Abstract

We report an efficient and novel method for generating high-peak-power 1.7 µm laser pulses by cascaded optical parametric oscillation (OPO) and stimulated Raman scattering (SRS). The 1064 nm fundamental wave was first converted to 1535 nm by the KTA OPO, and further extended to 1.7 µm by a SRS process. The configuration of OPO + SRS can provide high-intensity pumping light for subsequent Raman conversion, and allows for better wavelength expansibility benefitting from the non-phase-matching requirement of SRS. Two types of Raman conversion using the low-frequency Raman shift in KY(WO4)2 and high-frequency Raman shift in YVO4 were further studied. Up to the 8th-order cascaded KY(WO4)2 Raman laser (KRL) using the high gain 87 cm−1 Raman mode and a YVO4 Raman laser (YRL) using the 890 cm−1 Raman mode emitting at 1.7 µm were realized, respectively. The output wavelengths at 1556, 1577, 1599, 1622, 1646, 1670, 1695, 1720 nm and the output wavelength at 1778 nm were observed in the KRL and YRL, respectively. The maximum total average output powers of 1.26 W and 1.05 W, minimum pulse widths of 8.4 and 24 ns and maximum pulse peak powers of 33.3 kW and 9.4 kW were obtained respectively from the KRL and YRL, enabling the 1.7 µm laser source to have practical applicability in medical imaging, industrial processing, and mid-infrared laser generation.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A high-peak-power orthogonally-polarized multi-wavelength laser at 1.6-1.7 µm based on the cascaded nonlinear optical frequency conversion

Haiwei Chen, Haitao Huang, Shiqiang Wang, and Deyuan Shen
Opt. Express 27(17) 24857-24865 (2019)

Designable cascaded nonlinear optical frequency conversion integrating multiple nonlinear interactions in two KTiOAsO4 crystals

Haitao Huang, Hui Wang, Shiqiang Wang, and Deyuan Shen
Opt. Express 26(2) 642-650 (2018)

Efficient high-peak-power diode-pumped actively Q-switched Nd:YAG/YVO4 intracavity Raman laser

Kuan-Wei Su, Ya-Ting Chang, and Yung-Fu Chen
Appl. Opt. 47(35) 6675-6679 (2008)

References

  • View by:
  • |
  • |
  • |

  1. H. Barry, L. Corner, and G. Hancock, “Cross sections in the 2ν5 band of formaldehyde studied by cavity enhanced absorption spectroscopy near 1.76 µm,” Phys. Chem. Chem. Phys. 4(3), 445–450 (2002).
    [Crossref]
  2. P. Chambers, E. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
    [Crossref]
  3. M. Tanaka, M. Hirano, K. Murashima, H. Obi, R. Yamaguchi, and T. Hasegawa, “1.7-µm spectroscopic spectral domain optical coherence tomography for imaging lipid distribution within blood vessel,” Opt. Express 23(5), 6645–6655 (2015).
    [Crossref]
  4. S. P. Chong, C. W. Merkle, and D. F. Cooke, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 µm optical coherence tomography,” Opt. Lett. 40(21), 4911 (2015).
    [Crossref]
  5. Y. Li, N. T. Sudol, Y. Miao, J. C. Jing, J. Zhu, F. Lane, and Z. Chen, “1.7 micron optical coherence tomography for vaginal tissue characterization in vivo,” Lasers Surg. Med. 51(2), 120–126 (2019).
    [Crossref]
  6. E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, and C. S. Kim, “Spectrally sampled OTC imaging based on 1.7 µm continuous-wave supercontinuum source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1200–1208 (2012).
    [Crossref]
  7. N. M. Htun, Y. C. Chen, and B. Lim, “Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques,” Nat. Commun. 8(1), 75 (2017).
    [Crossref]
  8. D. Chai, G. Chaudhary, and M. S. Eric Mikula, “In vivo femtosecond laser subsurface scleral treatment in rabbit eyes,” Lasers Surg. Med. 42(7), 647–651 (2010).
    [Crossref]
  9. M. Muniyappa, “Glycosylation as a marker for inflammatory arthritis,” Cancer Biomarkers 14(1), 17–28 (2014).
    [Crossref]
  10. R. S. Quimby, L. B. Shaw, and J. S. Sanghera, “Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
    [Crossref]
  11. H. Jelínková, M. E. Doroshenko, and M. Jelínek, “Dysprosium-doped PbGa2S4 laser generating at 4.3 µm directly pumped by 1.7 µm laser diode,” Opt. Lett. 38(16), 3040 (2013).
    [Crossref]
  12. D. Novoa, J. C. Travers, and M. Cassataro, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25(7), 7637 (2017).
    [Crossref]
  13. L. Galecki, M. Eichhorn, and W. Zendzian, “Pulsed 1.645 µm Er3+:YAG laser with increased average output power and diffraction limited beam quality,” Laser Phys. Lett. 10(10), 105813 (2013).
    [Crossref]
  14. C. Larat, M. Schwarz, and E. Lallier, “120mJ Q-switched Er:YAG laser at 1645 nm,” Opt. Express 22(5), 4861–4866 (2014).
    [Crossref]
  15. A. Z. Li, M. Zhang, X. Wang, S. B. Wang, B. G. Guo, and A. Li, “Directly Pumped Ho3+-Doped Microspheres Lasing at 2 µm,” IEEE Photonics Technol. Lett. 31(16), 1366–1368 (2019).
    [Crossref]
  16. H. Huang, D. Shen, and J. Zhang, “Q-switched mode locking of a fiber laser resonantly pumped Er:YAG ceramic laser at 1645 nm using graphene as saturable absorber,” J. Nonlinear Opt. Phys. Mater. 24(01), 1550001 (2015).
    [Crossref]
  17. S. Rostami, R. A. Alexander, V. Azzurra, and M. Sheik-Bahae, “Observation of optical refrigeration in a holmium-doped crystal,” Photonics Res. 7(4), 445–451 (2019).
    [Crossref]
  18. P. Fjodorow, O. Hellmig, and V. M. Baev, “A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 µm for intracavity absorption spectroscopy,” Appl. Phys. B 124(4), 62 (2018).
    [Crossref]
  19. A. V. Kir’yanov, Y. O. Barmenkov, I. L. Villegas-Garcia, J. L. Cruz, and M. V. Andres, “Highly Efficient Holmium-Doped All-Fiber 2.07-µm Laser Pumped by Ytterbium-Doped Fiber Laser at 1.13 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–8 (2018).
    [Crossref]
  20. A. Lin, J. He, H. Zhan, A. D. Zhang, and A. X. Lin, “Study on 2.0 µm fluorescence of Ho-doped water-free fluorotellurite glasses,” Opt. Mater. 35(22), 2573–2576 (2013).
    [Crossref]
  21. S. V. Firstov, S. V. Alyshev, K. E. Riumkin, M. A. Melkumov, O. I. Medvedkov, and E. M. Dianov, “Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 µm,” Opt. Lett. 40(18), 4360–4363 (2015).
    [Crossref]
  22. L. P. Wang, J. K. Cao, and Y. Lu, “In situ instant generation of an ultrabroadband near-infrared emission center in bismuth-doped borosilicate glasses via a femtosecond laser,” Photonics Res. 7(3), 300–310 (2019).
    [Crossref]
  23. M. Sabra, B. Leconte, R. Dauliat, D. Darwich, T. Tiess, A. Schwuchow, R. Jamier, G. Humbert, and K. Wondraczek, “Widely tunable Q-switched dual-wavelength synchronous-pulsed Tm-doped fiber laser emitting in the 2 µm region,” Opt. Lett. 44(19), 4690–4693 (2019).
    [Crossref]
  24. J. M. O. Daniel, N. Simakov, and M. Tokurakawa, “Ultra-short wavelength operation of a thulium fibre laser in the 1660–1750nm wavelength band,” Opt. Express 23(14), 18269–18276 (2015).
    [Crossref]
  25. T. J. Du, Q. J. Ruan, R. H. Yang, and Z. Q. Luo, “1.7 µm Tm/Ho-codoped all-fiber pulsed laser based on intermode-beating modulation technique,” J. Lightwave Technol. 36(20), 4894–4899 (2018).
    [Crossref]
  26. F. Bai, Q. P. Wang, Z. J. Liu, X. Y. Zhang, W. J. Sun, X. B. Wan, P. Li, G. F. Jin, and H. J. Zhang, “Efficient 1.8 µm KTiOPO4 optical parametric oscillator pumped within an Nd:YAG/SrWO4 Raman laser,” Opt. Lett. 36(6), 813–815 (2011).
    [Crossref]
  27. H. Y. Zhu, J. H. Guo, Y. M. Duan, J. Zhang, Y. C. Zhang, C. W. Xu, H. Y. Wang, and D. Y. Fan, “Efficient 1.7  µm light source based on KTA-OPO derived by Nd:YVO4 self-Raman laser,” Opt. Lett. 43(2), 345–348 (2018).
    [Crossref]
  28. H. W. Chen, H. T. Huang, S. Q. Wang, and D. Y. Shen, “A high-peak-power orthogonally-polarized multi-wavelength laser at 1.6-1.7 µm based on the cascaded nonlinear optical frequency conversion,” Opt. Express 27(17), 24857–24865 (2019).
    [Crossref]
  29. H. Huang, H. Wang, and S. Wang, “Designable cascaded nonlinear optical frequency conversion integrating multiple nonlinear interactions in two KTiOAsO4 crystals,” Opt. Express 26(2), 642 (2018).
    [Crossref]
  30. Y. M. Duan, H. Z. Zhu, C. W. Xu, X. K. Ruan, G. H. Cui, Y. J. Zhang, D. Y. Tang, and D. Y. Fan, “Compact self-cascaded KTA-OPO for 2.6 µm laser generation,” Opt. Express 24(23), 26529–26535 (2016).
    [Crossref]
  31. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, M. B. Danailov, H. J. Eichler, A. Bednarkiewicz, W. Strek, and A. N. Titov, “Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser,” Appl. Phys. B 75(6-7), 795–797 (2002).
    [Crossref]
  32. S. Soumya, R. J. Williams, O. Lux, O. Kitzler, A. McKay, H. Jasbeer, and P. M. Richard, “High-gain 87 cm−1 Raman line of KYW and its impact on continuous-wave Raman laser operation,” Opt. Express 24(19), 21463–21473 (2016).
    [Crossref]
  33. A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
    [Crossref]
  34. L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1-3), 289–297 (2000).
    [Crossref]
  35. W. Jiang, Z. Li, and S. Zhu, “YVO4 Raman laser pumped by a passively Q-switched Yb:YAG laser,” Opt. Express 25(13), 14033 (2017).
    [Crossref]
  36. Y. F. Chen, Y. Y. Pan, Y. C. Liu, H. P. Cheng, C. H. Tsou, and H. C. Liang, “Efficient high-power continuous-wave lasers at green-lime-yellow wavelengths by using a Nd:YVO4 self-Raman crystal,” Opt. Express 27(3), 2029–2035 (2019).
    [Crossref]
  37. A. Kaminskii, H. Eichler, H. Rhee, and K. Ueda, “New manifestations of nonlinear χ(3) -laser properties in tetragonal YVO4 crystal: many-phonon SRS, cascaded self-frequency “tripling”, and self-sum-frequency generation in blue spectral range with the involving of Stokes components under one-micron picosecond pumping,” Laser Phys. Lett. 5(11), 804–811 (2008).
    [Crossref]
  38. A. A. Kaminskii, K. I. Ueda, and H. J. Eichler, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
    [Crossref]
  39. X. Wang, X. Wang, and J. Dong, “Multi-wavelength, sub-nanosecond Yb:YAG/Cr4+:YAG/YVO4 passively Q-switched Raman microchip laser,” IEEE J. Sel. Top. Quant. 24(5), 1–8 (2018).
    [Crossref]
  40. R. Frey, A. de Martino, and F. Pradère, “High-efficiency pulse compression with intracavity Raman oscillators,” Opt. Lett. 8(8), 437–439 (1983).
    [Crossref]

2019 (7)

Y. Li, N. T. Sudol, Y. Miao, J. C. Jing, J. Zhu, F. Lane, and Z. Chen, “1.7 micron optical coherence tomography for vaginal tissue characterization in vivo,” Lasers Surg. Med. 51(2), 120–126 (2019).
[Crossref]

A. Z. Li, M. Zhang, X. Wang, S. B. Wang, B. G. Guo, and A. Li, “Directly Pumped Ho3+-Doped Microspheres Lasing at 2 µm,” IEEE Photonics Technol. Lett. 31(16), 1366–1368 (2019).
[Crossref]

S. Rostami, R. A. Alexander, V. Azzurra, and M. Sheik-Bahae, “Observation of optical refrigeration in a holmium-doped crystal,” Photonics Res. 7(4), 445–451 (2019).
[Crossref]

L. P. Wang, J. K. Cao, and Y. Lu, “In situ instant generation of an ultrabroadband near-infrared emission center in bismuth-doped borosilicate glasses via a femtosecond laser,” Photonics Res. 7(3), 300–310 (2019).
[Crossref]

M. Sabra, B. Leconte, R. Dauliat, D. Darwich, T. Tiess, A. Schwuchow, R. Jamier, G. Humbert, and K. Wondraczek, “Widely tunable Q-switched dual-wavelength synchronous-pulsed Tm-doped fiber laser emitting in the 2 µm region,” Opt. Lett. 44(19), 4690–4693 (2019).
[Crossref]

H. W. Chen, H. T. Huang, S. Q. Wang, and D. Y. Shen, “A high-peak-power orthogonally-polarized multi-wavelength laser at 1.6-1.7 µm based on the cascaded nonlinear optical frequency conversion,” Opt. Express 27(17), 24857–24865 (2019).
[Crossref]

Y. F. Chen, Y. Y. Pan, Y. C. Liu, H. P. Cheng, C. H. Tsou, and H. C. Liang, “Efficient high-power continuous-wave lasers at green-lime-yellow wavelengths by using a Nd:YVO4 self-Raman crystal,” Opt. Express 27(3), 2029–2035 (2019).
[Crossref]

2018 (6)

X. Wang, X. Wang, and J. Dong, “Multi-wavelength, sub-nanosecond Yb:YAG/Cr4+:YAG/YVO4 passively Q-switched Raman microchip laser,” IEEE J. Sel. Top. Quant. 24(5), 1–8 (2018).
[Crossref]

H. Huang, H. Wang, and S. Wang, “Designable cascaded nonlinear optical frequency conversion integrating multiple nonlinear interactions in two KTiOAsO4 crystals,” Opt. Express 26(2), 642 (2018).
[Crossref]

H. Y. Zhu, J. H. Guo, Y. M. Duan, J. Zhang, Y. C. Zhang, C. W. Xu, H. Y. Wang, and D. Y. Fan, “Efficient 1.7  µm light source based on KTA-OPO derived by Nd:YVO4 self-Raman laser,” Opt. Lett. 43(2), 345–348 (2018).
[Crossref]

T. J. Du, Q. J. Ruan, R. H. Yang, and Z. Q. Luo, “1.7 µm Tm/Ho-codoped all-fiber pulsed laser based on intermode-beating modulation technique,” J. Lightwave Technol. 36(20), 4894–4899 (2018).
[Crossref]

P. Fjodorow, O. Hellmig, and V. M. Baev, “A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 µm for intracavity absorption spectroscopy,” Appl. Phys. B 124(4), 62 (2018).
[Crossref]

A. V. Kir’yanov, Y. O. Barmenkov, I. L. Villegas-Garcia, J. L. Cruz, and M. V. Andres, “Highly Efficient Holmium-Doped All-Fiber 2.07-µm Laser Pumped by Ytterbium-Doped Fiber Laser at 1.13 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–8 (2018).
[Crossref]

2017 (3)

2016 (2)

2015 (5)

2014 (2)

C. Larat, M. Schwarz, and E. Lallier, “120mJ Q-switched Er:YAG laser at 1645 nm,” Opt. Express 22(5), 4861–4866 (2014).
[Crossref]

M. Muniyappa, “Glycosylation as a marker for inflammatory arthritis,” Cancer Biomarkers 14(1), 17–28 (2014).
[Crossref]

2013 (3)

L. Galecki, M. Eichhorn, and W. Zendzian, “Pulsed 1.645 µm Er3+:YAG laser with increased average output power and diffraction limited beam quality,” Laser Phys. Lett. 10(10), 105813 (2013).
[Crossref]

H. Jelínková, M. E. Doroshenko, and M. Jelínek, “Dysprosium-doped PbGa2S4 laser generating at 4.3 µm directly pumped by 1.7 µm laser diode,” Opt. Lett. 38(16), 3040 (2013).
[Crossref]

A. Lin, J. He, H. Zhan, A. D. Zhang, and A. X. Lin, “Study on 2.0 µm fluorescence of Ho-doped water-free fluorotellurite glasses,” Opt. Mater. 35(22), 2573–2576 (2013).
[Crossref]

2012 (1)

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, and C. S. Kim, “Spectrally sampled OTC imaging based on 1.7 µm continuous-wave supercontinuum source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1200–1208 (2012).
[Crossref]

2011 (1)

2010 (1)

D. Chai, G. Chaudhary, and M. S. Eric Mikula, “In vivo femtosecond laser subsurface scleral treatment in rabbit eyes,” Lasers Surg. Med. 42(7), 647–651 (2010).
[Crossref]

2008 (2)

R. S. Quimby, L. B. Shaw, and J. S. Sanghera, “Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

A. Kaminskii, H. Eichler, H. Rhee, and K. Ueda, “New manifestations of nonlinear χ(3) -laser properties in tetragonal YVO4 crystal: many-phonon SRS, cascaded self-frequency “tripling”, and self-sum-frequency generation in blue spectral range with the involving of Stokes components under one-micron picosecond pumping,” Laser Phys. Lett. 5(11), 804–811 (2008).
[Crossref]

2004 (1)

P. Chambers, E. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
[Crossref]

2002 (2)

H. Barry, L. Corner, and G. Hancock, “Cross sections in the 2ν5 band of formaldehyde studied by cavity enhanced absorption spectroscopy near 1.76 µm,” Phys. Chem. Chem. Phys. 4(3), 445–450 (2002).
[Crossref]

S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, M. B. Danailov, H. J. Eichler, A. Bednarkiewicz, W. Strek, and A. N. Titov, “Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser,” Appl. Phys. B 75(6-7), 795–797 (2002).
[Crossref]

2001 (2)

A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

A. A. Kaminskii, K. I. Ueda, and H. J. Eichler, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[Crossref]

2000 (1)

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1-3), 289–297 (2000).
[Crossref]

1983 (1)

Alexander, R. A.

S. Rostami, R. A. Alexander, V. Azzurra, and M. Sheik-Bahae, “Observation of optical refrigeration in a holmium-doped crystal,” Photonics Res. 7(4), 445–451 (2019).
[Crossref]

Alyshev, S. V.

Andres, M. V.

A. V. Kir’yanov, Y. O. Barmenkov, I. L. Villegas-Garcia, J. L. Cruz, and M. V. Andres, “Highly Efficient Holmium-Doped All-Fiber 2.07-µm Laser Pumped by Ytterbium-Doped Fiber Laser at 1.13 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–8 (2018).
[Crossref]

Austin, E.

P. Chambers, E. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
[Crossref]

Azzurra, V.

S. Rostami, R. A. Alexander, V. Azzurra, and M. Sheik-Bahae, “Observation of optical refrigeration in a holmium-doped crystal,” Photonics Res. 7(4), 445–451 (2019).
[Crossref]

Baev, V. M.

P. Fjodorow, O. Hellmig, and V. M. Baev, “A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 µm for intracavity absorption spectroscopy,” Appl. Phys. B 124(4), 62 (2018).
[Crossref]

Bai, F.

Barmenkov, Y. O.

A. V. Kir’yanov, Y. O. Barmenkov, I. L. Villegas-Garcia, J. L. Cruz, and M. V. Andres, “Highly Efficient Holmium-Doped All-Fiber 2.07-µm Laser Pumped by Ytterbium-Doped Fiber Laser at 1.13 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–8 (2018).
[Crossref]

Barry, H.

H. Barry, L. Corner, and G. Hancock, “Cross sections in the 2ν5 band of formaldehyde studied by cavity enhanced absorption spectroscopy near 1.76 µm,” Phys. Chem. Chem. Phys. 4(3), 445–450 (2002).
[Crossref]

Bednarkiewicz, A.

S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, M. B. Danailov, H. J. Eichler, A. Bednarkiewicz, W. Strek, and A. N. Titov, “Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser,” Appl. Phys. B 75(6-7), 795–797 (2002).
[Crossref]

Butashin, A.

A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Cao, J. K.

L. P. Wang, J. K. Cao, and Y. Lu, “In situ instant generation of an ultrabroadband near-infrared emission center in bismuth-doped borosilicate glasses via a femtosecond laser,” Photonics Res. 7(3), 300–310 (2019).
[Crossref]

Cassataro, M.

Chai, D.

D. Chai, G. Chaudhary, and M. S. Eric Mikula, “In vivo femtosecond laser subsurface scleral treatment in rabbit eyes,” Lasers Surg. Med. 42(7), 647–651 (2010).
[Crossref]

Chambers, P.

P. Chambers, E. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
[Crossref]

Chaudhary, G.

D. Chai, G. Chaudhary, and M. S. Eric Mikula, “In vivo femtosecond laser subsurface scleral treatment in rabbit eyes,” Lasers Surg. Med. 42(7), 647–651 (2010).
[Crossref]

Chen, H. W.

Chen, Y. C.

N. M. Htun, Y. C. Chen, and B. Lim, “Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques,” Nat. Commun. 8(1), 75 (2017).
[Crossref]

Chen, Y. F.

Chen, Z.

Y. Li, N. T. Sudol, Y. Miao, J. C. Jing, J. Zhu, F. Lane, and Z. Chen, “1.7 micron optical coherence tomography for vaginal tissue characterization in vivo,” Lasers Surg. Med. 51(2), 120–126 (2019).
[Crossref]

Cheng, H. P.

Chong, S. P.

Cooke, D. F.

Corner, L.

H. Barry, L. Corner, and G. Hancock, “Cross sections in the 2ν5 band of formaldehyde studied by cavity enhanced absorption spectroscopy near 1.76 µm,” Phys. Chem. Chem. Phys. 4(3), 445–450 (2002).
[Crossref]

Cruz, J. L.

A. V. Kir’yanov, Y. O. Barmenkov, I. L. Villegas-Garcia, J. L. Cruz, and M. V. Andres, “Highly Efficient Holmium-Doped All-Fiber 2.07-µm Laser Pumped by Ytterbium-Doped Fiber Laser at 1.13 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–8 (2018).
[Crossref]

Cui, G. H.

Dakin, J. P.

P. Chambers, E. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
[Crossref]

Danailov, M. B.

S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, M. B. Danailov, H. J. Eichler, A. Bednarkiewicz, W. Strek, and A. N. Titov, “Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser,” Appl. Phys. B 75(6-7), 795–797 (2002).
[Crossref]

Daniel, J. M. O.

Darwich, D.

Dauliat, R.

de Martino, A.

Demidovich, A. A.

S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, M. B. Danailov, H. J. Eichler, A. Bednarkiewicz, W. Strek, and A. N. Titov, “Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser,” Appl. Phys. B 75(6-7), 795–797 (2002).
[Crossref]

Dianov, E. M.

Dong, J.

X. Wang, X. Wang, and J. Dong, “Multi-wavelength, sub-nanosecond Yb:YAG/Cr4+:YAG/YVO4 passively Q-switched Raman microchip laser,” IEEE J. Sel. Top. Quant. 24(5), 1–8 (2018).
[Crossref]

Doroshenko, M. E.

Du, T. J.

Duan, Y. M.

Eichhorn, M.

L. Galecki, M. Eichhorn, and W. Zendzian, “Pulsed 1.645 µm Er3+:YAG laser with increased average output power and diffraction limited beam quality,” Laser Phys. Lett. 10(10), 105813 (2013).
[Crossref]

Eichler, H.

A. Kaminskii, H. Eichler, H. Rhee, and K. Ueda, “New manifestations of nonlinear χ(3) -laser properties in tetragonal YVO4 crystal: many-phonon SRS, cascaded self-frequency “tripling”, and self-sum-frequency generation in blue spectral range with the involving of Stokes components under one-micron picosecond pumping,” Laser Phys. Lett. 5(11), 804–811 (2008).
[Crossref]

Eichler, H. J.

S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, M. B. Danailov, H. J. Eichler, A. Bednarkiewicz, W. Strek, and A. N. Titov, “Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser,” Appl. Phys. B 75(6-7), 795–797 (2002).
[Crossref]

A. A. Kaminskii, K. I. Ueda, and H. J. Eichler, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[Crossref]

Eric Mikula, M. S.

D. Chai, G. Chaudhary, and M. S. Eric Mikula, “In vivo femtosecond laser subsurface scleral treatment in rabbit eyes,” Lasers Surg. Med. 42(7), 647–651 (2010).
[Crossref]

Fan, D. Y.

Firstov, S. V.

Fjodorow, P.

P. Fjodorow, O. Hellmig, and V. M. Baev, “A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 µm for intracavity absorption spectroscopy,” Appl. Phys. B 124(4), 62 (2018).
[Crossref]

Frey, R.

Galecki, L.

L. Galecki, M. Eichhorn, and W. Zendzian, “Pulsed 1.645 µm Er3+:YAG laser with increased average output power and diffraction limited beam quality,” Laser Phys. Lett. 10(10), 105813 (2013).
[Crossref]

Grabtchikov, S.

S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, M. B. Danailov, H. J. Eichler, A. Bednarkiewicz, W. Strek, and A. N. Titov, “Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser,” Appl. Phys. B 75(6-7), 795–797 (2002).
[Crossref]

Guo, B. G.

A. Z. Li, M. Zhang, X. Wang, S. B. Wang, B. G. Guo, and A. Li, “Directly Pumped Ho3+-Doped Microspheres Lasing at 2 µm,” IEEE Photonics Technol. Lett. 31(16), 1366–1368 (2019).
[Crossref]

Guo, J. H.

Hancock, G.

H. Barry, L. Corner, and G. Hancock, “Cross sections in the 2ν5 band of formaldehyde studied by cavity enhanced absorption spectroscopy near 1.76 µm,” Phys. Chem. Chem. Phys. 4(3), 445–450 (2002).
[Crossref]

Hanuza, J.

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1-3), 289–297 (2000).
[Crossref]

Hasegawa, T.

He, J.

A. Lin, J. He, H. Zhan, A. D. Zhang, and A. X. Lin, “Study on 2.0 µm fluorescence of Ho-doped water-free fluorotellurite glasses,” Opt. Mater. 35(22), 2573–2576 (2013).
[Crossref]

Hellmig, O.

P. Fjodorow, O. Hellmig, and V. M. Baev, “A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 µm for intracavity absorption spectroscopy,” Appl. Phys. B 124(4), 62 (2018).
[Crossref]

Hirano, M.

Htun, N. M.

N. M. Htun, Y. C. Chen, and B. Lim, “Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques,” Nat. Commun. 8(1), 75 (2017).
[Crossref]

Huang, H.

H. Huang, H. Wang, and S. Wang, “Designable cascaded nonlinear optical frequency conversion integrating multiple nonlinear interactions in two KTiOAsO4 crystals,” Opt. Express 26(2), 642 (2018).
[Crossref]

H. Huang, D. Shen, and J. Zhang, “Q-switched mode locking of a fiber laser resonantly pumped Er:YAG ceramic laser at 1645 nm using graphene as saturable absorber,” J. Nonlinear Opt. Phys. Mater. 24(01), 1550001 (2015).
[Crossref]

Huang, H. T.

Humbert, G.

Jamier, R.

Jasbeer, H.

Jelínek, M.

Jelínková, H.

Jiang, W.

Jin, G. F.

Jing, J. C.

Y. Li, N. T. Sudol, Y. Miao, J. C. Jing, J. Zhu, F. Lane, and Z. Chen, “1.7 micron optical coherence tomography for vaginal tissue characterization in vivo,” Lasers Surg. Med. 51(2), 120–126 (2019).
[Crossref]

Jung, E. J.

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, and C. S. Kim, “Spectrally sampled OTC imaging based on 1.7 µm continuous-wave supercontinuum source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1200–1208 (2012).
[Crossref]

Kaminskii, A.

A. Kaminskii, H. Eichler, H. Rhee, and K. Ueda, “New manifestations of nonlinear χ(3) -laser properties in tetragonal YVO4 crystal: many-phonon SRS, cascaded self-frequency “tripling”, and self-sum-frequency generation in blue spectral range with the involving of Stokes components under one-micron picosecond pumping,” Laser Phys. Lett. 5(11), 804–811 (2008).
[Crossref]

A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, K. I. Ueda, and H. J. Eichler, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[Crossref]

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1-3), 289–297 (2000).
[Crossref]

Kim, C. S.

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, and C. S. Kim, “Spectrally sampled OTC imaging based on 1.7 µm continuous-wave supercontinuum source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1200–1208 (2012).
[Crossref]

Kim, M. J.

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, and C. S. Kim, “Spectrally sampled OTC imaging based on 1.7 µm continuous-wave supercontinuum source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1200–1208 (2012).
[Crossref]

Kir’yanov, A. V.

A. V. Kir’yanov, Y. O. Barmenkov, I. L. Villegas-Garcia, J. L. Cruz, and M. V. Andres, “Highly Efficient Holmium-Doped All-Fiber 2.07-µm Laser Pumped by Ytterbium-Doped Fiber Laser at 1.13 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–8 (2018).
[Crossref]

Kitzler, O.

Klevtsova, R.

A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Konstantinova, A.

A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Kuzmin, A. N.

S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, M. B. Danailov, H. J. Eichler, A. Bednarkiewicz, W. Strek, and A. N. Titov, “Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser,” Appl. Phys. B 75(6-7), 795–797 (2002).
[Crossref]

Lallier, E.

Lane, F.

Y. Li, N. T. Sudol, Y. Miao, J. C. Jing, J. Zhu, F. Lane, and Z. Chen, “1.7 micron optical coherence tomography for vaginal tissue characterization in vivo,” Lasers Surg. Med. 51(2), 120–126 (2019).
[Crossref]

Larat, C.

Leconte, B.

Lee, J. H.

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, and C. S. Kim, “Spectrally sampled OTC imaging based on 1.7 µm continuous-wave supercontinuum source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1200–1208 (2012).
[Crossref]

Li, A.

A. Z. Li, M. Zhang, X. Wang, S. B. Wang, B. G. Guo, and A. Li, “Directly Pumped Ho3+-Doped Microspheres Lasing at 2 µm,” IEEE Photonics Technol. Lett. 31(16), 1366–1368 (2019).
[Crossref]

Li, A. Z.

A. Z. Li, M. Zhang, X. Wang, S. B. Wang, B. G. Guo, and A. Li, “Directly Pumped Ho3+-Doped Microspheres Lasing at 2 µm,” IEEE Photonics Technol. Lett. 31(16), 1366–1368 (2019).
[Crossref]

Li, P.

Li, Y.

Y. Li, N. T. Sudol, Y. Miao, J. C. Jing, J. Zhu, F. Lane, and Z. Chen, “1.7 micron optical coherence tomography for vaginal tissue characterization in vivo,” Lasers Surg. Med. 51(2), 120–126 (2019).
[Crossref]

Li, Z.

Liang, H. C.

Lim, B.

N. M. Htun, Y. C. Chen, and B. Lim, “Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques,” Nat. Commun. 8(1), 75 (2017).
[Crossref]

Lin, A.

A. Lin, J. He, H. Zhan, A. D. Zhang, and A. X. Lin, “Study on 2.0 µm fluorescence of Ho-doped water-free fluorotellurite glasses,” Opt. Mater. 35(22), 2573–2576 (2013).
[Crossref]

Lin, A. X.

A. Lin, J. He, H. Zhan, A. D. Zhang, and A. X. Lin, “Study on 2.0 µm fluorescence of Ho-doped water-free fluorotellurite glasses,” Opt. Mater. 35(22), 2573–2576 (2013).
[Crossref]

Lisinetskii, V. A.

S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, M. B. Danailov, H. J. Eichler, A. Bednarkiewicz, W. Strek, and A. N. Titov, “Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser,” Appl. Phys. B 75(6-7), 795–797 (2002).
[Crossref]

Liu, Y. C.

Liu, Z. J.

Lu, Y.

L. P. Wang, J. K. Cao, and Y. Lu, “In situ instant generation of an ultrabroadband near-infrared emission center in bismuth-doped borosilicate glasses via a femtosecond laser,” Photonics Res. 7(3), 300–310 (2019).
[Crossref]

Luo, Z. Q.

Lux, O.

Macalik, L.

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1-3), 289–297 (2000).
[Crossref]

McKay, A.

Medvedkov, O. I.

Melkumov, M. A.

Merkle, C. W.

Miao, Y.

Y. Li, N. T. Sudol, Y. Miao, J. C. Jing, J. Zhu, F. Lane, and Z. Chen, “1.7 micron optical coherence tomography for vaginal tissue characterization in vivo,” Lasers Surg. Med. 51(2), 120–126 (2019).
[Crossref]

Muniyappa, M.

M. Muniyappa, “Glycosylation as a marker for inflammatory arthritis,” Cancer Biomarkers 14(1), 17–28 (2014).
[Crossref]

Murashima, K.

Novoa, D.

Obi, H.

Orekhova, V.

A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Orlovich, V. A.

S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, M. B. Danailov, H. J. Eichler, A. Bednarkiewicz, W. Strek, and A. N. Titov, “Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser,” Appl. Phys. B 75(6-7), 795–797 (2002).
[Crossref]

Pan, Y. Y.

Pavlyuk, A.

A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Pradère, F.

Quimby, R. S.

R. S. Quimby, L. B. Shaw, and J. S. Sanghera, “Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

Rhee, H.

A. Kaminskii, H. Eichler, H. Rhee, and K. Ueda, “New manifestations of nonlinear χ(3) -laser properties in tetragonal YVO4 crystal: many-phonon SRS, cascaded self-frequency “tripling”, and self-sum-frequency generation in blue spectral range with the involving of Stokes components under one-micron picosecond pumping,” Laser Phys. Lett. 5(11), 804–811 (2008).
[Crossref]

Rho, B. S.

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, and C. S. Kim, “Spectrally sampled OTC imaging based on 1.7 µm continuous-wave supercontinuum source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1200–1208 (2012).
[Crossref]

Richard, P. M.

Riumkin, K. E.

Rostami, S.

S. Rostami, R. A. Alexander, V. Azzurra, and M. Sheik-Bahae, “Observation of optical refrigeration in a holmium-doped crystal,” Photonics Res. 7(4), 445–451 (2019).
[Crossref]

Ruan, Q. J.

Ruan, X. K.

Sabra, M.

Sanghera, J. S.

R. S. Quimby, L. B. Shaw, and J. S. Sanghera, “Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

Schwarz, M.

Schwuchow, A.

Shaw, L. B.

R. S. Quimby, L. B. Shaw, and J. S. Sanghera, “Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

Sheik-Bahae, M.

S. Rostami, R. A. Alexander, V. Azzurra, and M. Sheik-Bahae, “Observation of optical refrigeration in a holmium-doped crystal,” Photonics Res. 7(4), 445–451 (2019).
[Crossref]

Shen, D.

H. Huang, D. Shen, and J. Zhang, “Q-switched mode locking of a fiber laser resonantly pumped Er:YAG ceramic laser at 1645 nm using graphene as saturable absorber,” J. Nonlinear Opt. Phys. Mater. 24(01), 1550001 (2015).
[Crossref]

Shen, D. Y.

Simakov, N.

Soumya, S.

Strek, W.

S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, M. B. Danailov, H. J. Eichler, A. Bednarkiewicz, W. Strek, and A. N. Titov, “Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser,” Appl. Phys. B 75(6-7), 795–797 (2002).
[Crossref]

Sudol, N. T.

Y. Li, N. T. Sudol, Y. Miao, J. C. Jing, J. Zhu, F. Lane, and Z. Chen, “1.7 micron optical coherence tomography for vaginal tissue characterization in vivo,” Lasers Surg. Med. 51(2), 120–126 (2019).
[Crossref]

Sun, W. J.

Tanaka, M.

Tang, D. Y.

Tiess, T.

Titov, A. N.

S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, M. B. Danailov, H. J. Eichler, A. Bednarkiewicz, W. Strek, and A. N. Titov, “Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser,” Appl. Phys. B 75(6-7), 795–797 (2002).
[Crossref]

Tokurakawa, M.

Travers, J. C.

Tsou, C. H.

Ueda, K.

A. Kaminskii, H. Eichler, H. Rhee, and K. Ueda, “New manifestations of nonlinear χ(3) -laser properties in tetragonal YVO4 crystal: many-phonon SRS, cascaded self-frequency “tripling”, and self-sum-frequency generation in blue spectral range with the involving of Stokes components under one-micron picosecond pumping,” Laser Phys. Lett. 5(11), 804–811 (2008).
[Crossref]

Ueda, K. I.

A. A. Kaminskii, K. I. Ueda, and H. J. Eichler, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[Crossref]

Villegas-Garcia, I. L.

A. V. Kir’yanov, Y. O. Barmenkov, I. L. Villegas-Garcia, J. L. Cruz, and M. V. Andres, “Highly Efficient Holmium-Doped All-Fiber 2.07-µm Laser Pumped by Ytterbium-Doped Fiber Laser at 1.13 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–8 (2018).
[Crossref]

Wan, X. B.

Wang, H.

Wang, H. Y.

Wang, L. P.

L. P. Wang, J. K. Cao, and Y. Lu, “In situ instant generation of an ultrabroadband near-infrared emission center in bismuth-doped borosilicate glasses via a femtosecond laser,” Photonics Res. 7(3), 300–310 (2019).
[Crossref]

Wang, Q. P.

Wang, S.

Wang, S. B.

A. Z. Li, M. Zhang, X. Wang, S. B. Wang, B. G. Guo, and A. Li, “Directly Pumped Ho3+-Doped Microspheres Lasing at 2 µm,” IEEE Photonics Technol. Lett. 31(16), 1366–1368 (2019).
[Crossref]

Wang, S. Q.

Wang, X.

A. Z. Li, M. Zhang, X. Wang, S. B. Wang, B. G. Guo, and A. Li, “Directly Pumped Ho3+-Doped Microspheres Lasing at 2 µm,” IEEE Photonics Technol. Lett. 31(16), 1366–1368 (2019).
[Crossref]

X. Wang, X. Wang, and J. Dong, “Multi-wavelength, sub-nanosecond Yb:YAG/Cr4+:YAG/YVO4 passively Q-switched Raman microchip laser,” IEEE J. Sel. Top. Quant. 24(5), 1–8 (2018).
[Crossref]

X. Wang, X. Wang, and J. Dong, “Multi-wavelength, sub-nanosecond Yb:YAG/Cr4+:YAG/YVO4 passively Q-switched Raman microchip laser,” IEEE J. Sel. Top. Quant. 24(5), 1–8 (2018).
[Crossref]

Williams, R. J.

Wondraczek, K.

Xu, C. W.

Yamaguchi, R.

Yang, R. H.

Zendzian, W.

L. Galecki, M. Eichhorn, and W. Zendzian, “Pulsed 1.645 µm Er3+:YAG laser with increased average output power and diffraction limited beam quality,” Laser Phys. Lett. 10(10), 105813 (2013).
[Crossref]

Zhan, H.

A. Lin, J. He, H. Zhan, A. D. Zhang, and A. X. Lin, “Study on 2.0 µm fluorescence of Ho-doped water-free fluorotellurite glasses,” Opt. Mater. 35(22), 2573–2576 (2013).
[Crossref]

Zhang, A. D.

A. Lin, J. He, H. Zhan, A. D. Zhang, and A. X. Lin, “Study on 2.0 µm fluorescence of Ho-doped water-free fluorotellurite glasses,” Opt. Mater. 35(22), 2573–2576 (2013).
[Crossref]

Zhang, H. J.

Zhang, J.

H. Y. Zhu, J. H. Guo, Y. M. Duan, J. Zhang, Y. C. Zhang, C. W. Xu, H. Y. Wang, and D. Y. Fan, “Efficient 1.7  µm light source based on KTA-OPO derived by Nd:YVO4 self-Raman laser,” Opt. Lett. 43(2), 345–348 (2018).
[Crossref]

H. Huang, D. Shen, and J. Zhang, “Q-switched mode locking of a fiber laser resonantly pumped Er:YAG ceramic laser at 1645 nm using graphene as saturable absorber,” J. Nonlinear Opt. Phys. Mater. 24(01), 1550001 (2015).
[Crossref]

Zhang, M.

A. Z. Li, M. Zhang, X. Wang, S. B. Wang, B. G. Guo, and A. Li, “Directly Pumped Ho3+-Doped Microspheres Lasing at 2 µm,” IEEE Photonics Technol. Lett. 31(16), 1366–1368 (2019).
[Crossref]

Zhang, X. Y.

Zhang, Y. C.

Zhang, Y. J.

Zhu, H. Y.

Zhu, H. Z.

Zhu, J.

Y. Li, N. T. Sudol, Y. Miao, J. C. Jing, J. Zhu, F. Lane, and Z. Chen, “1.7 micron optical coherence tomography for vaginal tissue characterization in vivo,” Lasers Surg. Med. 51(2), 120–126 (2019).
[Crossref]

Zhu, S.

Appl. Phys. B (2)

P. Fjodorow, O. Hellmig, and V. M. Baev, “A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 µm for intracavity absorption spectroscopy,” Appl. Phys. B 124(4), 62 (2018).
[Crossref]

S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, M. B. Danailov, H. J. Eichler, A. Bednarkiewicz, W. Strek, and A. N. Titov, “Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser,” Appl. Phys. B 75(6-7), 795–797 (2002).
[Crossref]

Cancer Biomarkers (1)

M. Muniyappa, “Glycosylation as a marker for inflammatory arthritis,” Cancer Biomarkers 14(1), 17–28 (2014).
[Crossref]

Crystallogr. Rep. (1)

A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

X. Wang, X. Wang, and J. Dong, “Multi-wavelength, sub-nanosecond Yb:YAG/Cr4+:YAG/YVO4 passively Q-switched Raman microchip laser,” IEEE J. Sel. Top. Quant. 24(5), 1–8 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. V. Kir’yanov, Y. O. Barmenkov, I. L. Villegas-Garcia, J. L. Cruz, and M. V. Andres, “Highly Efficient Holmium-Doped All-Fiber 2.07-µm Laser Pumped by Ytterbium-Doped Fiber Laser at 1.13 µm,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–8 (2018).
[Crossref]

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, and C. S. Kim, “Spectrally sampled OTC imaging based on 1.7 µm continuous-wave supercontinuum source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1200–1208 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

R. S. Quimby, L. B. Shaw, and J. S. Sanghera, “Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

A. Z. Li, M. Zhang, X. Wang, S. B. Wang, B. G. Guo, and A. Li, “Directly Pumped Ho3+-Doped Microspheres Lasing at 2 µm,” IEEE Photonics Technol. Lett. 31(16), 1366–1368 (2019).
[Crossref]

J. Lightwave Technol. (1)

J. Mol. Struct. (1)

L. Macalik, J. Hanuza, and A. A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1-3), 289–297 (2000).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

H. Huang, D. Shen, and J. Zhang, “Q-switched mode locking of a fiber laser resonantly pumped Er:YAG ceramic laser at 1645 nm using graphene as saturable absorber,” J. Nonlinear Opt. Phys. Mater. 24(01), 1550001 (2015).
[Crossref]

Laser Phys. Lett. (2)

A. Kaminskii, H. Eichler, H. Rhee, and K. Ueda, “New manifestations of nonlinear χ(3) -laser properties in tetragonal YVO4 crystal: many-phonon SRS, cascaded self-frequency “tripling”, and self-sum-frequency generation in blue spectral range with the involving of Stokes components under one-micron picosecond pumping,” Laser Phys. Lett. 5(11), 804–811 (2008).
[Crossref]

L. Galecki, M. Eichhorn, and W. Zendzian, “Pulsed 1.645 µm Er3+:YAG laser with increased average output power and diffraction limited beam quality,” Laser Phys. Lett. 10(10), 105813 (2013).
[Crossref]

Lasers Surg. Med. (2)

Y. Li, N. T. Sudol, Y. Miao, J. C. Jing, J. Zhu, F. Lane, and Z. Chen, “1.7 micron optical coherence tomography for vaginal tissue characterization in vivo,” Lasers Surg. Med. 51(2), 120–126 (2019).
[Crossref]

D. Chai, G. Chaudhary, and M. S. Eric Mikula, “In vivo femtosecond laser subsurface scleral treatment in rabbit eyes,” Lasers Surg. Med. 42(7), 647–651 (2010).
[Crossref]

Meas. Sci. Technol. (1)

P. Chambers, E. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
[Crossref]

Nat. Commun. (1)

N. M. Htun, Y. C. Chen, and B. Lim, “Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques,” Nat. Commun. 8(1), 75 (2017).
[Crossref]

Opt. Commun. (1)

A. A. Kaminskii, K. I. Ueda, and H. J. Eichler, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[Crossref]

Opt. Express (10)

Y. F. Chen, Y. Y. Pan, Y. C. Liu, H. P. Cheng, C. H. Tsou, and H. C. Liang, “Efficient high-power continuous-wave lasers at green-lime-yellow wavelengths by using a Nd:YVO4 self-Raman crystal,” Opt. Express 27(3), 2029–2035 (2019).
[Crossref]

H. W. Chen, H. T. Huang, S. Q. Wang, and D. Y. Shen, “A high-peak-power orthogonally-polarized multi-wavelength laser at 1.6-1.7 µm based on the cascaded nonlinear optical frequency conversion,” Opt. Express 27(17), 24857–24865 (2019).
[Crossref]

S. Soumya, R. J. Williams, O. Lux, O. Kitzler, A. McKay, H. Jasbeer, and P. M. Richard, “High-gain 87 cm−1 Raman line of KYW and its impact on continuous-wave Raman laser operation,” Opt. Express 24(19), 21463–21473 (2016).
[Crossref]

Y. M. Duan, H. Z. Zhu, C. W. Xu, X. K. Ruan, G. H. Cui, Y. J. Zhang, D. Y. Tang, and D. Y. Fan, “Compact self-cascaded KTA-OPO for 2.6 µm laser generation,” Opt. Express 24(23), 26529–26535 (2016).
[Crossref]

D. Novoa, J. C. Travers, and M. Cassataro, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25(7), 7637 (2017).
[Crossref]

W. Jiang, Z. Li, and S. Zhu, “YVO4 Raman laser pumped by a passively Q-switched Yb:YAG laser,” Opt. Express 25(13), 14033 (2017).
[Crossref]

H. Huang, H. Wang, and S. Wang, “Designable cascaded nonlinear optical frequency conversion integrating multiple nonlinear interactions in two KTiOAsO4 crystals,” Opt. Express 26(2), 642 (2018).
[Crossref]

C. Larat, M. Schwarz, and E. Lallier, “120mJ Q-switched Er:YAG laser at 1645 nm,” Opt. Express 22(5), 4861–4866 (2014).
[Crossref]

M. Tanaka, M. Hirano, K. Murashima, H. Obi, R. Yamaguchi, and T. Hasegawa, “1.7-µm spectroscopic spectral domain optical coherence tomography for imaging lipid distribution within blood vessel,” Opt. Express 23(5), 6645–6655 (2015).
[Crossref]

J. M. O. Daniel, N. Simakov, and M. Tokurakawa, “Ultra-short wavelength operation of a thulium fibre laser in the 1660–1750nm wavelength band,” Opt. Express 23(14), 18269–18276 (2015).
[Crossref]

Opt. Lett. (7)

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, M. A. Melkumov, O. I. Medvedkov, and E. M. Dianov, “Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 µm,” Opt. Lett. 40(18), 4360–4363 (2015).
[Crossref]

S. P. Chong, C. W. Merkle, and D. F. Cooke, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 µm optical coherence tomography,” Opt. Lett. 40(21), 4911 (2015).
[Crossref]

R. Frey, A. de Martino, and F. Pradère, “High-efficiency pulse compression with intracavity Raman oscillators,” Opt. Lett. 8(8), 437–439 (1983).
[Crossref]

F. Bai, Q. P. Wang, Z. J. Liu, X. Y. Zhang, W. J. Sun, X. B. Wan, P. Li, G. F. Jin, and H. J. Zhang, “Efficient 1.8 µm KTiOPO4 optical parametric oscillator pumped within an Nd:YAG/SrWO4 Raman laser,” Opt. Lett. 36(6), 813–815 (2011).
[Crossref]

H. Jelínková, M. E. Doroshenko, and M. Jelínek, “Dysprosium-doped PbGa2S4 laser generating at 4.3 µm directly pumped by 1.7 µm laser diode,” Opt. Lett. 38(16), 3040 (2013).
[Crossref]

H. Y. Zhu, J. H. Guo, Y. M. Duan, J. Zhang, Y. C. Zhang, C. W. Xu, H. Y. Wang, and D. Y. Fan, “Efficient 1.7  µm light source based on KTA-OPO derived by Nd:YVO4 self-Raman laser,” Opt. Lett. 43(2), 345–348 (2018).
[Crossref]

M. Sabra, B. Leconte, R. Dauliat, D. Darwich, T. Tiess, A. Schwuchow, R. Jamier, G. Humbert, and K. Wondraczek, “Widely tunable Q-switched dual-wavelength synchronous-pulsed Tm-doped fiber laser emitting in the 2 µm region,” Opt. Lett. 44(19), 4690–4693 (2019).
[Crossref]

Opt. Mater. (1)

A. Lin, J. He, H. Zhan, A. D. Zhang, and A. X. Lin, “Study on 2.0 µm fluorescence of Ho-doped water-free fluorotellurite glasses,” Opt. Mater. 35(22), 2573–2576 (2013).
[Crossref]

Photonics Res. (2)

L. P. Wang, J. K. Cao, and Y. Lu, “In situ instant generation of an ultrabroadband near-infrared emission center in bismuth-doped borosilicate glasses via a femtosecond laser,” Photonics Res. 7(3), 300–310 (2019).
[Crossref]

S. Rostami, R. A. Alexander, V. Azzurra, and M. Sheik-Bahae, “Observation of optical refrigeration in a holmium-doped crystal,” Photonics Res. 7(4), 445–451 (2019).
[Crossref]

Phys. Chem. Chem. Phys. (1)

H. Barry, L. Corner, and G. Hancock, “Cross sections in the 2ν5 band of formaldehyde studied by cavity enhanced absorption spectroscopy near 1.76 µm,” Phys. Chem. Chem. Phys. 4(3), 445–450 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The diagrammatic sketch for the experimental setup of the cascaded KYW and YVO4 Raman lasers intracavity pumped by a KTA OPO. (a) corresponds to KRL; (b) corresponds to YRL.
Fig. 2.
Fig. 2. The transmittance of the IM and OC in the wavelength range of 1500-1800 nm.
Fig. 3.
Fig. 3. The emission spectrums of the KRL and YRL.
Fig. 4.
Fig. 4. The dependence of average output power and pulse width on the LD pump power. Inset: the dependences of the output powers on the LD pump power for the 1064 nm Nd:YAG laser in the CW and Q-switched mode.
Fig. 5.
Fig. 5. The typical single pulse and corresponding pulse trains of the KRL and YRL. (a) and (b) correspond to the multi-wavelengths of KRL. (c) and (d) correspond to the YRL.
Fig. 6.
Fig. 6. The dependence of average output power and pulse width on the LD pump power. Inset: the dependences of the output powers on the LD pump power for the 1064 nm Nd:YAG laser in the CW and Q-switched mode.