Abstract

Based on the dual-resonance principle around the dispersion turning point (DTP), for the first time, an ultra-broadband orbital angular momentum (OAM) mode converter formed by the helical long-period fiber grating (HLPG) is proposed. The converter used for delivering the OAM operation with 3-dB bandwidth of 287 nm, which is about 7 times of general OAM converters and has only one mode. Furthermore, by chirping the HLPG working around DTP, a flat-top broadband OAM mode converter with bandwidth of ∼182 nm@3 dB is conveniently achieved. The flatness of spectrum can be increased by apodizing and optimizing the length of the chirped HLPG. Subsequently, we significantly developed a flat-top broadband rejection filter with >30 dB bandwidth of a high level of ∼100 nm@1 dB by double-cascading the HLPG. It is shown that the performances of the OAM mode converter and the flat-top broadband rejection filter can be remarkably improved by accomplishing the DTP in the mode phase-matching for the HLPG.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Flat-top band-rejection filter based on two successively-cascaded helical fiber gratings

Gen. Inoue, Peng Wang, and Hongpu Li
Opt. Express 24(5) 5442-5447 (2016)

Optimal design and fabrication of multichannel helical long-period fiber gratings based on phase-only sampling method

Chengliang Zhu, Shoma Ishikami, Peng Wang, Hua Zhao, and Hongpu Li
Opt. Express 27(3) 2281-2291 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref]
  2. A. Wang, L. Zhu, L. Wang, J. Ai, S. Chen, and J. Wang, “Directly using 88-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission,” Opt. Express 26(8), 10038–10047 (2018).
    [Crossref]
  3. T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light: Sci. Appl. 4(3), e257 (2015).
    [Crossref]
  4. G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5(1), 4491 (2014).
    [Crossref]
  5. R. Paez-Lopez, U. Ruiz, V. Arrizon, and R. Ramos-Garcia, “Optical manipulation using optimal annular vortices,” Opt. Lett. 41(17), 4138–4141 (2016).
    [Crossref]
  6. C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7(1), 12998 (2016).
    [Crossref]
  7. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral interferometry,” Opt. Lett. 30(15), 1953–1955 (2005).
    [Crossref]
  8. L. Yan, P. Gregg, E. Karimi, A. Rubano, L. Marrucci, R. Boyd, and S. Ramachandran, “Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy,” Optica 2(10), 900–903 (2015).
    [Crossref]
  9. G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
    [Crossref]
  10. P. Gregg, M. Mirhosseini, A. Rubano, L. Marrucci, E. Karimi, R. W. Boyd, and S. Ramachandran, “Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber,” Opt. Lett. 40(8), 1729–1732 (2015).
    [Crossref]
  11. C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
    [Crossref]
  12. P. Schemmel, G. Pisano, and B. Maffei, “A modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths,” Opt. Express 22(12), 14712–14726 (2014).
    [Crossref]
  13. J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
    [Crossref]
  14. Z. Zhao, J. Wang, S. Li, and A. E. Willner, “Metamaterials-based broadband generation of orbital angular momentum carrying vector beams,” Opt. Lett. 38(6), 932–934 (2013).
    [Crossref]
  15. J. Zeng, T. S. Luk, J. Gao, and X. Yang, “Spiraling light with magnetic metamaterial quarter-wave turbines,” Sci. Rep. 7(1), 11824 (2017).
    [Crossref]
  16. J. Courtial and M. J. Padgett, “Performance of a cylindrical lens mode converter for producing Laguerre–Gaussian laser modes,” Opt. Commun. 159(1-3), 13–18 (1999).
    [Crossref]
  17. Y. Zhao, Y. Liu, C. Zhang, L. Zhang, G. Zheng, C. Mou, J. Wen, and T. Wang, “All-fiber mode converter based on long-period fiber gratings written in few-mode fiber,” Opt. Lett. 42(22), 4708–4711 (2017).
    [Crossref]
  18. Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
    [Crossref]
  19. X. Heng, J. Gan, Z. Zhang, J. Li, M. Li, H. Zhao, Q. Qian, S. Xu, and Z. Yang, “All-fiber stable orbital angular momentum beam generation and propagation,” Opt. Express 26(13), 17429–17436 (2018).
    [Crossref]
  20. F. Xia, Y. Zhao, H. Hu, and Y. Zhang, “Broadband generation of the first-order OAM modes in two-mode fiber by offset splicing and fiber rotating technology,” Opt. Laser Technol. 112, 436–441 (2019).
    [Crossref]
  21. D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110(2), 021107 (2017).
    [Crossref]
  22. D. Mao, Z. He, H. Lu, M. Li, W. Zhang, X. Cui, B. Jiang, and J. Zhao, “All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers,” Opt. Lett. 43(7), 1590–1593 (2018).
    [Crossref]
  23. K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Online and efficient fabrication of helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).
    [Crossref]
  24. K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
    [Crossref]
  25. C. Fu, S. Liu, Z. Bai, J. He, C. Liao, Y. Wang, Z. Li, Y. Zhang, K. Yang, B. Yu, and Y. Wang, “Orbital angular momentum mode converter based on helical long period fiber grating inscribed by hydrogen–oxygen flame,” J. Lightwave Technol. 36(9), 1683–1688 (2018).
    [Crossref]
  26. Y. Zhang, Z. Bai, C. Fu, S. Liu, J. Tang, J. Yu, C. Liao, Y. Wang, J. He, and Y. Wang, “Polarization-independent orbital angular momentum generator based on a chiral fiber grating,” Opt. Lett. 44(1), 61–64 (2019).
    [Crossref]
  27. C. Fu, S. Liu, Y. Wang, Z. Bai, J. He, C. Liao, Y. Zhang, F. Zhang, B. Yu, S. Gao, Z. Li, and Y. Wang, “High-order orbital angular momentum mode generator based on twisted photonic crystal fiber,” Opt. Lett. 43(8), 1786–1789 (2018).
    [Crossref]
  28. L. Fang and J. Wang, “Flexible generation/conversion/exchange of fiber-guided orbital angular momentum modes using helical gratings,” Opt. Lett. 40(17), 4010–4013 (2015).
    [Crossref]
  29. L. Fang and J. Wang, “Full-vectorial mode coupling in optical fibers,” IEEE J. Quantum Electron. 54(2), 1–7 (2018).
    [Crossref]
  30. J. Liu, M. Cheng, X. Kong, D. Han, J. Dong, W. Luo, and K. Ren, “Microtapered long period gratings: Non-destructive fabrication, highly sensitive torsion sensing, and tunable broadband filtering,” Infrared Phys. Technol. 102, 103000 (2019).
    [Crossref]
  31. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]
  32. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  33. L. Yang, L. L. Xue, C. Li, J. Su, and J. R. Qian, “Adiabatic circular polarizer based on chiral fiber grating,” Opt. Express 19(3), 2251–2256 (2011).
    [Crossref]
  34. C. Zhu, T. Yamakawa, H. Zhao, and H. Li, “All-fiber circular polarization filter realized by using helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 30(22), 1905–1908 (2018).
    [Crossref]
  35. C. Zhu, S. Ishikami, P. Wang, H. Zhao, and H. Li, “Optimal design and fabrication of multichannel helical long-period fiber gratings based on phase-only sampling method,” Opt. Express 27(3), 2281–2291 (2019).
    [Crossref]

2019 (4)

F. Xia, Y. Zhao, H. Hu, and Y. Zhang, “Broadband generation of the first-order OAM modes in two-mode fiber by offset splicing and fiber rotating technology,” Opt. Laser Technol. 112, 436–441 (2019).
[Crossref]

Y. Zhang, Z. Bai, C. Fu, S. Liu, J. Tang, J. Yu, C. Liao, Y. Wang, J. He, and Y. Wang, “Polarization-independent orbital angular momentum generator based on a chiral fiber grating,” Opt. Lett. 44(1), 61–64 (2019).
[Crossref]

J. Liu, M. Cheng, X. Kong, D. Han, J. Dong, W. Luo, and K. Ren, “Microtapered long period gratings: Non-destructive fabrication, highly sensitive torsion sensing, and tunable broadband filtering,” Infrared Phys. Technol. 102, 103000 (2019).
[Crossref]

C. Zhu, S. Ishikami, P. Wang, H. Zhao, and H. Li, “Optimal design and fabrication of multichannel helical long-period fiber gratings based on phase-only sampling method,” Opt. Express 27(3), 2281–2291 (2019).
[Crossref]

2018 (7)

C. Zhu, T. Yamakawa, H. Zhao, and H. Li, “All-fiber circular polarization filter realized by using helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 30(22), 1905–1908 (2018).
[Crossref]

C. Fu, S. Liu, Y. Wang, Z. Bai, J. He, C. Liao, Y. Zhang, F. Zhang, B. Yu, S. Gao, Z. Li, and Y. Wang, “High-order orbital angular momentum mode generator based on twisted photonic crystal fiber,” Opt. Lett. 43(8), 1786–1789 (2018).
[Crossref]

C. Fu, S. Liu, Z. Bai, J. He, C. Liao, Y. Wang, Z. Li, Y. Zhang, K. Yang, B. Yu, and Y. Wang, “Orbital angular momentum mode converter based on helical long period fiber grating inscribed by hydrogen–oxygen flame,” J. Lightwave Technol. 36(9), 1683–1688 (2018).
[Crossref]

L. Fang and J. Wang, “Full-vectorial mode coupling in optical fibers,” IEEE J. Quantum Electron. 54(2), 1–7 (2018).
[Crossref]

D. Mao, Z. He, H. Lu, M. Li, W. Zhang, X. Cui, B. Jiang, and J. Zhao, “All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers,” Opt. Lett. 43(7), 1590–1593 (2018).
[Crossref]

A. Wang, L. Zhu, L. Wang, J. Ai, S. Chen, and J. Wang, “Directly using 88-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission,” Opt. Express 26(8), 10038–10047 (2018).
[Crossref]

X. Heng, J. Gan, Z. Zhang, J. Li, M. Li, H. Zhao, Q. Qian, S. Xu, and Z. Yang, “All-fiber stable orbital angular momentum beam generation and propagation,” Opt. Express 26(13), 17429–17436 (2018).
[Crossref]

2017 (5)

Y. Zhao, Y. Liu, C. Zhang, L. Zhang, G. Zheng, C. Mou, J. Wen, and T. Wang, “All-fiber mode converter based on long-period fiber gratings written in few-mode fiber,” Opt. Lett. 42(22), 4708–4711 (2017).
[Crossref]

J. Zeng, T. S. Luk, J. Gao, and X. Yang, “Spiraling light with magnetic metamaterial quarter-wave turbines,” Sci. Rep. 7(1), 11824 (2017).
[Crossref]

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Online and efficient fabrication of helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).
[Crossref]

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110(2), 021107 (2017).
[Crossref]

2016 (4)

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
[Crossref]

R. Paez-Lopez, U. Ruiz, V. Arrizon, and R. Ramos-Garcia, “Optical manipulation using optimal annular vortices,” Opt. Lett. 41(17), 4138–4141 (2016).
[Crossref]

C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7(1), 12998 (2016).
[Crossref]

2015 (4)

2014 (3)

2013 (2)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Z. Zhao, J. Wang, S. Li, and A. E. Willner, “Metamaterials-based broadband generation of orbital angular momentum carrying vector beams,” Opt. Lett. 38(6), 932–934 (2013).
[Crossref]

2012 (1)

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

2011 (1)

2005 (1)

2002 (1)

1999 (1)

J. Courtial and M. J. Padgett, “Performance of a cylindrical lens mode converter for producing Laguerre–Gaussian laser modes,” Opt. Commun. 159(1-3), 13–18 (1999).
[Crossref]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Ai, J.

Arnold, A. S.

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

Arrizon, V.

Bai, Z.

Bennion, I.

Bernet, S.

Boyd, R.

Boyd, R. W.

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Brasselet, E.

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5(1), 4491 (2014).
[Crossref]

Brunet, C.

Cao, A.

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Chen, S.

Cheng, M.

J. Liu, M. Cheng, X. Kong, D. Han, J. Dong, W. Luo, and K. Ren, “Microtapered long period gratings: Non-destructive fabrication, highly sensitive torsion sensing, and tunable broadband filtering,” Infrared Phys. Technol. 102, 103000 (2019).
[Crossref]

Courtial, J.

J. Courtial and M. J. Padgett, “Performance of a cylindrical lens mode converter for producing Laguerre–Gaussian laser modes,” Opt. Commun. 159(1-3), 13–18 (1999).
[Crossref]

Cui, X.

Deng, Q.

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Dong, J.

J. Liu, M. Cheng, X. Kong, D. Han, J. Dong, W. Luo, and K. Ren, “Microtapered long period gratings: Non-destructive fabrication, highly sensitive torsion sensing, and tunable broadband filtering,” Infrared Phys. Technol. 102, 103000 (2019).
[Crossref]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Fang, L.

Feng, T.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110(2), 021107 (2017).
[Crossref]

Franke-Arnold, S.

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

Fu, C.

Fu, Y.

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Fürhapter, S.

Gan, J.

Gao, J.

J. Zeng, T. S. Luk, J. Gao, and X. Yang, “Spiraling light with magnetic metamaterial quarter-wave turbines,” Sci. Rep. 7(1), 11824 (2017).
[Crossref]

Gao, S.

Gregg, P.

Han, D.

J. Liu, M. Cheng, X. Kong, D. Han, J. Dong, W. Luo, and K. Ren, “Microtapered long period gratings: Non-destructive fabrication, highly sensitive torsion sensing, and tunable broadband filtering,” Infrared Phys. Technol. 102, 103000 (2019).
[Crossref]

He, J.

He, Z.

Heng, X.

Hu, H.

F. Xia, Y. Zhao, H. Hu, and Y. Zhang, “Broadband generation of the first-order OAM modes in two-mode fiber by offset splicing and fiber rotating technology,” Opt. Laser Technol. 112, 436–441 (2019).
[Crossref]

Hu, S.

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Ishikami, S.

Jesacher, A.

Jia, P.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light: Sci. Appl. 4(3), e257 (2015).
[Crossref]

Jiang, B.

D. Mao, Z. He, H. Lu, M. Li, W. Zhang, X. Cui, B. Jiang, and J. Zhao, “All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers,” Opt. Lett. 43(7), 1590–1593 (2018).
[Crossref]

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110(2), 021107 (2017).
[Crossref]

Jiang, Y.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110(2), 021107 (2017).
[Crossref]

Ju, H.

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Online and efficient fabrication of helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).
[Crossref]

Karimi, E.

Kaufmann, H.

C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7(1), 12998 (2016).
[Crossref]

Kong, X.

J. Liu, M. Cheng, X. Kong, D. Han, J. Dong, W. Luo, and K. Ren, “Microtapered long period gratings: Non-destructive fabrication, highly sensitive torsion sensing, and tunable broadband filtering,” Infrared Phys. Technol. 102, 103000 (2019).
[Crossref]

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Online and efficient fabrication of helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).
[Crossref]

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

LaRochelle, S.

Lei, T.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light: Sci. Appl. 4(3), e257 (2015).
[Crossref]

Li, C.

Li, H.

C. Zhu, S. Ishikami, P. Wang, H. Zhao, and H. Li, “Optimal design and fabrication of multichannel helical long-period fiber gratings based on phase-only sampling method,” Opt. Express 27(3), 2281–2291 (2019).
[Crossref]

C. Zhu, T. Yamakawa, H. Zhao, and H. Li, “All-fiber circular polarization filter realized by using helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 30(22), 1905–1908 (2018).
[Crossref]

Li, J.

Li, M.

Li, P.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110(2), 021107 (2017).
[Crossref]

Li, S.

Li, Y.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light: Sci. Appl. 4(3), e257 (2015).
[Crossref]

Li, Z.

Liang, J.

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Online and efficient fabrication of helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).
[Crossref]

Liao, C.

Lin, J.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light: Sci. Appl. 4(3), e257 (2015).
[Crossref]

Liu, G. N.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light: Sci. Appl. 4(3), e257 (2015).
[Crossref]

Liu, J.

J. Liu, M. Cheng, X. Kong, D. Han, J. Dong, W. Luo, and K. Ren, “Microtapered long period gratings: Non-destructive fabrication, highly sensitive torsion sensing, and tunable broadband filtering,” Infrared Phys. Technol. 102, 103000 (2019).
[Crossref]

Liu, S.

Liu, Y.

Lu, H.

D. Mao, Z. He, H. Lu, M. Li, W. Zhang, X. Cui, B. Jiang, and J. Zhao, “All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers,” Opt. Lett. 43(7), 1590–1593 (2018).
[Crossref]

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110(2), 021107 (2017).
[Crossref]

Luk, T. S.

J. Zeng, T. S. Luk, J. Gao, and X. Yang, “Spiraling light with magnetic metamaterial quarter-wave turbines,” Sci. Rep. 7(1), 11824 (2017).
[Crossref]

Luo, W.

J. Liu, M. Cheng, X. Kong, D. Han, J. Dong, W. Luo, and K. Ren, “Microtapered long period gratings: Non-destructive fabrication, highly sensitive torsion sensing, and tunable broadband filtering,” Infrared Phys. Technol. 102, 103000 (2019).
[Crossref]

Maffei, B.

Mao, D.

D. Mao, Z. He, H. Lu, M. Li, W. Zhang, X. Cui, B. Jiang, and J. Zhao, “All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers,” Opt. Lett. 43(7), 1590–1593 (2018).
[Crossref]

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110(2), 021107 (2017).
[Crossref]

Marrucci, L.

Messaddeq, Y.

Min, C.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light: Sci. Appl. 4(3), e257 (2015).
[Crossref]

Mirhosseini, M.

Mou, C.

Niu, H.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light: Sci. Appl. 4(3), e257 (2015).
[Crossref]

Padgett, M. J.

J. Courtial and M. J. Padgett, “Performance of a cylindrical lens mode converter for producing Laguerre–Gaussian laser modes,” Opt. Commun. 159(1-3), 13–18 (1999).
[Crossref]

Paez-Lopez, R.

Pang, H.

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Pisano, G.

Poschinger, U. G.

C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7(1), 12998 (2016).
[Crossref]

Qian, J. R.

Qian, Q.

Ramachandran, S.

Ramos-Garcia, R.

Ren, K.

J. Liu, M. Cheng, X. Kong, D. Han, J. Dong, W. Luo, and K. Ren, “Microtapered long period gratings: Non-destructive fabrication, highly sensitive torsion sensing, and tunable broadband filtering,” Infrared Phys. Technol. 102, 103000 (2019).
[Crossref]

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Online and efficient fabrication of helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).
[Crossref]

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]

Ren, L.

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Online and efficient fabrication of helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Ritsch-Marte, M.

Rubano, A.

Ruiz, U.

Rusch, L. A.

Ruster, T.

C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7(1), 12998 (2016).
[Crossref]

Schemmel, P.

Schmidt-Kaler, F.

C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7(1), 12998 (2016).
[Crossref]

Schmiegelow, C. T.

C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7(1), 12998 (2016).
[Crossref]

Schulz, J.

C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7(1), 12998 (2016).
[Crossref]

Shi, L.

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Shu, X.

Su, J.

Sun, Z.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110(2), 021107 (2017).
[Crossref]

Tang, J.

Tkachenko, G.

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5(1), 4491 (2014).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Vaity, P.

Walker, G.

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

Wang, A.

Wang, J.

Wang, L.

Wang, P.

Wang, T.

Wang, Y.

Y. Zhang, Z. Bai, C. Fu, S. Liu, J. Tang, J. Yu, C. Liao, Y. Wang, J. He, and Y. Wang, “Polarization-independent orbital angular momentum generator based on a chiral fiber grating,” Opt. Lett. 44(1), 61–64 (2019).
[Crossref]

Y. Zhang, Z. Bai, C. Fu, S. Liu, J. Tang, J. Yu, C. Liao, Y. Wang, J. He, and Y. Wang, “Polarization-independent orbital angular momentum generator based on a chiral fiber grating,” Opt. Lett. 44(1), 61–64 (2019).
[Crossref]

C. Fu, S. Liu, Y. Wang, Z. Bai, J. He, C. Liao, Y. Zhang, F. Zhang, B. Yu, S. Gao, Z. Li, and Y. Wang, “High-order orbital angular momentum mode generator based on twisted photonic crystal fiber,” Opt. Lett. 43(8), 1786–1789 (2018).
[Crossref]

C. Fu, S. Liu, Z. Bai, J. He, C. Liao, Y. Wang, Z. Li, Y. Zhang, K. Yang, B. Yu, and Y. Wang, “Orbital angular momentum mode converter based on helical long period fiber grating inscribed by hydrogen–oxygen flame,” J. Lightwave Technol. 36(9), 1683–1688 (2018).
[Crossref]

C. Fu, S. Liu, Z. Bai, J. He, C. Liao, Y. Wang, Z. Li, Y. Zhang, K. Yang, B. Yu, and Y. Wang, “Orbital angular momentum mode converter based on helical long period fiber grating inscribed by hydrogen–oxygen flame,” J. Lightwave Technol. 36(9), 1683–1688 (2018).
[Crossref]

C. Fu, S. Liu, Y. Wang, Z. Bai, J. He, C. Liao, Y. Zhang, F. Zhang, B. Yu, S. Gao, Z. Li, and Y. Wang, “High-order orbital angular momentum mode generator based on twisted photonic crystal fiber,” Opt. Lett. 43(8), 1786–1789 (2018).
[Crossref]

Wen, J.

Willner, A. E.

Z. Zhao, J. Wang, S. Li, and A. E. Willner, “Metamaterials-based broadband generation of orbital angular momentum carrying vector beams,” Opt. Lett. 38(6), 932–934 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Wu, Z.

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Online and efficient fabrication of helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).
[Crossref]

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]

Xia, F.

F. Xia, Y. Zhao, H. Hu, and Y. Zhang, “Broadband generation of the first-order OAM modes in two-mode fiber by offset splicing and fiber rotating technology,” Opt. Laser Technol. 112, 436–441 (2019).
[Crossref]

Xu, S.

Xu, X.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light: Sci. Appl. 4(3), e257 (2015).
[Crossref]

Xue, L. L.

Yamakawa, T.

C. Zhu, T. Yamakawa, H. Zhao, and H. Li, “All-fiber circular polarization filter realized by using helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 30(22), 1905–1908 (2018).
[Crossref]

Yan, L.

Yang, K.

Yang, L.

Yang, X.

J. Zeng, T. S. Luk, J. Gao, and X. Yang, “Spiraling light with magnetic metamaterial quarter-wave turbines,” Sci. Rep. 7(1), 11824 (2017).
[Crossref]

Yang, Z.

Yu, B.

Yu, C.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light: Sci. Appl. 4(3), e257 (2015).
[Crossref]

Yu, J.

Yuan, X.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light: Sci. Appl. 4(3), e257 (2015).
[Crossref]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Zeng, J.

J. Zeng, T. S. Luk, J. Gao, and X. Yang, “Spiraling light with magnetic metamaterial quarter-wave turbines,” Sci. Rep. 7(1), 11824 (2017).
[Crossref]

Zhang, C.

Zhang, F.

Zhang, L.

Zhang, M.

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light: Sci. Appl. 4(3), e257 (2015).
[Crossref]

Zhang, W.

D. Mao, Z. He, H. Lu, M. Li, W. Zhang, X. Cui, B. Jiang, and J. Zhao, “All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers,” Opt. Lett. 43(7), 1590–1593 (2018).
[Crossref]

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110(2), 021107 (2017).
[Crossref]

Zhang, Y.

Zhang, Z.

Zhao, H.

Zhao, J.

D. Mao, Z. He, H. Lu, M. Li, W. Zhang, X. Cui, B. Jiang, and J. Zhao, “All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers,” Opt. Lett. 43(7), 1590–1593 (2018).
[Crossref]

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110(2), 021107 (2017).
[Crossref]

Zhao, Y.

Zhao, Z.

Zheng, G.

Zhu, C.

C. Zhu, S. Ishikami, P. Wang, H. Zhao, and H. Li, “Optimal design and fabrication of multichannel helical long-period fiber gratings based on phase-only sampling method,” Opt. Express 27(3), 2281–2291 (2019).
[Crossref]

C. Zhu, T. Yamakawa, H. Zhao, and H. Li, “All-fiber circular polarization filter realized by using helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 30(22), 1905–1908 (2018).
[Crossref]

Zhu, L.

Appl. Phys. Lett. (1)

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110(2), 021107 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Fang and J. Wang, “Full-vectorial mode coupling in optical fibers,” IEEE J. Quantum Electron. 54(2), 1–7 (2018).
[Crossref]

IEEE Photonics J. (1)

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Online and efficient fabrication of helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).
[Crossref]

K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, and Z. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technol. Lett. 29(13), 1085–1088 (2017).
[Crossref]

C. Zhu, T. Yamakawa, H. Zhao, and H. Li, “All-fiber circular polarization filter realized by using helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 30(22), 1905–1908 (2018).
[Crossref]

Infrared Phys. Technol. (1)

J. Liu, M. Cheng, X. Kong, D. Han, J. Dong, W. Luo, and K. Ren, “Microtapered long period gratings: Non-destructive fabrication, highly sensitive torsion sensing, and tunable broadband filtering,” Infrared Phys. Technol. 102, 103000 (2019).
[Crossref]

J. Lightwave Technol. (3)

Light: Sci. Appl. (1)

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light: Sci. Appl. 4(3), e257 (2015).
[Crossref]

Nat. Commun. (2)

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5(1), 4491 (2014).
[Crossref]

C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7(1), 12998 (2016).
[Crossref]

Opt. Commun. (1)

J. Courtial and M. J. Padgett, “Performance of a cylindrical lens mode converter for producing Laguerre–Gaussian laser modes,” Opt. Commun. 159(1-3), 13–18 (1999).
[Crossref]

Opt. Express (7)

Opt. Laser Technol. (1)

F. Xia, Y. Zhao, H. Hu, and Y. Zhang, “Broadband generation of the first-order OAM modes in two-mode fiber by offset splicing and fiber rotating technology,” Opt. Laser Technol. 112, 436–441 (2019).
[Crossref]

Opt. Lett. (9)

Y. Zhao, Y. Liu, C. Zhang, L. Zhang, G. Zheng, C. Mou, J. Wen, and T. Wang, “All-fiber mode converter based on long-period fiber gratings written in few-mode fiber,” Opt. Lett. 42(22), 4708–4711 (2017).
[Crossref]

Z. Zhao, J. Wang, S. Li, and A. E. Willner, “Metamaterials-based broadband generation of orbital angular momentum carrying vector beams,” Opt. Lett. 38(6), 932–934 (2013).
[Crossref]

R. Paez-Lopez, U. Ruiz, V. Arrizon, and R. Ramos-Garcia, “Optical manipulation using optimal annular vortices,” Opt. Lett. 41(17), 4138–4141 (2016).
[Crossref]

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral interferometry,” Opt. Lett. 30(15), 1953–1955 (2005).
[Crossref]

D. Mao, Z. He, H. Lu, M. Li, W. Zhang, X. Cui, B. Jiang, and J. Zhao, “All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers,” Opt. Lett. 43(7), 1590–1593 (2018).
[Crossref]

P. Gregg, M. Mirhosseini, A. Rubano, L. Marrucci, E. Karimi, R. W. Boyd, and S. Ramachandran, “Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber,” Opt. Lett. 40(8), 1729–1732 (2015).
[Crossref]

Y. Zhang, Z. Bai, C. Fu, S. Liu, J. Tang, J. Yu, C. Liao, Y. Wang, J. He, and Y. Wang, “Polarization-independent orbital angular momentum generator based on a chiral fiber grating,” Opt. Lett. 44(1), 61–64 (2019).
[Crossref]

C. Fu, S. Liu, Y. Wang, Z. Bai, J. He, C. Liao, Y. Zhang, F. Zhang, B. Yu, S. Gao, Z. Li, and Y. Wang, “High-order orbital angular momentum mode generator based on twisted photonic crystal fiber,” Opt. Lett. 43(8), 1786–1789 (2018).
[Crossref]

L. Fang and J. Wang, “Flexible generation/conversion/exchange of fiber-guided orbital angular momentum modes using helical gratings,” Opt. Lett. 40(17), 4010–4013 (2015).
[Crossref]

Optica (1)

Phys. Rev. Lett. (1)

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

Sci. Rep. (1)

J. Zeng, T. S. Luk, J. Gao, and X. Yang, “Spiraling light with magnetic metamaterial quarter-wave turbines,” Sci. Rep. 7(1), 11824 (2017).
[Crossref]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) HLPG with right-handed helical structure formed by twisting an SMF, and calculated variation of resonance wavelengths versus the grating period of HLPG for different cladding modes. (b) Mode orders m = 1 to 7. (c) Mode orders m = 8 to 14. (The DTPs for m = 8 to 14 are marked by black dots that is sandwiched by black arrows.)
Fig. 2.
Fig. 2. (a) Transmission spectra of the HLPG working at the DTP (m = 10) and not working at DTP (m = 1). (b) Simulation of the intensity profile of the HLPG working at the DTP of LP1,10 with a period of 197.3 µm corresponding to a central wavelength of 1.612 µm, which exhibits a phase singularity at the center of the intensity distribution (c) Spiral interference pattern of the converted OAM mode formed by interfering with a Gaussian reference beam.
Fig. 3.
Fig. 3. (a) Phase-matching curves for LP11 (blue line) and LP12 modes (red line). A period change of 225 µm corresponds to 245 nm resonance wavelength range, but also with 212 nm overlapping range associated with the LP11 and LP12 modes. (b) Phase-matching curves for LP19, LP1,10 and LP1,11 modes. The resonance wavelength with a bandwidth of 245 nm requires only 1 µm period change near the DTP of LP1,10 mode.
Fig. 4.
Fig. 4. (a) Schematic structure for the proposed chirped HLPG. (b) Profile of a chirped HLPG. (c) Transmission spectra of the HLPG working at DTP of LP1,10 mode with a constant period of 197.3 µm (red line) and chirped HLPG with a period change from 197.3 to 196.3 µm (blue line, $c = \Delta \Lambda /L{\rm{ = 1}}{\rm{.06}} \times {\rm{1}}{{\rm{0}}^{ - 4}}$).
Fig. 5.
Fig. 5. (a) Variations of the section length versus the grating position in chirped HLPG operating near the DTP of LP1,10 mode. (b) Transmission spectra under different cases of the section lengths apodization of the chirped HLPG operating near the DTP of LP1,10 mode.
Fig. 6.
Fig. 6. (a) Transmission spectra of the length-apodized chirped HLPG operating near the DTP of LP1,10 mode with the grating lengths of 9.45 mm (blue solid line) and 9.40 mm (red dashed line). Insert is the enlarged figure near the loss peak. (b) Transmission spectrum of the cascaded length-apodized chirped HLPGs.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ r e s = ( n e f f , 01 n e f f , 1 n ) Λ ,
L = π / 2 C ,
Λ = Λ 0 + c z ,
c = Δ Λ / L ,
f ( n ) = L ( N n + 1 ) N s u m ,
f ( n ) = F ( n ) n = 1 N F ( n ) L ,
F ( n ) = 1 2 ( 1 + cos ( π z n L ) ) ,