Abstract

This work deals with the fluorescence properties of the methylene blue (MB) fluorophores loaded on metal oxide nanoparticles, such as TiO2, ZnO, and Al2O3 based on laser-induced fluorescence (LIF) spectroscopy. At first, MB is provoked by diode laser at 665 nm, then the fluorescence emissions are recorded using a Czerny-Turner spectrometer. The lucid red shift appears during the right angle LIF measurements of (MB + TiO2NPs) suspensions, where NP are well distributed among the fluorophores. Despite that, the LIF of (MB + TiO2) demonstrates notable red shift in terms of NP concentrations; however, (MB + ZnO) and (MB + Al2O3) exhibit a negligible one. The larger red shift occurs for the NPs with greater refractive indices due to the optical elongation. Furthermore, the quenching coefficients KTiO2, KZnO, and KAl2O3 are measured according to the linear Stern-Volmer formalism. The quenching effect in a (TiO2+MB) attests to be much stronger than that of other nanoparticles of interest. The discrepancy in the fluorescence emissions of MB at the attendance of different metal oxide NPs is very significant during simultaneous imaging/diagnosis and treatment of tumors.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions

A. Bavali, P. Parvin, S. Z. Mortazavi, M. Mohammadian, and M. R. Mousavi Pour
Appl. Opt. 53(24) 5398-5409 (2014)

Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution

A. Bavali, P. Parvin, S. Z. Mortazavi, and S. S. Nourazar
Biomed. Opt. Express 6(5) 1679-1693 (2015)

Fluorescence properties of doxorubicin coupled carbon nanocarriers

Najmeh Sadat Hosseini Motlagh, Parviz Parvin, Mitra Refahizadeh, and Ali Bavali
Appl. Opt. 56(26) 7498-7503 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, and B. Vaidya, “Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications,” Drug Discovery Today 22(12), 1825–1834 (2017).
    [Crossref]
  2. J. Jiang, J. Pi, and J. Cai, “The advancing of zinc oxide nanoparticles for biomedical applications,” Bioinorg. Chem. Appl. 2018, 1–18 (2018).
    [Crossref]
  3. Z. Y. Zhang and H. M. Xiong, “Photoluminescent ZnO nanoparticles and their biological applications,” Materials 8(6), 3101–3127 (2015).
    [Crossref]
  4. S. Kim, S. Y. Lee, and H. J. Cho, “Doxorubicin-wrapped zinc oxide nanoclusters for the therapy of colorectal adenocarcinoma,” Nanomaterials 7(11), 354 (2017).
    [Crossref]
  5. H. M. Xiong, “ZnO nanoparticles applied to bioimaging and drug delivery,” Adv. Mater. 25(37), 5329–5335 (2013).
    [Crossref]
  6. L. H. Zhao, R. Zhang, J. Zhang, and S. Q. Sun, “Synthesis and characterization of biocompatible ZnO nanoparticles,” CrystEngComm 14(3), 945–950 (2012).
    [Crossref]
  7. M. Vinardell and M. Mitjans, “Antitumor activities of metal oxide nanoparticles,” Nanomaterials 5(2), 1004–1021 (2015).
    [Crossref]
  8. N. M. Jukapli and S. Bagheri, “Recent developments on titania nanoparticle as photocatalytic cancer cells treatment,” J. Photochem. Photobiol., B 163, 421–430 (2016).
    [Crossref]
  9. P. Hassanpour, Y. Panahi, A. Ebrahimi-Kalan, and A. Akbarzadeh, “Biomedical applications of aluminium oxide nanoparticles,” Micro Nano Lett. 13(9), 1227–1231 (2018).
    [Crossref]
  10. M. N. Usacheva, M. C. Teichert, and M. A. Biel, “The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria,” J. Photochem. Photobiol., B 71(1-3), 87–98 (2003).
    [Crossref]
  11. Z. Hu and C. Tong, “Synchronous fluorescence determination of DNA based on the interaction between methylene blue and DNA,” Anal. Chim. Acta 587(2), 187–193 (2007).
    [Crossref]
  12. K. J. Mellish, R. D. Cox, D. I. Vernon, J. Griffiths, and S. B. Brown, “In Vitro Photodynamic Activity of a Series of Methylene Blue Analogues,” Photochem. Photobiol. 75(4), 392–397 (2002).
    [Crossref]
  13. E. M. Tuite and J. M. Kelly, “New trends in photobiology: Photochemical interactions of methylene blue and analogues with DNA and other biological substrates,” J. Photochem. Photobiol., B 21(2-3), 103–124 (1993).
    [Crossref]
  14. Y. N. Konan, R. Gurny, and E. Allémann, “State of the art in the delivery of photosensitizers for photodynamic therapy,” J. Photochem. Photobiol., B 66(2), 89–106 (2002).
    [Crossref]
  15. S. Wang, R. Gao, F. Zhou, and M. Selke, “Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy,” J. Mater. Chem. 14(4), 487–493 (2004).
    [Crossref]
  16. W. Tang, H. Xu, R. Kopelman, and M. A. Philbert, “Photodynamic Characterization and In Vitro Application of Methylene Blue-containing Nanoparticle Platforms,” Photochem. Photobiol. 81(2), 242–249 (2005).
    [Crossref]
  17. K. Orth, A. Rück, A. Stanescu, and H. G. Beger, “Intraluminal treatment of inoperable oesophageal tumours by intralesional photodynamic therapy with methylene blue,” Lancet 345(8948), 519–520 (1995).
    [Crossref]
  18. C. M. Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. K. Kumar, and M. V. P. Chowdary, “Raman spectroscopy of breast tissues,” Expert Rev. Mol. Diagn. 8(2), 149–166 (2008).
    [Crossref]
  19. J. Conde, G. Doria, and P. Baptista, “Noble metal nanoparticles applications in cancer,” J. Drug Delivery 2012, 1–12 (2012).
    [Crossref]
  20. C. K. Lim, J. Shin, Y. D. Lee, J. Kim, K. S. Oh, S. H. Yuk, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
    [Crossref]
  21. A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, and G. Storm, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
    [Crossref]
  22. S. Santra, C. Kaittanis, J. Grimm, and J. M. Perez, “Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging,” Small 5(16), 1862–1868 (2009).
    [Crossref]
  23. B. Chance, “Near-Infrared Images Using Continuous, Phase-Modulated, and Pulsed Light with Quantitation of Blood and Blood Oxygenationa,” Ann. N. Y. Acad. Sci. 838(1 ADVANCES IN O), 29–45 (1998).
    [Crossref]
  24. J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, and M. S. Baptista, “Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
    [Crossref]
  25. S. Gioux, H. S. Choi, and J. V. Frangioni, “Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation,” Mol. Imaging 9(5), 237–255 (2010).
    [Crossref]
  26. J. D. Meier, H. Xie, Y. Sun, N. Hatami, B. Poirier, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol.–Head Neck Surg. 142(6), 838–844 (2010).
    [Crossref]
  27. M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 646–662 (2013).
    [Crossref]
  28. M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
    [Crossref]
  29. A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
    [Crossref]
  30. A. Bavali, P. Parvin, S. Z. Mortazavi, M. Mohammadian, and M. M. Pour, “Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions,” Appl. Opt. 53(24), 5398–5409 (2014).
    [Crossref]
  31. F. Pahang, P. Parvin, and A. Bavali, “Fluorescence quenching effects of carbon nano-structures (Graphene Oxide and Nano Diamond) coupled with Methylene Blue,” Spectrochim. Acta, Part A 229, 117888 (2020).
    [Crossref]
  32. A. Bavali, P. Parvin, M. Tavassoli, and M. R. Mohebbifar, “Angular distribution of laser-induced fluorescence emission of active dyes in scattering media,” Appl. Opt. 57(7), B32–B38 (2018).
    [Crossref]
  33. N. S. H. Motlagh, P. Parvin, M. Refahizadeh, and A. Bavali, “Fluorescence properties of doxorubicin coupled carbon nanocarriers,” Appl. Opt. 56(26), 7498–7503 (2017).
    [Crossref]

2020 (1)

F. Pahang, P. Parvin, and A. Bavali, “Fluorescence quenching effects of carbon nano-structures (Graphene Oxide and Nano Diamond) coupled with Methylene Blue,” Spectrochim. Acta, Part A 229, 117888 (2020).
[Crossref]

2018 (3)

A. Bavali, P. Parvin, M. Tavassoli, and M. R. Mohebbifar, “Angular distribution of laser-induced fluorescence emission of active dyes in scattering media,” Appl. Opt. 57(7), B32–B38 (2018).
[Crossref]

J. Jiang, J. Pi, and J. Cai, “The advancing of zinc oxide nanoparticles for biomedical applications,” Bioinorg. Chem. Appl. 2018, 1–18 (2018).
[Crossref]

P. Hassanpour, Y. Panahi, A. Ebrahimi-Kalan, and A. Akbarzadeh, “Biomedical applications of aluminium oxide nanoparticles,” Micro Nano Lett. 13(9), 1227–1231 (2018).
[Crossref]

2017 (3)

P. K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, and B. Vaidya, “Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications,” Drug Discovery Today 22(12), 1825–1834 (2017).
[Crossref]

S. Kim, S. Y. Lee, and H. J. Cho, “Doxorubicin-wrapped zinc oxide nanoclusters for the therapy of colorectal adenocarcinoma,” Nanomaterials 7(11), 354 (2017).
[Crossref]

N. S. H. Motlagh, P. Parvin, M. Refahizadeh, and A. Bavali, “Fluorescence properties of doxorubicin coupled carbon nanocarriers,” Appl. Opt. 56(26), 7498–7503 (2017).
[Crossref]

2016 (1)

N. M. Jukapli and S. Bagheri, “Recent developments on titania nanoparticle as photocatalytic cancer cells treatment,” J. Photochem. Photobiol., B 163, 421–430 (2016).
[Crossref]

2015 (2)

Z. Y. Zhang and H. M. Xiong, “Photoluminescent ZnO nanoparticles and their biological applications,” Materials 8(6), 3101–3127 (2015).
[Crossref]

M. Vinardell and M. Mitjans, “Antitumor activities of metal oxide nanoparticles,” Nanomaterials 5(2), 1004–1021 (2015).
[Crossref]

2014 (1)

2013 (2)

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 646–662 (2013).
[Crossref]

H. M. Xiong, “ZnO nanoparticles applied to bioimaging and drug delivery,” Adv. Mater. 25(37), 5329–5335 (2013).
[Crossref]

2012 (3)

L. H. Zhao, R. Zhang, J. Zhang, and S. Q. Sun, “Synthesis and characterization of biocompatible ZnO nanoparticles,” CrystEngComm 14(3), 945–950 (2012).
[Crossref]

J. Conde, G. Doria, and P. Baptista, “Noble metal nanoparticles applications in cancer,” J. Drug Delivery 2012, 1–12 (2012).
[Crossref]

C. K. Lim, J. Shin, Y. D. Lee, J. Kim, K. S. Oh, S. H. Yuk, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref]

2011 (1)

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, and G. Storm, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref]

2010 (4)

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref]

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
[Crossref]

S. Gioux, H. S. Choi, and J. V. Frangioni, “Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation,” Mol. Imaging 9(5), 237–255 (2010).
[Crossref]

J. D. Meier, H. Xie, Y. Sun, N. Hatami, B. Poirier, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol.–Head Neck Surg. 142(6), 838–844 (2010).
[Crossref]

2009 (1)

S. Santra, C. Kaittanis, J. Grimm, and J. M. Perez, “Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging,” Small 5(16), 1862–1868 (2009).
[Crossref]

2008 (1)

C. M. Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. K. Kumar, and M. V. P. Chowdary, “Raman spectroscopy of breast tissues,” Expert Rev. Mol. Diagn. 8(2), 149–166 (2008).
[Crossref]

2007 (1)

Z. Hu and C. Tong, “Synchronous fluorescence determination of DNA based on the interaction between methylene blue and DNA,” Anal. Chim. Acta 587(2), 187–193 (2007).
[Crossref]

2005 (2)

W. Tang, H. Xu, R. Kopelman, and M. A. Philbert, “Photodynamic Characterization and In Vitro Application of Methylene Blue-containing Nanoparticle Platforms,” Photochem. Photobiol. 81(2), 242–249 (2005).
[Crossref]

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, and M. S. Baptista, “Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref]

2004 (1)

S. Wang, R. Gao, F. Zhou, and M. Selke, “Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy,” J. Mater. Chem. 14(4), 487–493 (2004).
[Crossref]

2003 (1)

M. N. Usacheva, M. C. Teichert, and M. A. Biel, “The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria,” J. Photochem. Photobiol., B 71(1-3), 87–98 (2003).
[Crossref]

2002 (2)

K. J. Mellish, R. D. Cox, D. I. Vernon, J. Griffiths, and S. B. Brown, “In Vitro Photodynamic Activity of a Series of Methylene Blue Analogues,” Photochem. Photobiol. 75(4), 392–397 (2002).
[Crossref]

Y. N. Konan, R. Gurny, and E. Allémann, “State of the art in the delivery of photosensitizers for photodynamic therapy,” J. Photochem. Photobiol., B 66(2), 89–106 (2002).
[Crossref]

1998 (1)

B. Chance, “Near-Infrared Images Using Continuous, Phase-Modulated, and Pulsed Light with Quantitation of Blood and Blood Oxygenationa,” Ann. N. Y. Acad. Sci. 838(1 ADVANCES IN O), 29–45 (1998).
[Crossref]

1995 (1)

K. Orth, A. Rück, A. Stanescu, and H. G. Beger, “Intraluminal treatment of inoperable oesophageal tumours by intralesional photodynamic therapy with methylene blue,” Lancet 345(8948), 519–520 (1995).
[Crossref]

1993 (1)

E. M. Tuite and J. M. Kelly, “New trends in photobiology: Photochemical interactions of methylene blue and analogues with DNA and other biological substrates,” J. Photochem. Photobiol., B 21(2-3), 103–124 (1993).
[Crossref]

Akbarzadeh, A.

P. Hassanpour, Y. Panahi, A. Ebrahimi-Kalan, and A. Akbarzadeh, “Biomedical applications of aluminium oxide nanoparticles,” Micro Nano Lett. 13(9), 1227–1231 (2018).
[Crossref]

Allémann, E.

Y. N. Konan, R. Gurny, and E. Allémann, “State of the art in the delivery of photosensitizers for photodynamic therapy,” J. Photochem. Photobiol., B 66(2), 89–106 (2002).
[Crossref]

Bagheri, S.

N. M. Jukapli and S. Bagheri, “Recent developments on titania nanoparticle as photocatalytic cancer cells treatment,” J. Photochem. Photobiol., B 163, 421–430 (2016).
[Crossref]

Baptista, M. S.

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, and M. S. Baptista, “Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref]

Baptista, P.

J. Conde, G. Doria, and P. Baptista, “Noble metal nanoparticles applications in cancer,” J. Drug Delivery 2012, 1–12 (2012).
[Crossref]

Bavali, A.

Beger, H. G.

K. Orth, A. Rück, A. Stanescu, and H. G. Beger, “Intraluminal treatment of inoperable oesophageal tumours by intralesional photodynamic therapy with methylene blue,” Lancet 345(8948), 519–520 (1995).
[Crossref]

Bellard, E.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
[Crossref]

Bibette, J.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref]

Biel, M. A.

M. N. Usacheva, M. C. Teichert, and M. A. Biel, “The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria,” J. Photochem. Photobiol., B 71(1-3), 87–98 (2003).
[Crossref]

Brown, S. B.

K. J. Mellish, R. D. Cox, D. I. Vernon, J. Griffiths, and S. B. Brown, “In Vitro Photodynamic Activity of a Series of Methylene Blue Analogues,” Photochem. Photobiol. 75(4), 392–397 (2002).
[Crossref]

Cai, J.

J. Jiang, J. Pi, and J. Cai, “The advancing of zinc oxide nanoparticles for biomedical applications,” Bioinorg. Chem. Appl. 2018, 1–18 (2018).
[Crossref]

Calcagno, C.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, and G. Storm, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref]

Chance, B.

B. Chance, “Near-Infrared Images Using Continuous, Phase-Modulated, and Pulsed Light with Quantitation of Blood and Blood Oxygenationa,” Ann. N. Y. Acad. Sci. 838(1 ADVANCES IN O), 29–45 (1998).
[Crossref]

Cho, H. J.

S. Kim, S. Y. Lee, and H. J. Cho, “Doxorubicin-wrapped zinc oxide nanoclusters for the therapy of colorectal adenocarcinoma,” Nanomaterials 7(11), 354 (2017).
[Crossref]

Choi, H. S.

S. Gioux, H. S. Choi, and J. V. Frangioni, “Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation,” Mol. Imaging 9(5), 237–255 (2010).
[Crossref]

Chowdary, M. V. P.

C. M. Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. K. Kumar, and M. V. P. Chowdary, “Raman spectroscopy of breast tissues,” Expert Rev. Mol. Diagn. 8(2), 149–166 (2008).
[Crossref]

Coll, J. L.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref]

Conde, J.

J. Conde, G. Doria, and P. Baptista, “Noble metal nanoparticles applications in cancer,” J. Drug Delivery 2012, 1–12 (2012).
[Crossref]

Cox, R. D.

K. J. Mellish, R. D. Cox, D. I. Vernon, J. Griffiths, and S. B. Brown, “In Vitro Photodynamic Activity of a Series of Methylene Blue Analogues,” Photochem. Photobiol. 75(4), 392–397 (2002).
[Crossref]

de Oliveira, C. S.

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, and M. S. Baptista, “Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref]

Del Giglio, A.

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, and M. S. Baptista, “Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref]

Doria, G.

J. Conde, G. Doria, and P. Baptista, “Noble metal nanoparticles applications in cancer,” J. Drug Delivery 2012, 1–12 (2012).
[Crossref]

Dufort, S.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref]

Ebrahimi-Kalan, A.

P. Hassanpour, Y. Panahi, A. Ebrahimi-Kalan, and A. Akbarzadeh, “Biomedical applications of aluminium oxide nanoparticles,” Micro Nano Lett. 13(9), 1227–1231 (2018).
[Crossref]

Ecochard, V.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
[Crossref]

Ekielski, A.

P. K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, and B. Vaidya, “Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications,” Drug Discovery Today 22(12), 1825–1834 (2017).
[Crossref]

Farwell, D. G.

J. D. Meier, H. Xie, Y. Sun, N. Hatami, B. Poirier, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol.–Head Neck Surg. 142(6), 838–844 (2010).
[Crossref]

Frangioni, J. V.

S. Gioux, H. S. Choi, and J. V. Frangioni, “Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation,” Mol. Imaging 9(5), 237–255 (2010).
[Crossref]

Fu, C. Y.

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 646–662 (2013).
[Crossref]

Gabrielli, D. S.

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, and M. S. Baptista, “Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref]

Gao, R.

S. Wang, R. Gao, F. Zhou, and M. Selke, “Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy,” J. Mater. Chem. 14(4), 487–493 (2004).
[Crossref]

Gianella, A.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, and G. Storm, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref]

Gioux, S.

S. Gioux, H. S. Choi, and J. V. Frangioni, “Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation,” Mol. Imaging 9(5), 237–255 (2010).
[Crossref]

Golzio, M.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
[Crossref]

Goutayer, M.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref]

Griffiths, J.

K. J. Mellish, R. D. Cox, D. I. Vernon, J. Griffiths, and S. B. Brown, “In Vitro Photodynamic Activity of a Series of Methylene Blue Analogues,” Photochem. Photobiol. 75(4), 392–397 (2002).
[Crossref]

Grimm, J.

S. Santra, C. Kaittanis, J. Grimm, and J. M. Perez, “Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging,” Small 5(16), 1862–1868 (2009).
[Crossref]

Gurny, R.

Y. N. Konan, R. Gurny, and E. Allémann, “State of the art in the delivery of photosensitizers for photodynamic therapy,” J. Photochem. Photobiol., B 66(2), 89–106 (2002).
[Crossref]

Hassanpour, P.

P. Hassanpour, Y. Panahi, A. Ebrahimi-Kalan, and A. Akbarzadeh, “Biomedical applications of aluminium oxide nanoparticles,” Micro Nano Lett. 13(9), 1227–1231 (2018).
[Crossref]

Hatami, N.

J. D. Meier, H. Xie, Y. Sun, N. Hatami, B. Poirier, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol.–Head Neck Surg. 142(6), 838–844 (2010).
[Crossref]

Heinrich, E.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref]

Ho, C. J. H.

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 646–662 (2013).
[Crossref]

Hu, Z.

Z. Hu and C. Tong, “Synchronous fluorescence determination of DNA based on the interaction between methylene blue and DNA,” Anal. Chim. Acta 587(2), 187–193 (2007).
[Crossref]

Jarzyna, P. A.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, and G. Storm, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref]

Jiang, J.

J. Jiang, J. Pi, and J. Cai, “The advancing of zinc oxide nanoparticles for biomedical applications,” Bioinorg. Chem. Appl. 2018, 1–18 (2018).
[Crossref]

Josserand, V.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref]

Jukapli, N. M.

N. M. Jukapli and S. Bagheri, “Recent developments on titania nanoparticle as photocatalytic cancer cells treatment,” J. Photochem. Photobiol., B 163, 421–430 (2016).
[Crossref]

Junqueira, H. C.

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, and M. S. Baptista, “Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref]

Kaittanis, C.

S. Santra, C. Kaittanis, J. Grimm, and J. M. Perez, “Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging,” Small 5(16), 1862–1868 (2009).
[Crossref]

Kelly, J. M.

E. M. Tuite and J. M. Kelly, “New trends in photobiology: Photochemical interactions of methylene blue and analogues with DNA and other biological substrates,” J. Photochem. Photobiol., B 21(2-3), 103–124 (1993).
[Crossref]

Kim, J.

C. K. Lim, J. Shin, Y. D. Lee, J. Kim, K. S. Oh, S. H. Yuk, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref]

Kim, S.

S. Kim, S. Y. Lee, and H. J. Cho, “Doxorubicin-wrapped zinc oxide nanoclusters for the therapy of colorectal adenocarcinoma,” Nanomaterials 7(11), 354 (2017).
[Crossref]

C. K. Lim, J. Shin, Y. D. Lee, J. Kim, K. S. Oh, S. H. Yuk, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref]

Konan, Y. N.

Y. N. Konan, R. Gurny, and E. Allémann, “State of the art in the delivery of photosensitizers for photodynamic therapy,” J. Photochem. Photobiol., B 66(2), 89–106 (2002).
[Crossref]

Kopelman, R.

W. Tang, H. Xu, R. Kopelman, and M. A. Philbert, “Photodynamic Characterization and In Vitro Application of Methylene Blue-containing Nanoparticle Platforms,” Photochem. Photobiol. 81(2), 242–249 (2005).
[Crossref]

Krishna, C. M.

C. M. Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. K. Kumar, and M. V. P. Chowdary, “Raman spectroscopy of breast tissues,” Expert Rev. Mol. Diagn. 8(2), 149–166 (2008).
[Crossref]

Kumar, K. K.

C. M. Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. K. Kumar, and M. V. P. Chowdary, “Raman spectroscopy of breast tissues,” Expert Rev. Mol. Diagn. 8(2), 149–166 (2008).
[Crossref]

Kurien, J.

C. M. Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. K. Kumar, and M. V. P. Chowdary, “Raman spectroscopy of breast tissues,” Expert Rev. Mol. Diagn. 8(2), 149–166 (2008).
[Crossref]

Lee, S. Y.

S. Kim, S. Y. Lee, and H. J. Cho, “Doxorubicin-wrapped zinc oxide nanoclusters for the therapy of colorectal adenocarcinoma,” Nanomaterials 7(11), 354 (2017).
[Crossref]

Lee, Y. D.

C. K. Lim, J. Shin, Y. D. Lee, J. Kim, K. S. Oh, S. H. Yuk, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref]

Lim, C. K.

C. K. Lim, J. Shin, Y. D. Lee, J. Kim, K. S. Oh, S. H. Yuk, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref]

Maheedhar, K.

C. M. Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. K. Kumar, and M. V. P. Chowdary, “Raman spectroscopy of breast tissues,” Expert Rev. Mol. Diagn. 8(2), 149–166 (2008).
[Crossref]

Mani, V.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, and G. Storm, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref]

Mathew, S.

C. M. Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. K. Kumar, and M. V. P. Chowdary, “Raman spectroscopy of breast tissues,” Expert Rev. Mol. Diagn. 8(2), 149–166 (2008).
[Crossref]

Meier, J. D.

J. D. Meier, H. Xie, Y. Sun, N. Hatami, B. Poirier, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol.–Head Neck Surg. 142(6), 838–844 (2010).
[Crossref]

Mellish, K. J.

K. J. Mellish, R. D. Cox, D. I. Vernon, J. Griffiths, and S. B. Brown, “In Vitro Photodynamic Activity of a Series of Methylene Blue Analogues,” Photochem. Photobiol. 75(4), 392–397 (2002).
[Crossref]

Mishra, H.

P. K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, and B. Vaidya, “Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications,” Drug Discovery Today 22(12), 1825–1834 (2017).
[Crossref]

Mishra, P. K.

P. K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, and B. Vaidya, “Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications,” Drug Discovery Today 22(12), 1825–1834 (2017).
[Crossref]

Mitjans, M.

M. Vinardell and M. Mitjans, “Antitumor activities of metal oxide nanoparticles,” Nanomaterials 5(2), 1004–1021 (2015).
[Crossref]

Mohammadian, M.

Mohebbifar, M. R.

Mortazavi, S. Z.

Motlagh, N. S. H.

Oh, K. S.

C. K. Lim, J. Shin, Y. D. Lee, J. Kim, K. S. Oh, S. H. Yuk, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref]

Olivo, M.

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 646–662 (2013).
[Crossref]

Orth, K.

K. Orth, A. Rück, A. Stanescu, and H. G. Beger, “Intraluminal treatment of inoperable oesophageal tumours by intralesional photodynamic therapy with methylene blue,” Lancet 345(8948), 519–520 (1995).
[Crossref]

Paganin-Gioanni, A.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
[Crossref]

Pahang, F.

F. Pahang, P. Parvin, and A. Bavali, “Fluorescence quenching effects of carbon nano-structures (Graphene Oxide and Nano Diamond) coupled with Methylene Blue,” Spectrochim. Acta, Part A 229, 117888 (2020).
[Crossref]

Panahi, Y.

P. Hassanpour, Y. Panahi, A. Ebrahimi-Kalan, and A. Akbarzadeh, “Biomedical applications of aluminium oxide nanoparticles,” Micro Nano Lett. 13(9), 1227–1231 (2018).
[Crossref]

Paquereau, L.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
[Crossref]

Parvin, P.

Perez, J. M.

S. Santra, C. Kaittanis, J. Grimm, and J. M. Perez, “Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging,” Small 5(16), 1862–1868 (2009).
[Crossref]

Philbert, M. A.

W. Tang, H. Xu, R. Kopelman, and M. A. Philbert, “Photodynamic Characterization and In Vitro Application of Methylene Blue-containing Nanoparticle Platforms,” Photochem. Photobiol. 81(2), 242–249 (2005).
[Crossref]

Pi, J.

J. Jiang, J. Pi, and J. Cai, “The advancing of zinc oxide nanoparticles for biomedical applications,” Bioinorg. Chem. Appl. 2018, 1–18 (2018).
[Crossref]

Poirier, B.

J. D. Meier, H. Xie, Y. Sun, N. Hatami, B. Poirier, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol.–Head Neck Surg. 142(6), 838–844 (2010).
[Crossref]

Pour, M. M.

Ramachandran, S.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, and G. Storm, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref]

Rao, L.

C. M. Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. K. Kumar, and M. V. P. Chowdary, “Raman spectroscopy of breast tissues,” Expert Rev. Mol. Diagn. 8(2), 149–166 (2008).
[Crossref]

Refahizadeh, M.

Royère, A.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref]

Rück, A.

K. Orth, A. Rück, A. Stanescu, and H. G. Beger, “Intraluminal treatment of inoperable oesophageal tumours by intralesional photodynamic therapy with methylene blue,” Lancet 345(8948), 519–520 (1995).
[Crossref]

Santra, S.

S. Santra, C. Kaittanis, J. Grimm, and J. M. Perez, “Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging,” Small 5(16), 1862–1868 (2009).
[Crossref]

Selke, M.

S. Wang, R. Gao, F. Zhou, and M. Selke, “Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy,” J. Mater. Chem. 14(4), 487–493 (2004).
[Crossref]

Shin, J.

C. K. Lim, J. Shin, Y. D. Lee, J. Kim, K. S. Oh, S. H. Yuk, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref]

Stanescu, A.

K. Orth, A. Rück, A. Stanescu, and H. G. Beger, “Intraluminal treatment of inoperable oesophageal tumours by intralesional photodynamic therapy with methylene blue,” Lancet 345(8948), 519–520 (1995).
[Crossref]

Storm, G.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, and G. Storm, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref]

Sun, S. Q.

L. H. Zhao, R. Zhang, J. Zhang, and S. Q. Sun, “Synthesis and characterization of biocompatible ZnO nanoparticles,” CrystEngComm 14(3), 945–950 (2012).
[Crossref]

Sun, Y.

J. D. Meier, H. Xie, Y. Sun, N. Hatami, B. Poirier, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol.–Head Neck Surg. 142(6), 838–844 (2010).
[Crossref]

Tada, D. B.

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, and M. S. Baptista, “Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref]

Talegaonkar, S.

P. K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, and B. Vaidya, “Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications,” Drug Discovery Today 22(12), 1825–1834 (2017).
[Crossref]

Tang, J.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, and G. Storm, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref]

Tang, W.

W. Tang, H. Xu, R. Kopelman, and M. A. Philbert, “Photodynamic Characterization and In Vitro Application of Methylene Blue-containing Nanoparticle Platforms,” Photochem. Photobiol. 81(2), 242–249 (2005).
[Crossref]

Tardivo, J. P.

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, and M. S. Baptista, “Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref]

Tavassoli, M.

Teichert, M. C.

M. N. Usacheva, M. C. Teichert, and M. A. Biel, “The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria,” J. Photochem. Photobiol., B 71(1-3), 87–98 (2003).
[Crossref]

Teissié, J.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
[Crossref]

Texier, I.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref]

Tong, C.

Z. Hu and C. Tong, “Synchronous fluorescence determination of DNA based on the interaction between methylene blue and DNA,” Anal. Chim. Acta 587(2), 187–193 (2007).
[Crossref]

Tuite, E. M.

E. M. Tuite and J. M. Kelly, “New trends in photobiology: Photochemical interactions of methylene blue and analogues with DNA and other biological substrates,” J. Photochem. Photobiol., B 21(2-3), 103–124 (1993).
[Crossref]

Usacheva, M. N.

M. N. Usacheva, M. C. Teichert, and M. A. Biel, “The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria,” J. Photochem. Photobiol., B 71(1-3), 87–98 (2003).
[Crossref]

Vaidya, B.

P. K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, and B. Vaidya, “Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications,” Drug Discovery Today 22(12), 1825–1834 (2017).
[Crossref]

Vernon, D. I.

K. J. Mellish, R. D. Cox, D. I. Vernon, J. Griffiths, and S. B. Brown, “In Vitro Photodynamic Activity of a Series of Methylene Blue Analogues,” Photochem. Photobiol. 75(4), 392–397 (2002).
[Crossref]

Vinardell, M.

M. Vinardell and M. Mitjans, “Antitumor activities of metal oxide nanoparticles,” Nanomaterials 5(2), 1004–1021 (2015).
[Crossref]

Vinet, F.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref]

Wang, S.

S. Wang, R. Gao, F. Zhou, and M. Selke, “Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy,” J. Mater. Chem. 14(4), 487–493 (2004).
[Crossref]

Xie, H.

J. D. Meier, H. Xie, Y. Sun, N. Hatami, B. Poirier, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol.–Head Neck Surg. 142(6), 838–844 (2010).
[Crossref]

Xiong, H. M.

Z. Y. Zhang and H. M. Xiong, “Photoluminescent ZnO nanoparticles and their biological applications,” Materials 8(6), 3101–3127 (2015).
[Crossref]

H. M. Xiong, “ZnO nanoparticles applied to bioimaging and drug delivery,” Adv. Mater. 25(37), 5329–5335 (2013).
[Crossref]

Xu, H.

W. Tang, H. Xu, R. Kopelman, and M. A. Philbert, “Photodynamic Characterization and In Vitro Application of Methylene Blue-containing Nanoparticle Platforms,” Photochem. Photobiol. 81(2), 242–249 (2005).
[Crossref]

Yuk, S. H.

C. K. Lim, J. Shin, Y. D. Lee, J. Kim, K. S. Oh, S. H. Yuk, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref]

Zhang, J.

L. H. Zhao, R. Zhang, J. Zhang, and S. Q. Sun, “Synthesis and characterization of biocompatible ZnO nanoparticles,” CrystEngComm 14(3), 945–950 (2012).
[Crossref]

Zhang, R.

L. H. Zhao, R. Zhang, J. Zhang, and S. Q. Sun, “Synthesis and characterization of biocompatible ZnO nanoparticles,” CrystEngComm 14(3), 945–950 (2012).
[Crossref]

Zhang, Z. Y.

Z. Y. Zhang and H. M. Xiong, “Photoluminescent ZnO nanoparticles and their biological applications,” Materials 8(6), 3101–3127 (2015).
[Crossref]

Zhao, L. H.

L. H. Zhao, R. Zhang, J. Zhang, and S. Q. Sun, “Synthesis and characterization of biocompatible ZnO nanoparticles,” CrystEngComm 14(3), 945–950 (2012).
[Crossref]

Zhou, F.

S. Wang, R. Gao, F. Zhou, and M. Selke, “Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy,” J. Mater. Chem. 14(4), 487–493 (2004).
[Crossref]

ACS Nano (1)

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, and G. Storm, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref]

Adv. Mater. (1)

H. M. Xiong, “ZnO nanoparticles applied to bioimaging and drug delivery,” Adv. Mater. 25(37), 5329–5335 (2013).
[Crossref]

Anal. Chim. Acta (1)

Z. Hu and C. Tong, “Synchronous fluorescence determination of DNA based on the interaction between methylene blue and DNA,” Anal. Chim. Acta 587(2), 187–193 (2007).
[Crossref]

Ann. N. Y. Acad. Sci. (1)

B. Chance, “Near-Infrared Images Using Continuous, Phase-Modulated, and Pulsed Light with Quantitation of Blood and Blood Oxygenationa,” Ann. N. Y. Acad. Sci. 838(1 ADVANCES IN O), 29–45 (1998).
[Crossref]

Appl. Opt. (3)

Bioinorg. Chem. Appl. (1)

J. Jiang, J. Pi, and J. Cai, “The advancing of zinc oxide nanoparticles for biomedical applications,” Bioinorg. Chem. Appl. 2018, 1–18 (2018).
[Crossref]

CrystEngComm (1)

L. H. Zhao, R. Zhang, J. Zhang, and S. Q. Sun, “Synthesis and characterization of biocompatible ZnO nanoparticles,” CrystEngComm 14(3), 945–950 (2012).
[Crossref]

Drug Discovery Today (1)

P. K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, and B. Vaidya, “Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications,” Drug Discovery Today 22(12), 1825–1834 (2017).
[Crossref]

Eur. J. Pharm. Biopharm. (1)

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref]

Expert Rev. Mol. Diagn. (1)

C. M. Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. K. Kumar, and M. V. P. Chowdary, “Raman spectroscopy of breast tissues,” Expert Rev. Mol. Diagn. 8(2), 149–166 (2008).
[Crossref]

J. Drug Delivery (1)

J. Conde, G. Doria, and P. Baptista, “Noble metal nanoparticles applications in cancer,” J. Drug Delivery 2012, 1–12 (2012).
[Crossref]

J. Mater. Chem. (1)

S. Wang, R. Gao, F. Zhou, and M. Selke, “Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy,” J. Mater. Chem. 14(4), 487–493 (2004).
[Crossref]

J. Photochem. Photobiol., B (4)

E. M. Tuite and J. M. Kelly, “New trends in photobiology: Photochemical interactions of methylene blue and analogues with DNA and other biological substrates,” J. Photochem. Photobiol., B 21(2-3), 103–124 (1993).
[Crossref]

Y. N. Konan, R. Gurny, and E. Allémann, “State of the art in the delivery of photosensitizers for photodynamic therapy,” J. Photochem. Photobiol., B 66(2), 89–106 (2002).
[Crossref]

M. N. Usacheva, M. C. Teichert, and M. A. Biel, “The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria,” J. Photochem. Photobiol., B 71(1-3), 87–98 (2003).
[Crossref]

N. M. Jukapli and S. Bagheri, “Recent developments on titania nanoparticle as photocatalytic cancer cells treatment,” J. Photochem. Photobiol., B 163, 421–430 (2016).
[Crossref]

Lancet (1)

K. Orth, A. Rück, A. Stanescu, and H. G. Beger, “Intraluminal treatment of inoperable oesophageal tumours by intralesional photodynamic therapy with methylene blue,” Lancet 345(8948), 519–520 (1995).
[Crossref]

Laser Photonics Rev. (1)

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 646–662 (2013).
[Crossref]

Materials (1)

Z. Y. Zhang and H. M. Xiong, “Photoluminescent ZnO nanoparticles and their biological applications,” Materials 8(6), 3101–3127 (2015).
[Crossref]

Micro Nano Lett. (1)

P. Hassanpour, Y. Panahi, A. Ebrahimi-Kalan, and A. Akbarzadeh, “Biomedical applications of aluminium oxide nanoparticles,” Micro Nano Lett. 13(9), 1227–1231 (2018).
[Crossref]

Mol. Imaging (1)

S. Gioux, H. S. Choi, and J. V. Frangioni, “Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation,” Mol. Imaging 9(5), 237–255 (2010).
[Crossref]

Nanomaterials (2)

S. Kim, S. Y. Lee, and H. J. Cho, “Doxorubicin-wrapped zinc oxide nanoclusters for the therapy of colorectal adenocarcinoma,” Nanomaterials 7(11), 354 (2017).
[Crossref]

M. Vinardell and M. Mitjans, “Antitumor activities of metal oxide nanoparticles,” Nanomaterials 5(2), 1004–1021 (2015).
[Crossref]

Otolaryngol.–Head Neck Surg. (1)

J. D. Meier, H. Xie, Y. Sun, N. Hatami, B. Poirier, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol.–Head Neck Surg. 142(6), 838–844 (2010).
[Crossref]

Photochem. Photobiol. (2)

K. J. Mellish, R. D. Cox, D. I. Vernon, J. Griffiths, and S. B. Brown, “In Vitro Photodynamic Activity of a Series of Methylene Blue Analogues,” Photochem. Photobiol. 75(4), 392–397 (2002).
[Crossref]

W. Tang, H. Xu, R. Kopelman, and M. A. Philbert, “Photodynamic Characterization and In Vitro Application of Methylene Blue-containing Nanoparticle Platforms,” Photochem. Photobiol. 81(2), 242–249 (2005).
[Crossref]

Photodiagn. Photodyn. Ther. (1)

J. P. Tardivo, A. Del Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, and M. S. Baptista, “Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications,” Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005).
[Crossref]

Radiol. Oncol. (1)

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
[Crossref]

Small (1)

S. Santra, C. Kaittanis, J. Grimm, and J. M. Perez, “Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging,” Small 5(16), 1862–1868 (2009).
[Crossref]

Spectrochim. Acta, Part A (1)

F. Pahang, P. Parvin, and A. Bavali, “Fluorescence quenching effects of carbon nano-structures (Graphene Oxide and Nano Diamond) coupled with Methylene Blue,” Spectrochim. Acta, Part A 229, 117888 (2020).
[Crossref]

Theranostics (1)

C. K. Lim, J. Shin, Y. D. Lee, J. Kim, K. S. Oh, S. H. Yuk, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic setup for right angle LIF experiment of (MB + NPs) suspensions and schematic of photon trajectory due to scattering, absorption, emission and reabsorption events.
Fig. 2.
Fig. 2. (a) UV-VIS spectral absorbance of MB and overlap of normalized absorption-emission spectra at a typical 50 µM concentration, (b) Spectral absorbance in terms of MB concentrations, Inset: absorbance versus concentration at typical peak 663 nm.
Fig. 3.
Fig. 3. (a) Emission wavelengths in terms of MB concentrations that indicates a notable red shift, inset: Fluorescence emissions due to various concentrations of MB solution (10–500µM), excited by diode laser line at 665 nm, (b) PL emission wavelengths in terms of MB concentration (10–200 µM), inset: PL spectra for various MB concentrations.
Fig. 4.
Fig. 4. (a) LIF spectra of fluorescence intensity versus $\textrm{Ti}{\textrm{O}_2}$ NP density at a certain MB concentration of 100 µM, inset: max intensity versus $\textrm{Ti}{\textrm{O}_2}$ density at the same MB concentration, and (b) Peak fluorescence wavelength in terms of $\textrm{Ti}{\textrm{O}_2}$ density.
Fig. 5.
Fig. 5. Fluorescence peak of (NP guests + MB) suspensions at certain MB concentrations (50, 100 and 200 µM) as a function of (a) $\textrm{Ti}{\textrm{O}_2}$, (b) $\textrm{ZnO}$, (c) $\textrm{A}{\textrm{l}_2}{\textrm{O}_3}$ NP densities ranging 0.5 - 2500 µg/cc. Note that the plateau does not appear in (MB + $\textrm{Ti}{\textrm{O}_2}$ NPs) suspension, whereas the lucid plateau is seen for the other suspensions of interest.
Fig. 6.
Fig. 6. Emission wavelength in terms of NP density in the case of various nanoscatterers 0.5 - 2500 µg/cc which benefit ∼ 25nm mean diameter suspended in typical 100 µM MB solution.
Fig. 7.
Fig. 7. ${\textrm{F}_0}/\textrm{F}$ ratio versus additive density according to linear Stern-Volmer quenching formalism for $\textrm{Ti}{\textrm{O}_2}$, $\textrm{ZnO}$ and $\textrm{A}{\textrm{l}_2}{\textrm{O}_3}$ in MB solution (100µM).
Fig. 8.
Fig. 8. Typical TEM images of a) (MB+$\textrm{ZnO}$), b) (MB+$\textrm{A}{\textrm{l}_2}{\textrm{O}_3}$).

Tables (1)

Tables Icon

Table 1. Quenching coefficients, spectral shifts and refractive indices of NPs of interest in MB suspension.