Abstract

A GaAs-based subwavelength grating on a thick (∼3/4*λ at 1300 nm) AlOx layer is designed, fabricated, and characterized. The AlOx layer as a low-index medium is oxidized from a 640-nm Al0.9Ga0.1As layer. The layer contraction of the Al0.9Ga0.1As layer after wet oxidation to AlOx is 4.9%. We fabricated GaAs-based subwavelength gratings on the AlOx layer showing a high reflectivity of 90% in the 1300-nm wavelength range, consistent with the simulation results. Such GaAs-based subwavelength gratings can be used as high-contrast grating mirrors for narrow-linewidth VCSELs, improving the mechanical stability and simplifying the device fabrication.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-speed characteristics of vertical cavity surface emitting lasers and resonant-cavity-enhanced photodetectors based on intracavity-contacted structure

Y. M. Song, B. K. Jeong, B. H. Na, K. S. Chang, J. S. Yu, and Y. T. Lee
Appl. Opt. 48(25) F11-F17 (2009)

Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings

E. Haglund, J.S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan
Opt. Express 24(3) 1999-2005 (2016)

Gigahertz modulation of GaAs-based bipolar cascade vertical cavity surface-emitting lasers

W. J. Siskaninetz, J. E. Ehret, J. D. Albrecht, R. G. Bedford, T. R. Nelson, Jr., and J. A. Lott
Opt. Lett. 32(2) 136-138 (2007)

References

  • View by:
  • |
  • |
  • |

  1. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24(12), 4502–4513 (2006).
    [Crossref]
  2. R. Michalzik, “VCSELs - fundamentals, technology and applications of vertical-cavity surface-emitting lasers,” Springer Series in Optical Sciences, 166 (2013).
  3. A. Liu, P. Wolf, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for data communication and sensing,” Photonics Res. 7(2), 121–136 (2019).
    [Crossref]
  4. A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1552–1567 (2011).
    [Crossref]
  5. H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
    [Crossref]
  6. L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
    [Crossref]
  7. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
    [Crossref]
  8. P. M. Seiler, G. Ronniger, U. Troppenz, A. Sigmund, M. Moehrle, A. Peczek, and L. Zimmermann, “Novel concept for VCSEL enhanced silicon photonic coherent transceiver,” AIP Adv. 9(10), 105114 (2019).
    [Crossref]
  9. S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
    [Crossref]
  10. D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
    [Crossref]
  11. M.-C. Amann and W. Hofmann, “InP-based long-wavelength VCSELs and VCSEL Arrays,” IEEE J. Sel. Top. Quantum Electron. 15(3), 861–868 (2009).
    [Crossref]
  12. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
    [Crossref]
  13. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
    [Crossref]
  14. P. Debernardi, R. Orta, T. Gründl, and M.-C. Amann, “3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 49(2), 137–145 (2013).
    [Crossref]
  15. A. Liu, W. Hofmann, and D. Bimberg, “2D analysis of finite size high-contrast gratings for applications in VCSELs,” Opt. Express 22(10), 11804–11811 (2014).
    [Crossref]
  16. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
    [Crossref]
  17. T.-C. Chang, K.-B. Hong, S.-Y. Kuo, and T.-C. Lu, “Demonstration of polarization control GaN-based micro-cavity lasers using a rigid high-contrast grating reflector,” Sci. Rep. 9(1), 13055 (2019).
    [Crossref]
  18. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
    [Crossref]
  19. E. Haglund, J. S. Gustavsson, J. Bengtsson, Å Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24(3), 1999–2005 (2016).
    [Crossref]
  20. M. Gebski, M. Dems, J. Chen, Q. Wang, D. H. Zhang, and T. Czyszanowski, “Optical properties of GaAs/AlOx and Si/SiOx high contrast gratings designed for 980-nm VCSELs,” IEEE Trans. Nanotechnol. 13(3), 418–424 (2014).
    [Crossref]
  21. S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
    [Crossref]
  22. T. Ansbæk, I.-S. Chung, E. S. Semenova, and K. Yvind, “2013-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
    [Crossref]
  23. K. Li, C. Chase, P. Qiao, and C. J. Chang-Hasnain, “Widely tunable 1060-nm VCSEL with high-contrast grating mirror,” Opt. Express 25(10), 11844–11854 (2017).
    [Crossref]
  24. W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
    [Crossref]
  25. S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 µm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
    [Crossref]
  26. J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23(3), 2512–2523 (2015).
    [Crossref]
  27. G. Almuneau, M. Condé, O. Gauthier-Lafaye, V. Bardinal, and C. Fontaine, “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack,” J. Opt. 13(1), 015505 (2011).
    [Crossref]
  28. W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
    [Crossref]
  29. I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photonics Technol. Lett. 20(2), 105–107 (2008).
    [Crossref]
  30. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
    [Crossref]
  31. K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
    [Crossref]
  32. R. D. Twesten, D. M. Follstaedt, K. D. Choquette, and R. P. Schneider, “Microstructure of laterally oxidized AlxGa1-xAs layers in vertical-cavity lasers,” Appl. Phys. Lett. 69(1), 19–21 (1996).
    [Crossref]
  33. A. Liu, P. Wolf, J.-H. Schulze, and D. Bimberg, “Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer,” IEEE Photonics J. 8(1), 1 (2016).
    [Crossref]
  34. K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, and T. J. Drummond, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69(10), 1385–1387 (1996).
    [Crossref]
  35. A. Liu, W. H. E. Hofmann, and D. H. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE J. Quantum Electron. 51(1), 1–8 (2015).
    [Crossref]
  36. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
    [Crossref]
  37. Y. Horie, A. Arbabi, S. Han, and A. Faraon, “High resolution on-chip optical filter array based on double subwavelength grating reflectors,” Opt. Express 23(23), 29848–29854 (2015).
    [Crossref]
  38. K. Li, Y. Rao, C. Chase, W. Yang, and C. J. Chang-Hasnain, “Monolithic high-contrast metastructure for beam-shaping VCSELs,” Optica 5(1), 10–13 (2018).
    [Crossref]
  39. D. W. Peters, S. A. Kemme, and G. R. Hadley, “Effect of finite grating, waveguide width, and end-facet geometry on resonant subwavelength grating reflectivity,” J. Opt. Soc. Am. A 21(6), 981–987 (2004).
    [Crossref]
  40. B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light: Sci. Appl. 3(1), e135 (2014).
    [Crossref]

2019 (4)

A. Liu, P. Wolf, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for data communication and sensing,” Photonics Res. 7(2), 121–136 (2019).
[Crossref]

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

P. M. Seiler, G. Ronniger, U. Troppenz, A. Sigmund, M. Moehrle, A. Peczek, and L. Zimmermann, “Novel concept for VCSEL enhanced silicon photonic coherent transceiver,” AIP Adv. 9(10), 105114 (2019).
[Crossref]

T.-C. Chang, K.-B. Hong, S.-Y. Kuo, and T.-C. Lu, “Demonstration of polarization control GaN-based micro-cavity lasers using a rigid high-contrast grating reflector,” Sci. Rep. 9(1), 13055 (2019).
[Crossref]

2018 (1)

2017 (1)

2016 (2)

A. Liu, P. Wolf, J.-H. Schulze, and D. Bimberg, “Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

E. Haglund, J. S. Gustavsson, J. Bengtsson, Å Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24(3), 1999–2005 (2016).
[Crossref]

2015 (4)

J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23(3), 2512–2523 (2015).
[Crossref]

A. Liu, W. H. E. Hofmann, and D. H. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE J. Quantum Electron. 51(1), 1–8 (2015).
[Crossref]

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Y. Horie, A. Arbabi, S. Han, and A. Faraon, “High resolution on-chip optical filter array based on double subwavelength grating reflectors,” Opt. Express 23(23), 29848–29854 (2015).
[Crossref]

2014 (5)

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light: Sci. Appl. 3(1), e135 (2014).
[Crossref]

A. Liu, W. Hofmann, and D. Bimberg, “2D analysis of finite size high-contrast gratings for applications in VCSELs,” Opt. Express 22(10), 11804–11811 (2014).
[Crossref]

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

M. Gebski, M. Dems, J. Chen, Q. Wang, D. H. Zhang, and T. Czyszanowski, “Optical properties of GaAs/AlOx and Si/SiOx high contrast gratings designed for 980-nm VCSELs,” IEEE Trans. Nanotechnol. 13(3), 418–424 (2014).
[Crossref]

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
[Crossref]

2013 (3)

T. Ansbæk, I.-S. Chung, E. S. Semenova, and K. Yvind, “2013-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

P. Debernardi, R. Orta, T. Gründl, and M.-C. Amann, “3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 49(2), 137–145 (2013).
[Crossref]

2011 (3)

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1552–1567 (2011).
[Crossref]

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

G. Almuneau, M. Condé, O. Gauthier-Lafaye, V. Bardinal, and C. Fontaine, “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack,” J. Opt. 13(1), 015505 (2011).
[Crossref]

2010 (3)

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
[Crossref]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

2009 (1)

M.-C. Amann and W. Hofmann, “InP-based long-wavelength VCSELs and VCSEL Arrays,” IEEE J. Sel. Top. Quantum Electron. 15(3), 861–868 (2009).
[Crossref]

2008 (2)

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
[Crossref]

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photonics Technol. Lett. 20(2), 105–107 (2008).
[Crossref]

2007 (3)

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 µm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

2006 (1)

2004 (2)

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

D. W. Peters, S. A. Kemme, and G. R. Hadley, “Effect of finite grating, waveguide width, and end-facet geometry on resonant subwavelength grating reflectivity,” J. Opt. Soc. Am. A 21(6), 981–987 (2004).
[Crossref]

1997 (1)

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

1996 (2)

R. D. Twesten, D. M. Follstaedt, K. D. Choquette, and R. P. Schneider, “Microstructure of laterally oxidized AlxGa1-xAs layers in vertical-cavity lasers,” Appl. Phys. Lett. 69(1), 19–21 (1996).
[Crossref]

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, and T. J. Drummond, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69(10), 1385–1387 (1996).
[Crossref]

1982 (1)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

Almuneau, G.

G. Almuneau, M. Condé, O. Gauthier-Lafaye, V. Bardinal, and C. Fontaine, “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack,” J. Opt. 13(1), 015505 (2011).
[Crossref]

Amann, M.-C.

P. Debernardi, R. Orta, T. Gründl, and M.-C. Amann, “3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 49(2), 137–145 (2013).
[Crossref]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

M.-C. Amann and W. Hofmann, “InP-based long-wavelength VCSELs and VCSEL Arrays,” IEEE J. Sel. Top. Quantum Electron. 15(3), 861–868 (2009).
[Crossref]

Ansbæk, T.

T. Ansbæk, I.-S. Chung, E. S. Semenova, and K. Yvind, “2013-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

Arbabi, A.

Ashby, C. I. H.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

Bardinal, V.

G. Almuneau, M. Condé, O. Gauthier-Lafaye, V. Bardinal, and C. Fontaine, “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack,” J. Opt. 13(1), 015505 (2011).
[Crossref]

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Benbakir, B.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 µm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

Bengtsson, J.

Bimberg, D.

A. Liu, P. Wolf, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for data communication and sensing,” Photonics Res. 7(2), 121–136 (2019).
[Crossref]

A. Liu, P. Wolf, J.-H. Schulze, and D. Bimberg, “Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

A. Liu, W. Hofmann, and D. Bimberg, “2D analysis of finite size high-contrast gratings for applications in VCSELs,” Opt. Express 22(10), 11804–11811 (2014).
[Crossref]

Bimberg, D. H.

A. Liu, W. H. E. Hofmann, and D. H. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE J. Quantum Electron. 51(1), 1–8 (2015).
[Crossref]

Blum, O.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

Böhm, G.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

Boutami, S.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 µm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

Brodbeck, S.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light: Sci. Appl. 3(1), e135 (2014).
[Crossref]

Budker, D.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Chadha, A.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Chang, T.-C.

T.-C. Chang, K.-B. Hong, S.-Y. Kuo, and T.-C. Lu, “Demonstration of polarization control GaN-based micro-cavity lasers using a rigid high-contrast grating reflector,” Sci. Rep. 9(1), 13055 (2019).
[Crossref]

Chang-Hasnain, C. J.

Chase, C.

Chelnokov, A.

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photonics Technol. Lett. 20(2), 105–107 (2008).
[Crossref]

Chen, H.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Chen, J.

M. Gebski, M. Dems, J. Chen, Q. Wang, D. H. Zhang, and T. Czyszanowski, “Optical properties of GaAs/AlOx and Si/SiOx high contrast gratings designed for 980-nm VCSELs,” IEEE Trans. Nanotechnol. 13(3), 418–424 (2014).
[Crossref]

Choquette, K. D.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

R. D. Twesten, D. M. Follstaedt, K. D. Choquette, and R. P. Schneider, “Microstructure of laterally oxidized AlxGa1-xAs layers in vertical-cavity lasers,” Appl. Phys. Lett. 69(1), 19–21 (1996).
[Crossref]

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, and T. J. Drummond, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69(10), 1385–1387 (1996).
[Crossref]

Chua, S.-L.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Chui, H. C.

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, and T. J. Drummond, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69(10), 1385–1387 (1996).
[Crossref]

Chung, I.-S.

T. Ansbæk, I.-S. Chung, E. S. Semenova, and K. Yvind, “2013-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photonics Technol. Lett. 20(2), 105–107 (2008).
[Crossref]

Chuwongin, S.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Condé, M.

G. Almuneau, M. Condé, O. Gauthier-Lafaye, V. Bardinal, and C. Fontaine, “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack,” J. Opt. 13(1), 015505 (2011).
[Crossref]

Cruel, J.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Czyszanowski, T.

M. Gebski, M. Dems, J. Chen, Q. Wang, D. H. Zhang, and T. Czyszanowski, “Optical properties of GaAs/AlOx and Si/SiOx high contrast gratings designed for 980-nm VCSELs,” IEEE Trans. Nanotechnol. 13(3), 418–424 (2014).
[Crossref]

Debernardi, P.

P. Debernardi, R. Orta, T. Gründl, and M.-C. Amann, “3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 49(2), 137–145 (2013).
[Crossref]

Dems, M.

M. Gebski, M. Dems, J. Chen, Q. Wang, D. H. Zhang, and T. Czyszanowski, “Optical properties of GaAs/AlOx and Si/SiOx high contrast gratings designed for 980-nm VCSELs,” IEEE Trans. Nanotechnol. 13(3), 418–424 (2014).
[Crossref]

Deng, H.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light: Sci. Appl. 3(1), e135 (2014).
[Crossref]

Drummond, T. J.

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, and T. J. Drummond, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69(10), 1385–1387 (1996).
[Crossref]

Fan, S.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Faraon, A.

Fattal, D.

E. Haglund, J. S. Gustavsson, J. Bengtsson, Å Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24(3), 1999–2005 (2016).
[Crossref]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Ferrara, J.

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Follstaedt, D. M.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

R. D. Twesten, D. M. Follstaedt, K. D. Choquette, and R. P. Schneider, “Microstructure of laterally oxidized AlxGa1-xAs layers in vertical-cavity lasers,” Appl. Phys. Lett. 69(1), 19–21 (1996).
[Crossref]

Fontaine, C.

G. Almuneau, M. Condé, O. Gauthier-Lafaye, V. Bardinal, and C. Fontaine, “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack,” J. Opt. 13(1), 015505 (2011).
[Crossref]

Gauthier-Lafaye, O.

G. Almuneau, M. Condé, O. Gauthier-Lafaye, V. Bardinal, and C. Fontaine, “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack,” J. Opt. 13(1), 015505 (2011).
[Crossref]

Gebski, M.

M. Gebski, M. Dems, J. Chen, Q. Wang, D. H. Zhang, and T. Czyszanowski, “Optical properties of GaAs/AlOx and Si/SiOx high contrast gratings designed for 980-nm VCSELs,” IEEE Trans. Nanotechnol. 13(3), 418–424 (2014).
[Crossref]

Geib, K. M.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, and T. J. Drummond, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69(10), 1385–1387 (1996).
[Crossref]

Gilet, P.

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photonics Technol. Lett. 20(2), 105–107 (2008).
[Crossref]

Graham, L. A.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Grasse, C.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

Gronenborn, S.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Gründl, T.

P. Debernardi, R. Orta, T. Gründl, and M.-C. Amann, “3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 49(2), 137–145 (2013).
[Crossref]

Gu, X.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Gudde, R.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Guenter, J.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Gustavsson, J. S.

Hadley, G. R.

Haglund, Å

Haglund, E.

Hammons, B. E.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, and T. J. Drummond, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69(10), 1385–1387 (1996).
[Crossref]

Han, S.

Hawkins, B.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Hawthorne, B.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

Herper, M.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Higuchi, Y.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Höfling, S.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light: Sci. Appl. 3(1), e135 (2014).
[Crossref]

Hofmann, W.

A. Liu, W. Hofmann, and D. Bimberg, “2D analysis of finite size high-contrast gratings for applications in VCSELs,” Opt. Express 22(10), 11804–11811 (2014).
[Crossref]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

M.-C. Amann and W. Hofmann, “InP-based long-wavelength VCSELs and VCSEL Arrays,” IEEE J. Sel. Top. Quantum Electron. 15(3), 861–868 (2009).
[Crossref]

Hofmann, W. H. E.

A. Liu, W. H. E. Hofmann, and D. H. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE J. Quantum Electron. 51(1), 1–8 (2015).
[Crossref]

Hollberg, L.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

Hong, K.-B.

T.-C. Chang, K.-B. Hong, S.-Y. Kuo, and T.-C. Lu, “Demonstration of polarization control GaN-based micro-cavity lasers using a rigid high-contrast grating reflector,” Sci. Rep. 9(1), 13055 (2019).
[Crossref]

Horie, Y.

Hou, H. Q.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, and T. J. Drummond, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69(10), 1385–1387 (1996).
[Crossref]

Hsu, C. W.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Hull, R.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

Inoue, S.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
[Crossref]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Johnson, S. G.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Kamp, M.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light: Sci. Appl. 3(1), e135 (2014).
[Crossref]

Karagodsky, V.

Kasahara, D.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Kashino, J.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
[Crossref]

Kawamata, J.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Kelly, D. Q.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Kemme, S. A.

Kitching, J.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

Knappe, S.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

Kolb, J.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Kosugi, T.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Koyama, F.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
[Crossref]

F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24(12), 4502–4513 (2006).
[Crossref]

Kuo, S.-Y.

T.-C. Chang, K.-B. Hong, S.-Y. Kuo, and T.-C. Lu, “Demonstration of polarization control GaN-based micro-cavity lasers using a rigid high-contrast grating reflector,” Sci. Rep. 9(1), 13055 (2019).
[Crossref]

Larsson, A.

Leclercq, J.-L.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 µm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

Lee, J.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Li, K.

Liew, L.-A.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

Liu, A.

A. Liu, P. Wolf, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for data communication and sensing,” Photonics Res. 7(2), 121–136 (2019).
[Crossref]

A. Liu, P. Wolf, J.-H. Schulze, and D. Bimberg, “Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

A. Liu, W. H. E. Hofmann, and D. H. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE J. Quantum Electron. 51(1), 1–8 (2015).
[Crossref]

A. Liu, W. Hofmann, and D. Bimberg, “2D analysis of finite size high-contrast gratings for applications in VCSELs,” Opt. Express 22(10), 11804–11811 (2014).
[Crossref]

Liu, V.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Lott, J. A.

A. Liu, P. Wolf, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for data communication and sensing,” Photonics Res. 7(2), 121–136 (2019).
[Crossref]

Lu, T.-C.

T.-C. Chang, K.-B. Hong, S.-Y. Kuo, and T.-C. Lu, “Demonstration of polarization control GaN-based micro-cavity lasers using a rigid high-contrast grating reflector,” Sci. Rep. 9(1), 13055 (2019).
[Crossref]

Ma, Z.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Magnusson, R.

Martinez, M.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Mathes, D.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

Matsumura, H.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Matsutani, A.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
[Crossref]

Melgar, A.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Michalzik, R.

R. Michalzik, “VCSELs - fundamentals, technology and applications of vertical-cavity surface-emitting lasers,” Springer Series in Optical Sciences, 166 (2013).

Miller, M.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Miyashita, T.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
[Crossref]

Moehrle, M.

P. M. Seiler, G. Ronniger, U. Troppenz, A. Sigmund, M. Moehrle, A. Peczek, and L. Zimmermann, “Novel concept for VCSEL enhanced silicon photonic coherent transceiver,” AIP Adv. 9(10), 105114 (2019).
[Crossref]

Moench, H.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Moreland, J.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

Morita, D.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Mørk, J.

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photonics Technol. Lett. 20(2), 105–107 (2008).
[Crossref]

Mukai, T.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Müller, M.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

Nakagawa, K.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Ohtsuki, H.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
[Crossref]

Orta, R.

P. Debernardi, R. Orta, T. Gründl, and M.-C. Amann, “3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 49(2), 137–145 (2013).
[Crossref]

Peczek, A.

P. M. Seiler, G. Ronniger, U. Troppenz, A. Sigmund, M. Moehrle, A. Peczek, and L. Zimmermann, “Novel concept for VCSEL enhanced silicon photonic coherent transceiver,” AIP Adv. 9(10), 105114 (2019).
[Crossref]

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Peters, D. W.

Qiao, P.

Rao, Y.

K. Li, Y. Rao, C. Chase, W. Yang, and C. J. Chang-Hasnain, “Monolithic high-contrast metastructure for beam-shaping VCSELs,” Optica 5(1), 10–13 (2018).
[Crossref]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

Romalis, M.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Ronniger, G.

P. M. Seiler, G. Ronniger, U. Troppenz, A. Sigmund, M. Moehrle, A. Peczek, and L. Zimmermann, “Novel concept for VCSEL enhanced silicon photonic coherent transceiver,” AIP Adv. 9(10), 105114 (2019).
[Crossref]

Schneider, C.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light: Sci. Appl. 3(1), e135 (2014).
[Crossref]

Schneider, R. P.

R. D. Twesten, D. M. Follstaedt, K. D. Choquette, and R. P. Schneider, “Microstructure of laterally oxidized AlxGa1-xAs layers in vertical-cavity lasers,” Appl. Phys. Lett. 69(1), 19–21 (1996).
[Crossref]

Schulze, J.-H.

A. Liu, P. Wolf, J.-H. Schulze, and D. Bimberg, “Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

Schwindt, P. D. D.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

Sedgwick, F. G.

Seiler, P. M.

P. M. Seiler, G. Ronniger, U. Troppenz, A. Sigmund, M. Moehrle, A. Peczek, and L. Zimmermann, “Novel concept for VCSEL enhanced silicon photonic coherent transceiver,” AIP Adv. 9(10), 105114 (2019).
[Crossref]

Semenova, E. S.

T. Ansbæk, I.-S. Chung, E. S. Semenova, and K. Yvind, “2013-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

Seo, J.-H.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Shah, V.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

Shaw, E.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Shokooh-Saremi, M.

Shuai, Y.-C.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Sigmund, A.

P. M. Seiler, G. Ronniger, U. Troppenz, A. Sigmund, M. Moehrle, A. Peczek, and L. Zimmermann, “Novel concept for VCSEL enhanced silicon photonic coherent transceiver,” AIP Adv. 9(10), 105114 (2019).
[Crossref]

Smeets, M.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Soljacic, M.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Sorin, W.

Tan, M.

Tatum, J. A.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Troppenz, U.

P. M. Seiler, G. Ronniger, U. Troppenz, A. Sigmund, M. Moehrle, A. Peczek, and L. Zimmermann, “Novel concept for VCSEL enhanced silicon photonic coherent transceiver,” AIP Adv. 9(10), 105114 (2019).
[Crossref]

Twesten, R. D.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

R. D. Twesten, D. M. Follstaedt, K. D. Choquette, and R. P. Schneider, “Microstructure of laterally oxidized AlxGa1-xAs layers in vertical-cavity lasers,” Appl. Phys. Lett. 69(1), 19–21 (1996).
[Crossref]

Viktorovitch, P.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 µm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

Wang, K. X.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Wang, Q.

M. Gebski, M. Dems, J. Chen, Q. Wang, D. H. Zhang, and T. Czyszanowski, “Optical properties of GaAs/AlOx and Si/SiOx high contrast gratings designed for 980-nm VCSELs,” IEEE Trans. Nanotechnol. 13(3), 418–424 (2014).
[Crossref]

Wang, Z.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light: Sci. Appl. 3(1), e135 (2014).
[Crossref]

Weigl, A.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

Wolf, P.

A. Liu, P. Wolf, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for data communication and sensing,” Photonics Res. 7(2), 121–136 (2019).
[Crossref]

A. Liu, P. Wolf, J.-H. Schulze, and D. Bimberg, “Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

Yang, H.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Yang, W.

Yvind, K.

T. Ansbæk, I.-S. Chung, E. S. Semenova, and K. Yvind, “2013-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

Zhang, B.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light: Sci. Appl. 3(1), e135 (2014).
[Crossref]

Zhang, D. H.

M. Gebski, M. Dems, J. Chen, Q. Wang, D. H. Zhang, and T. Czyszanowski, “Optical properties of GaAs/AlOx and Si/SiOx high contrast gratings designed for 980-nm VCSELs,” IEEE Trans. Nanotechnol. 13(3), 418–424 (2014).
[Crossref]

Zhao, D.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Zhen, B.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Zhou, W.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Zhu, L.

Zimmermann, L.

P. M. Seiler, G. Ronniger, U. Troppenz, A. Sigmund, M. Moehrle, A. Peczek, and L. Zimmermann, “Novel concept for VCSEL enhanced silicon photonic coherent transceiver,” AIP Adv. 9(10), 105114 (2019).
[Crossref]

AIP Adv. (1)

P. M. Seiler, G. Ronniger, U. Troppenz, A. Sigmund, M. Moehrle, A. Peczek, and L. Zimmermann, “Novel concept for VCSEL enhanced silicon photonic coherent transceiver,” AIP Adv. 9(10), 105114 (2019).
[Crossref]

Appl. Phys. Express (1)

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Appl. Phys. Lett. (4)

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 µm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

R. D. Twesten, D. M. Follstaedt, K. D. Choquette, and R. P. Schneider, “Microstructure of laterally oxidized AlxGa1-xAs layers in vertical-cavity lasers,” Appl. Phys. Lett. 69(1), 19–21 (1996).
[Crossref]

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, and T. J. Drummond, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69(10), 1385–1387 (1996).
[Crossref]

IEEE J. Quantum Electron. (3)

A. Liu, W. H. E. Hofmann, and D. H. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE J. Quantum Electron. 51(1), 1–8 (2015).
[Crossref]

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

P. Debernardi, R. Orta, T. Gründl, and M.-C. Amann, “3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 49(2), 137–145 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

M.-C. Amann and W. Hofmann, “InP-based long-wavelength VCSELs and VCSEL Arrays,” IEEE J. Sel. Top. Quantum Electron. 15(3), 861–868 (2009).
[Crossref]

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1552–1567 (2011).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[Crossref]

IEEE Photonics J. (2)

A. Liu, P. Wolf, J.-H. Schulze, and D. Bimberg, “Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photonics J. 2(3), 415–422 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photonics Technol. Lett. 20(2), 105–107 (2008).
[Crossref]

T. Ansbæk, I.-S. Chung, E. S. Semenova, and K. Yvind, “2013-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 25(4), 365–367 (2013).
[Crossref]

IEEE Trans. Nanotechnol. (1)

M. Gebski, M. Dems, J. Chen, Q. Wang, D. H. Zhang, and T. Czyszanowski, “Optical properties of GaAs/AlOx and Si/SiOx high contrast gratings designed for 980-nm VCSELs,” IEEE Trans. Nanotechnol. 13(3), 418–424 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

G. Almuneau, M. Condé, O. Gauthier-Lafaye, V. Bardinal, and C. Fontaine, “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack,” J. Opt. 13(1), 015505 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53(9), 090306 (2014).
[Crossref]

Light: Sci. Appl. (1)

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light: Sci. Appl. 3(1), e135 (2014).
[Crossref]

Nat. Photonics (2)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Nat. Phys. (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Nature (1)

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Opt. Express (7)

Optica (1)

Photonics Res. (1)

A. Liu, P. Wolf, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for data communication and sensing,” Photonics Res. 7(2), 121–136 (2019).
[Crossref]

Proc. SPIE (2)

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10938, 109380E (2019).
[Crossref]

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Prog. Quantum Electron. (1)

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Sci. Rep. (1)

T.-C. Chang, K.-B. Hong, S.-Y. Kuo, and T.-C. Lu, “Demonstration of polarization control GaN-based micro-cavity lasers using a rigid high-contrast grating reflector,” Sci. Rep. 9(1), 13055 (2019).
[Crossref]

Other (1)

R. Michalzik, “VCSELs - fundamentals, technology and applications of vertical-cavity surface-emitting lasers,” Springer Series in Optical Sciences, 166 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the HCG. The grating period is Λ; a is the width of the grating bar; the duty cycle (DC) is defined as a/Λ; and tg is the thickness of the grating. (b) SEM image of the HCG.
Fig. 2.
Fig. 2. (a) Reflectivity contour of the HCG as a function of normalized thickness (tg/Λ) and normalized wavelength (λ/Λ) under normal incidence at DC = 0.55. (b) Reflectivity contour of the HCG as a function of wavelength and thickness of the AlOx layer.
Fig. 3.
Fig. 3. Schematic of fabrication process of the HCG. PMMA, poly methyl methacrylate; EBL, electron beam lithography; RIE, reactive ion etching; ICP, inductively coupled plasma.
Fig. 4.
Fig. 4. SEM image of the cross section of a test structure for measuring the layer contraction and oxidation rate.
Fig. 5.
Fig. 5. Simulated and experimental results of the HCG (the measured width of the HCG bars is a = 290 nm). The simulated reflectivity spectrum is calculated by the 2D-FDTD method for a finite-size HCG.
Fig. 6.
Fig. 6. (a) Reflectivity spectra of the HCG with plane incident waves with different incident angles ($\varphi$); (b) angular dependence of HCG reflectivity for plane incident waves.