).
[Crossref]

Sellmeier, W.

W. Sellmeier, “Ueber die durch die aetherschwingungen erregten mitschwingungen der körpertheilchen und deren rückwirkung auf die ersteren, besonders zur erklärung der dispersion und ihrer anomalien,” Ann. Phys. 223(11), 386–403 (1872).
[Crossref]

Sevenler, D.

Sevenler, D. D.

F. Ekiz-Kanik, D. D. Sevenler, N. L. Ünlü, M. Chiari, and M. S. Ünlü, “Surface chemistry and morphology in single particle optical imaging,” Nanophotonics 6(4), 713–730 (2017).
[Crossref]

Shin, J.

K. Kim, K. Kim, Y. Ji, J. Park, J. Shin, A. Ellingboe, and G. Yeom, “Silicon nitride deposition for flexible organic electronic devices by vhf (162 mhz)-pecvd using a multi-tile push-pull plasma source,” Sci. Rep. 7(1), 13585 (2017).
[Crossref]

Smith, D.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

Stokes, A. R.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999), 7th ed.

Stoltz, B.

J. Su, A. F. G. Goldberg, and B. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light: Sci. Appl. 5(1), e16001 (2016).
[Crossref]

Su, J.

J. Su, A. F. G. Goldberg, and B. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light: Sci. Appl. 5(1), e16001 (2016).
[Crossref]

Taylor, A. M.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999), 7th ed.

Ünlü, M. S.

Ünlü, N. L.

F. Ekiz-Kanik, D. D. Sevenler, N. L. Ünlü, M. Chiari, and M. S. Ünlü, “Surface chemistry and morphology in single particle optical imaging,” Nanophotonics 6(4), 713–730 (2017).
[Crossref]

Urbach, H. P.

S. Roy, S. F. Pereira, H. P. Urbach, X. Wei, and O. El Gawhary, “Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection,” Phys. Rev. A 96(1), 013814 (2017).
[Crossref]

S. Roy, A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Coherent fourier scatterometry for detection of nanometer-sized particles on a planar substrate surface,” Opt. Express 22(11), 13250–13262 (2014).
[Crossref]

O. E. Gawhary, N. J. Schilder, A. da Costa Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescent waves and subwavelength imaging by a single dielectric slab,” New J. Phys. 14(5), 053025 (2012).
[Crossref]

X. Wei, A. J. Wachters, and H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems,” J. Opt. Soc. Am. A 24(3), 866–881 (2007).
[Crossref]

van de Kerkhof, M.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

van de Weg, D.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

van der Donck, J.

P. Bussink, J.-B. Volatier, P. van der Walle, E. Fritz, and J. van der Donck, “Sub 20nm particle inspection on euv mask blanks,” Proc. SPIE 9778, 977835 (2016).
[Crossref]

van der Meulen, F.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

van der Walle, P.

P. Bussink, J.-B. Volatier, P. van der Walle, E. Fritz, and J. van der Donck, “Sub 20nm particle inspection on euv mask blanks,” Proc. SPIE 9778, 977835 (2016).
[Crossref]

van Zwol, P.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

Verbrugge, B.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

Volatier, J.-B.

P. Bussink, J.-B. Volatier, P. van der Walle, E. Fritz, and J. van der Donck, “Sub 20nm particle inspection on euv mask blanks,” Proc. SPIE 9778, 977835 (2016).
[Crossref]

Wachters, A. J.

Wayman, P. A.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999), 7th ed.

Wei, X.

S. Roy, S. F. Pereira, H. P. Urbach, X. Wei, and O. El Gawhary, “Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection,” Phys. Rev. A 96(1), 013814 (2017).
[Crossref]

X. Wei, A. J. Wachters, and H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems,” J. Opt. Soc. Am. A 24(3), 866–881 (2007).
[Crossref]

Wilcock, W. L.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999), 7th ed.

Wiley, J.

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

Wolf, E.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999), 7th ed.

Yeom, G.

K. Kim, K. Kim, Y. Ji, J. Park, J. Shin, A. Ellingboe, and G. Yeom, “Silicon nitride deposition for flexible organic electronic devices by vhf (162 mhz)-pecvd using a multi-tile push-pull plasma source,” Sci. Rep. 7(1), 13585 (2017).
[Crossref]

Yurdakul, C.

Zare, R. N.

S. Nie and R. N. Zare, “Optical detection of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 567–596 (1997).
[Crossref]

Zhiyong Ma, D. G. S.

D. G. S. Zhiyong Ma, Metrology and Diagnostic Techniques for Nanoelectronics (Pan Stanford, 2016).

Ann. Phys. (1)

W. Sellmeier, “Ueber die durch die aetherschwingungen erregten mitschwingungen der körpertheilchen und deren rückwirkung auf die ersteren, besonders zur erklärung der dispersion und ihrer anomalien,” Ann. Phys. 223(11), 386–403 (1872).
[Crossref]

Annu. Rev. Biophys. Biomol. Struct. (1)

S. Nie and R. N. Zare, “Optical detection of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 567–596 (1997).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

O. E. Gawhary, M. C. Dheur, S. F. Pereira, and J. J. M. Braat, “Extension of the classical fabry–perot formula to 1d multilayered structures,” Appl. Phys. B 111(4), 637–645 (2013).
[Crossref]

Biomed. Opt. Express (1)

J. Opt. Soc. Am. A (1)

Light: Sci. Appl. (1)

J. Su, A. F. G. Goldberg, and B. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light: Sci. Appl. 5(1), e16001 (2016).
[Crossref]

Nanophotonics (1)

F. Ekiz-Kanik, D. D. Sevenler, N. L. Ünlü, M. Chiari, and M. S. Ünlü, “Surface chemistry and morphology in single particle optical imaging,” Nanophotonics 6(4), 713–730 (2017).
[Crossref]

Nanotechnology (1)

Y. Lu and S. C. Chen, “Nanopatterning of a silicon surface by near-field enhanced laser irradiation,” Nanotechnology 14(5), 505–508 (2003).
[Crossref]

New J. Phys. (1)

O. E. Gawhary, N. J. Schilder, A. da Costa Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescent waves and subwavelength imaging by a single dielectric slab,” New J. Phys. 14(5), 053025 (2012).
[Crossref]

Opt. Express (1)

Optica (1)

Phys. Rev. A (1)

S. Roy, S. F. Pereira, H. P. Urbach, X. Wei, and O. El Gawhary, “Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection,” Phys. Rev. A 96(1), 013814 (2017).
[Crossref]

Proc. SPIE (2)

D. Brouns, A. Bendiksen, P. Broman, E. Casimiri, P. Colsters, P. Delmastro, D. De Graaf, P. Janssen, M. van de Kerkhof, R. Kramer, M. Kruizinga, H. Kuntzel, F. van der Meulen, D. Ockwell, M. Peter, D. Smith, B. Verbrugge, D. van de Weg, J. Wiley, and P. van Zwol, “Nxe pellicle: offering a euv pellicle solution to the industry,” Proc. SPIE 9776, 97761Y (2016).
[Crossref]

P. Bussink, J.-B. Volatier, P. van der Walle, E. Fritz, and J. van der Donck, “Sub 20nm particle inspection on euv mask blanks,” Proc. SPIE 9778, 977835 (2016).
[Crossref]

Rev. Sci. Instrum. (1)

D. D. Nolte, “Invited review article: Review of centrifugal microfluidic and bio-optical disks,” Rev. Sci. Instrum. 80(10), 101101 (2009).
[Crossref]

Sci. Rep. (2)

K. Kim, K. Kim, Y. Ji, J. Park, J. Shin, A. Ellingboe, and G. Yeom, “Silicon nitride deposition for flexible organic electronic devices by vhf (162 mhz)-pecvd using a multi-tile push-pull plasma source,” Sci. Rep. 7(1), 13585 (2017).
[Crossref]

A. Salehi-Reyhani, “Evaluating single molecule detection methods for microarrays with high dynamic range for quantitative single cell analysis,” Sci. Rep. 7(1), 17957 (2017).
[Crossref]

Other (4)

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999), 7th ed.

D. G. S. Zhiyong Ma, Metrology and Diagnostic Techniques for Nanoelectronics (Pan Stanford, 2016).

J. W. Gooch, Cauchy’s Dispersion Formula (Springer, 2011), pp. 125.

D. Kolenov, R. C. Horsten, and S. F. Pereira, “Heterodyne detection system for nanoparticle detection using coherent Fourier scatterometry,” in Optical Measurement Systems for Industrial Inspection XI, vol. 11056P. Lehmann, W. Osten, and A. A. G., eds., International Society for Optics and Photonics (SPIE, 2019), pp.336–342.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. A sketch of the experimental setup: A) (STAGE: piezo-electric XYZ translator; OBJ: objective lens; PC: polarizator convertor (zero-order vortex half-wave retarder); BS1, BS2: beam splitters; POL: linear polarizer, COL: light collimator, LENS1, LENS2, LENS3 converging lenses; CAM: CCD camera used for localizing the sample; SD: split detector (bi-cell silicon photodiode), LAS: blue diode laser. B) Top: the scattered and reflected components that contribute to the far field signal and evanescent modes decay quickly in the substrate and in air. Bottom: evanescent waves at the interface due to the presence of a thin layer on the substrate are amplified and re-scattered by the particle.
Fig. 2.
Fig. 2. Incident reflected and transmitted waves for three media layered structure A). Scheme of the simulation system B). Fresnel reflection coefficients for the three layer medium (air as input medium, TiO$_2$ as thin layer and glass as substrate). C) and D): absolute value of the Fresnel reflection coefficients as a function of the thickness of the TiO$_2$ layer for $p$ and $s$ polarizations, respectively, when the thickness of the covering layer changes from 17 to 23 nm. For the case of 21 nm thick TiO$_2$ layer, we show in E) and F) the Fresnel reflection coefficients with (red) and without (blue) the thin layer.
Fig. 3.
Fig. 3. A) Schematic drawing showing linearly (left) and radially (right) polarized light being focused on the substrate, with the electric field in focus at the optical axis shown in red. B) The near field distribution when linearly, along the x-axis polarized light is focused onto a 50 nm PSL nanoparticle on top of the substrate, without (top) and with (bottom) enhancement layer. C) and D) The far field-maps without (top) and with (bottom) layer for the case of linear polarization and radial polarization, respectively. The enhancement layer is 21 nm of TiO$_2$, the wavelength is 405 nm and numerical aperture is NA = 0.9. The color-code is such that the observed intensity is normalized by the maximum value of the far-field when the TiO$_2$ layer is present.
Fig. 4.
Fig. 4. A) Cross-section of the far field intensity along the x-axis when input beam is radially polarized and focused on a 30 nm nanoparticle. The middle zone in blue corresponds to the center of the pupil $|k_{x}/k_{air}| \leq ~0.2$ and the surrounding hollow cone in red corresponds to $0.2\;<\;|k_{x}/k_{air}|\;<\;0.9$. B) Point per point gradient of the integrated electric field intensity of the blue and red regions of the far field as a function of the real index of refraction with the imaginary part kept at the value of 0.133, C) as function of the imaginary part of the index of refraction with the real part kept at the value of 2.6. D) and E) profile of the field distributions corresponding to the left- and right-most values of the refractive indexes of plots B) and C), respectively. Black lines mark the centre of the cross-section $k_{x}/k_{air} = 0$ that corresponds to the beginning of refractive indexes sweep.
Fig. 5.
Fig. 5. Point per point gradient of integrated electric field intensity as function of the real and imaginary parts of the refractive index for the case of linear polarization along the X direction when A) the real part value changes from 2.6 to 4 while the imaginary remains fixed at 0.133, and B) when the real part remains fixed at 2.66 while the imaginary part changes from 0.0004 to 1.4. C) and D) cross-sections of the total far-field pattern corresponding to the maximum and minimum values of the refractive indices of plots A) and B), respectively. The curves are normalized to unity by the maximum value of the distribution belonging to the particular parameter sweep. Black lines mark the centre of the cross-section $k_{x}/k_{air} = 0$ that corresponds to the beginning of refractive indexes sweep.
Fig. 6.
Fig. 6. The total scattered far-field intensity integrated over the pupil and normalized to unity for linearly polarized (red) and radially polarised light (blue). The positions of the guided modes of the three-layer 1-D slab are indicated in purple, and the positions of maxima and minima in reflection for the normally incident light in black solid and dashed lines correspondingly.
Fig. 7.
Fig. 7. The raw far-field signal maps of the glass sample without and with the enhancement layer of Ta2O5. Isolated PSL particle of 50 nm and linear A), radial B), azimuthal C) input polariziation of the beam. Each map is $2.7\mu m\times 0.5\mu m$.
Fig. 8.
Fig. 8. Split detector signal as a function of the relative position of the particle w.r.t. the focused field as the particle is scanned in the X direction. The particle is on a glass sample with the enhancement layer of TiO$_2$ and 40 nm PSL with the linear A), radial B), and azimuthal C) polarization of the probing beam. The colour scheme scales to the limits of the linearly polarized beam. The cross-section of the corresponding signals are compared in panel D).

Tables (4)

Tables Icon

Table 1. Examples of dielectric and semiconductor materials that can act as single layer evanescent wave amplification. The optical properties are defined for the wavelength 405 nm. The substrate should have a lower refractive index than a cover layer to allow the guiding. Deposition processes are Evaporation: conventional thermal evaporation in high vacuum, EPVD: Electron-beam physical vapor deposition, CVD: chemical vapor deposition techniques, Arc-PVD: cathodic arc plasma deposition. Ext. coeff. refers to extinction coefficient.

Tables Icon

Table 2. The gain factors indicate that cylindrically polarized light produces higher gain in the far-field as compared to the conventional polarizations. The material TiO 2 shows better performance than Ta 2 O 5 . The maximum gain in each column is given in bold. The diameter of particle is 50 nm.

Tables Icon

Table 3. Summary of the fabricated samples. The thickness of the layers has been measured with an ellipsometer.

Tables Icon

Table 4. SNR gain G [dB] due to evanescent wave amplification for the cases of detection of 50 and 40 nm particles on top of Ta 2 O 5 or TiO 2 layers on glass (compared to glass with no layer), for various polarization configurations.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

r = r 12 + t 12 t 23 r 23 e x p ( i k z 2 d 2 ) 1 r 23 r 21 e x p ( i 2 k z 2 d 2 )
r n m ( s ) = μ m k z n μ n k z m μ m k z n + μ n k z m , r n m ( p ) = ϵ m k z n ϵ n k z m ϵ m k z n + ϵ n k z m
t n m ( s ) = 2 μ m k z n μ m k z n + μ n k z m , t n m ( p ) = 2 ϵ m k z n ϵ m k z n + ϵ n k z m
n 2 ( λ ) = 1 + B 1 λ 2 λ 2 C 1 + B 2 λ 2 λ 2 C 2 + B 3 λ 2 λ 2 C 3
B 1 = 3.3 , C 1 = 0.005 B 2 = 0.2 , C 2 = 0.01 B 3 = 0.1 , C 3 = 0.02
n ( λ ) = B + C λ 2 B = 0.025614 , C = 0.0059846
G i n t = I C o v _ i n t I B a r e _ i n t I = n = 1 n r o w s m = 1 n c o l I ( n , m ) d n d m
G m a x = I C o v _ m a x I B a r e _ m a x I m a x = m a x ( I ( n , m ) )
I ( n , m ) = ( | E x ( n , m ) | 2 + | E y ( n , m ) | 2 )
G = SNR (layer ) SNR (no layer) , with SNR ( . ) = 10 log 10 ( S ( . ) N ( . ) )